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ABSTRACT 

The saw-tooth phenomenon on the binding energy curve of N = Z nuclei is due to the low binding energy between the 
α-particles. It was suspected by Gamow to be of van der Waals type, found here to be deuteron bonds. The binding 
energy per nucleon, in absolute value, of an α-particle is larger than any other combination of 4 nucleons. Therefore, the 
binding energy per nucleon is low for odd-odd N = Z nuclei and maximum for even-even N = Z nuclei. The assumption 
of N = Z nuclei to be an assembly of α-particles and deuteron bonds predicts the binding energy of the 32 first N = Z 
nuclei with a rms deviation of 0.25 MeV. 
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1. Introduction 

A nucleus is made of two types of discrete nucleons 
having practically the same mass, the neutron and the 
proton. Thus the binding energy of a nucleus is a dis- 
continuous function of its mass. The shell model is 
quantized but unable to quantify the binding energies of 
the nuclei. It seems that it does not distinguish between 
unpaired nucleons, (odd-N, even-Z) from (odd-Z, even- 
N). The Bethe-Weizsäcker formula (Figure1) represents 
the binding energycurves. The even-odd phenomenon is 
expressed in the Bethe-Weizsäcker formula [3] by taking 
theodd-even nucleus as a reference point [4]. Only for 
heavy nuclides it is possible to use analytical functions to 
represent the binding energy. A, Z, and N are usually 
mixed in the equations as in the Wigner energy [3]. Also 
called liquid drop model, it is a collection of α-particles 
dissolving in a liquid drop, where these α-particles “form 
a relatively stable sub-nucleus” as proposed by Gamow 
in 1928 [5,6]. “This most-resilient of models” [7] has 
been developed by many others, forgetting the α-particles, 
replaced by the Pauli “four-shells” [8], partially com- 
patible with the α-particle model because the neutron 
(and proton) magnetic moments, as the spins, are oppo- 
site. 

Despite the fact that the neutron and proton electro- 
magnetic properties are different, the usual assumption is 
that the nuclear interaction (called NN, 3N, Paris, Bonn, 
Nijmegen, Argonne...) is the same for the proton and the  

neutron, except for the long-range Coulomb repulsion, 
often disregarded. According to Weisskopf and Blatt [8], 
the discredited “naive ” α-particle model has no adequate 
method of treating the A = 4n + 2 nuclei. “Even in 
nonalpha-particle nuclei the average binding energy per 
nucleon has roughly the same value as in the alpha- 
 

 

Figure. 1. Saw-tooth, even-odd, zig-zag, four-shells or pair-
ing effect of the binding energy (absolute value) of N = Z 
nuclei. It “suggests an α model for light nuclei” [1]. An odd 
N = Z nucleus has almost the same total binding energy as 
its neighbors for unbound α-particles (28 MeV) with and 
without excess nucleons. Adding the binding energy of the α 
-α bonds as deuteron bonds (2.2 MeV) explains the mean 
increasing binding energy per nucleon with increasing A. 
The rms deviation between the calculated curve and the 
experimental curve from AME [2] is 0.25 MeV. Liquid drop 
model from [3]. 

Copyright © 2013 SciRes.                                                                               WJNST 



B. SCHAEFFER 80 

particle. (...) A very strong experimental argument aga- 
inst the alpha-particle model comes from the scattering 
of alphaparticles in helium” [8]. Unfortunately, scatter- 
ing data are measured with a “high-precision” of less 
than 2 digits without standardized experimental and in- 
terpretation method. Binding energies are known with 
high precision from mass spectrometer data with up to 8 
digits for the 4He mass; thousands of data are recorded in 
standardized tables [2]. It is possible to extend the α- 
particle model to all N = Z nuclei as it will be shown 
thereafter. A recent update about various models and par- 
ticularly the cluster and lattice models can be found [7]. 

2. Alpha-Cluster Model 

According to Gamow [6], “Numerous attempts to com- 
pute the average interaction between nucleons moving in 
1s and 2p orbits have all led to the result that, if the 
two-body forces are the same as evidenced in scattering 
and in the deuteron, the predicted binding energy in the 
nuclei between He and O is only a small fraction of the 
observed binding energies”. Gamow explains this discre- 
pancy by α-particles “bound to each other by relatively 
weak forces of the van der Waals type”. He applied this 
idea to the nuclei containing only α-particles, that is, with 
N = Z even. The increase of the binding energy with the 
number of α-particles can be explained by the small con- 
tribution from the bonds between the α-particles. 

