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ABSTRACT

The principle aim of this research article is to investigate the properties of k-fractional integration introduced and de-
fined by Mubeen and Habibullah [1], and secondly to solve the integral equation of the form

X (x—t 7/k k):
g(x)zj‘&lﬁ[(ﬂ’ ) t—X}f(t)dt, for k>0,8>0,7y>0,0<x<t<o , where 1F{

0 Fk(7) (7/,k);

X:| is the

confluent k-hypergeometric functions, by using k-fractional integration.
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1. Introduction

Erdélyi [2] investigated the solutions of integral equa-
tions whose kernels contain Legendre functions. Love [3]
solved the integral equations involving hypergeometric
functions using fractional derivatives. Using variance of
fractional integration, Habibullah [4] investigated the
solution of the integral equations involving confluent hy-
pergeometric functions and Srivastava [5] discussed the
equations with polynomial kernels.

Diaz et al. [6-8] have introduced k-gamma and K-beta
functions and proved a number of their properties that we
are interested in. They have also studied k-zeta function
and k-hypergeometric function based on Pochhammer
k-symbols for factorial functions. These studies were
then followed by works of Mansour [9], Kokologiannaki
[10], Krasniqi [11,12] and Merovci [13] elaborating and

strengthening the scope of k-gamma and k-beta functions.

Very recently, Mubeen and Habibullah [14] gave a sim-
ple and useful integral representations of generalized k-
hypergeometric and confluent K-hypergeometric func-
tions that could helpful in completing the present re-
search paper.

2. Fractional Integration

Mubeen and Habibullah [1] defined a k-fractional in-
tegration as a variant of Riemann-Liouville fractional
integral as
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1 (F)(x)

for k>0,0<x<t<oo. It reduces to the classical Rie-
mann-Liouville fractional integral by taking k —1 as

I“(f)(x):ﬁ:[(x—t)“ f(t)dt,0 < x <t <oo.

3. k-Hypergeometric and Confluent
k-Hypergeometric Differential Equations

The following k-hypergeometric function defined by Mu-
been and Habibullah [14]

(a)n,k (ﬂ)n,k i,k >0

n=0 (}/)n,k n!

is the solution of the linear second order differential
equation of the form

kz(l—kz)a)"+|:y—k(a+,b’+k)z]a)'—aﬂa):0.

In this article, we call it k-hypergeometric differential
equation. It reduces to ordinary hypergeometric differen-
tial equation by taking k —1.
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And also the following confluent k-hypergeometric
function defined by Mubeen and Habibullah [14]

(7 I Y
w_'E*Ly*% }_E%U%*nfk o

is the solution of the linear second order differential equa-
tion of the form

kea" + (7 -

kz)o' - fw=0.

In this article, we call it confluent k-hypergeometric
differential equation. It reduces to ordinary hypergeo-
metric differential equation by taking k — 1.

4. Main Results
Theorem 4.1.If 1 >0,y >0 and X > t, then

w (v AR (G
(x=8)"" (s-1) 1Fl‘{(ﬂ K); s }d

v L (}“) Fk(7) (7’k)
KT Bk
T () lﬁkLy+zxyt }

Proof. Consider

L (y/k)+n-1
u du
Iy (7)

Put u:s—_t andz =t-X

in the above equation,

then we get the desired result.
Theorem 4.2. Let

x(X_t)(y/k)fl (ﬂk) ) by
ot A CERE

for k>0,>0,y>0and 0 < X<t <oo.
If g(x) isa given function, then

f(X)=e1.7e1,71/g(x).
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Proof. Set

H (B.7) (%)

x (7/k)-1
! ) 1 1{((/;:))7t x}f(t)dt,

where k>Q,ﬂ>0,y>Oand0<x<t<oo.
Apply 17 on both sides, we get the following

(4/k)1
(ﬂ 7) ( ) _([( ) )

I (4
s (7/k
-t
x J&F {(ﬂ’ s } (t)dt Lds.
0 1—‘k (7/) (7: )9
Changing the order of integration by using Fubini’s
theorem.

X—=S

r(4) Fk(;/)
By Theorem 4.1, we have
He (B.7) T(x)
X _ ((r+2)/k)-1 .
:kj—(x ) IFI{ (A.k): t—x}f(t)dt.
o D (r+4) “(y+4.k);

This implies that

He (B.y) F(X)=kH, (B.r+2)f(X).
Since
x—t)7)
l‘( F:)(J/) IFI{((’Z:)): t—x}f(t)dt:g(x),
(Br) T(x)=9(x),

)
He(B.8+7) 1 (x)=1{9(x),
H(8.8) 1 (x) =19 (x),
Ho(8.8) T(x) =171 (%),

This may be written as

X(X—t)(ﬂ/kH - |:(,B,k), . :|f ot
RV A
= 7|ﬁ’g( )

B e -
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s (x| PO
g( r:)(ﬂ) e (t)dt = 1,717 (x),
()
O e e ),

e f(x)=1"e"1,71/g(x),
f(x)=e1,7 1,717 g(x).
This is the solution of the integral equation, if it exists.
This integral equation implies that
a(x)=1"17e1/e*f (x).
Now, we find a solution of another integral equation
X (7/k)-1 .
g(x;:)(y)) IFL{((f::)); x—t}f(t)dt:g(x),

for k>0,>0,y>0and 0<Xx<t <o
Theorem 4.3. Let

s(x—1) (B.K): — =g(x
[ e, =] 0a=ato

for k>0,8>0,y>0and 0 < X<t<oo.
If g (X) is a given function, then

f(x)=177e"1,71] e g ().
Proof. Consider
X (X_t)(r/k)-l
I|). Ly (7)
Using the Mubeen’s relation [15]
k): T —B.K):
1Flk (ﬁ) )’ X :e)(lFlk (7 ﬁ’ )5 _X ,
“Lrk)s ’ (B.k);

we obtain the following

x(X_t)(y/k)*l ) (7—ﬂ,k); B
'([—Fk(}/) e IFL{ (7.K); t—x}f(t)dt—g(x).

Thus, if k>0,8>0,y>0and 0< X<t <o, then
f(x)=177e 1,71 e g (x).

(B.K): —alx
P (7.K): x—t}f(t)dt_g( )-

Also, we have the following result

a(x)=e"17717e 17 (x).
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