The alpha-cluster model has been developed over a 
period of more than six decades. Binding energies and 
vibrational energies of certain of the small 4n-nuclei 
have been worked out in impressive detail. When the 
masses of the nuclear fragments are measured, an abun- 
dance of alpha particles or their multiples is consistently 
found. Alpha clustering is not only now well established 
in light nuclei [9,10] but also in all nuclei, as shown in 
this paper. MacGregor [7] “pointed out that there is a 
huge penalty paid by, particularly, the large nuclei for 
having a core region with equal numbers of protons and 
neutrons because that implies an abundance of proton 
charge in the nuclear interior”. 

3. Other Models 

Many theories have tried to explain the binding energy 
curve for the first N = Z nuclei (Independent Particle 
Model or Shell Model, Liquid Drop Model and the Face 
Centered Cubic Lattice Model). According to the Shell 
model, the nucleons fill shells within the nucleus. 

“The existence of these peaks is a compelling expe- 
rimental demonstration of the applicability of the Pauli 
exclusion principle in nuclei, because each four-shell 
contains just two neutrons (with spin upand spin down) 
and two protons (with spin upand spin down)” [1]. It 
distinguishes between even-Z even-N, odd-Z odd-N but 

not between mirror nuclei, (e.g. 6Li with B/A = 5.33 
MeV) and even-Z odd-N (e.g. 6Be with B/A = 4.49 MeV) 
because they have both Jπ = 5/2+. The different binding 
energies of odd-Z even-N and odd-Z even-Z is attributed 
to the long range Coulomb repulsion energy. 

4. Saw-Tooth Appearance 

The peaks of the N = Z even nuclei (Figure 1 and Table 
1) is general for all nuclei. There is no exception, with  
 
Table 1. Binding energies of N = Z nuclei. There are no α-α 
bonds for 4He, 6Liand 8Be, unstable. 4He and 8Be are forced 
to the α-particle binding energy. The total deuteron binding 
energy being small in comparison with that of the α-particle, 
the binding energy of an odd-odd N = Z nucleus is smaller 
because it is divided by A + 2 instead of A. The mean 
binding energy of the nuclei increases because the deuteron 
bonds between the α-particles remain although the deu- 
terons are dissolved in the new α-particle. The rms de- 
viation is 0.25 MeV and the greatest discrepancy is for 6Li 
where it is 13 %. Experimental data from AME [2]. 

A Nuclide
Bα/A floor(A/4) 
unbound alphas

B/A with 2H 
bound alphas 

B/A Experiment 
(AME) 

4 4He 7.07 7.07 7.07 

6 6Li 4.71 4.71 5.33 

8 8Be 7.07 7.07 7.06 

10 10B 5.66 6.10 6.48 

12 12C 7.07 7.81 7.68 

14 14N 6.06 7.01 7.48 

16 16O 7.07 8.18 7.98 

18 18F 6.28 7.52 7.63 

20 20Ne 7.07 8.41 8.03 

22 22Na 6.43 7.84 7.92 

24 24Mg 7.07 8.55 8.26 

26 26Al 6.53 8.07 8.15 

28 28Si 7.07 8.66 8.45 

30 30P 6.60 8.23 8.35 

32 32S 7.07 8.74 8.49 

34 34Cl 6.65 8.36 8.40 

36 36Ar 7.07 8.80 8.52 

38 38K 6.70 8.45 8.44 

40 40Ca 7.07 8.85 8.55 

42 42Sc 6.73 8.53 8.44 

44 44Ti 7.07 8.89 8.53 

46 46V 6.76 8.60 8.49 

48 48Cr 7.07 8.92 8.57 

50 50Mn 6.79 8.66 8.53 

52 52Fe 7.07 8.95 8.61 

54 54Co 6.81 8.70 8.57 

56 56Ni 7.07 8.98 8.64 

58 58Cu 6.83 8.74 8.57 

60 60Zn 7.07 9.00 8.58 

62 62Ga 6.84 8.78 8.52 

64 64Ge 7.07 9.02 8.53 

66 66As 6.86 8.81 8.46 
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completely regular periodic peaks on the binding energy 
curve of the nuclides. The atomic mass number A shows 
a periodicity of 4 (four-shells). The proton and neutron 
numbers Z and N show a periodicity of 2 observed for all 
chemical elements (Figures 2-4). 

The peaks happen when N (or Z) is even, as may be 
seen on Figures 2 and 3, for all nuclei, as for heavy 
nuclei (Figure 4). For N = Z even the nucleus contains 
only α-particles. When N = Z is odd, the binding energy 
is lower, due to the presence of one proton and one 
neutron lightly bound to α-particles by two deuteron 
bonds of 2.225 MeV each, much less than that of the 
28.28 MeV binding energy of α-particles. The saw-tooth 
behavior occurs in many nuclear phenomena such as 
neutron multiplicity, single-neutron separation, deep- 
inelastic heavy-ion reactions, β decay, abundance. 

5. Binding Energy of N = Z Nuclei  
Calculated from 4He and 2He 

Adding one nucleon to a nucleus increases its mass. If 
the binding energy of a nucleon to a nucleus is negligible, 
the total binding energy remains the same. Therefore the 
binding energy per nucleon decreases. This is what ha- 
ppens when a neutron and a proton are added to an N = Z 
even nucleus, explaining qualitatively the saw-tooth phe- 
nomenon that will be now calculated. 

In a first approximation, a nucleus is constituted only 
of unbound α-particles. The total binding energy is thus 
the sum of the binding energies of the sole α-particles: 

   4 He Integer MeV
4

A
B A B

    
 

    (1) 

where Integer (x) is the integer part of x. This formula is 
partially equivalent to the δ(A) function (Figure 1) of the  
 

 

Figure 2. Experimental binding energies of selected isotopes. 
The binding energy peaks are larger for both even Z and N. 
There is no clear evidence that even Z isotopes have a 
higher binding energy than their neighbors (see the curves 
of F, Ne and Na). The binding energy is parabolic, decreas-
ing with a maximum around N ≈ 1.4 Z. Three Fe isomer 
steps are clearly visible. 

 

Figure 3. Experimental binding energies of selected isotones. 
The binding energy curves are similar for isotopes and iso- 
tones with peaks at even Z. Each inverted parabola shows a 
hump near N/Z between 1 and 1.4 as for the isotopes. 
 

 

Figure 4. Experimental binding energies of some heavy 
nuclei. This figure shows that the α-particle cluster model is 
not limited to light nuclei. There is no significant difference 
between even and odd Z curves. The maximum value de- 
creases with increasing Z, probably due to the long-range 
Coulomb repulsion between protons. One can see isomers at 
N = 126. 
 
liquid drop model. The binding energy per nucleon of 
loose α-particles plus loose nucleons is thus, in this app- 
roximation: 

  28.28
Integer MeV

4

B A A

A A
    
 

    (2) 

In a second approximation, let us begin with a nucleus 
containing only α-particles bound together. Two nu- 
cleons, one proton and one neutron have to be added to 
obtain an N = Z odd-odd nucleus. A proton will be 
attracted by a neutron of an α-particle to form a deuteron 
bond and vice versa. Two deuteron bonds are created to 
bind two α-particles, therefore the total binding energy 
increases by 2 × B(²H) = 2 × 2.225 MeV. Each time an 
α-particle is created and bonded to another one the total 
binding energy increases by 4.45 MeV. For each proton 
added, Z increasing by 1, the binding energy increases by 
2.225 MeV, giving the formula: 
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   
  

4

2

He Integer MeV
4

H 8

A
B A B

B A

    
 

 
    (3) 

Number 8 comes from the experimental fact that the 
binding energy of 8Be is the same as that of the α- 
particle. Therefore the binding energy increases only for 
nuclides heavier than 8Be. Per nucleon we have: 

  28.28
Integer

4

8
2.225 1 MeV

B A A

A A

A

    
 

   
 

        (4) 

The binding energy per nucleon is the sum of the 
α-particle energy plus the α-α binding energy identified 
with that of two deuteron bonds, explaining the van der 
Waals bonds suspected by Gamow [6]. On Figure 1 the 
calculated curve is compared with the experimental curve. 
Adding successively one α-particle, one proton, one neu- 
tron, one α-particle, etc. resuming the 4-nucleon cycle. 

When A increases indefinitely, the binding energy per 
nucleon attains asymptotically its maximum, the sum of 
the ⁴He and ²H binding energies per nucleon, according 
to formula (4). The long range Coulomb repulsive energy 
may be neglected here where light nuclei are considered. 
The corresponding data are shown on Table 1. 

6. Conclusion 

The binding energies of N = Z nuclei have been 
calculated in a way derived from the Gamow α-particle 
model [5,6] where the van der Waals forces are mate- 
rialized as deuteron bonds between the α-particles. The 
²H and ⁴He binding energies, calculated ab initio else- 
where [11], are the fundamental bricks of the N = Z 
nuclei and probably of all nuclei. The long-range Cou- 
lomb repulsion, small for light nuclides, is provisionally 
neglected. The rms deviation is 0.25 MeV and the 
maximum discrepancy between the calculated and expe- 
rimental values is 0.5 MeV or 7% for 14 N. The rms 
deviation is twice that of the liquid drop model. Figures 
2-4 prove that the saw-tooth pattern exists for all nuclei, 
from the lightest to the heaviest, even for the hydrogen 
isotopes although containing no α-particles, still to be 
clearly explained [12,13]. The saw-tooth phenomenon is 

due to the small binding energy of the neutron-proton 
bonds between the α-particles. Per nucleon, the maxi- 
mum binding energy of any nucleus is shown to be the 
sum of the α-particle and deuteron binding energies. 
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