
American Journal of Industrial and Business Management, 2013, 3, 349-356
http://dx.doi.org/10.4236/ajibm.2013.33041 Published Online July 2013 (http://www.scirp.org/journal/ajibm)

349

A Web Clustered System for Achieving Higher
Performances through Load Balancing Mechanism

Young Rhee

Department of Industrial and Management Engineering, Keimyung University, Taegu, South Korea.
Email: yrhee@kmu.ac.kr

Received February 26th, 2013; revised January 20th, 2013; accepted February 20th, 2013

Copyright © 2013 Young Rhee. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

In this paper, we study a methodology of distributing client requests in the LVS cluster system. The basic WLC algo-
rithm is studied intensively. A load distributing algorithm which assigns its weight into each real server is devised by
considering the state of the network resources on real servers. Network simulation is executed to estimate balanced us-
age of the resource using web load generating software. In order to analyze the dynamics of server performance due to
the workload, we model a system software to evaluate the level of load balancing in the LVS, and perform actual ex-
periments using web agenda. It is shown that the correction potentiality of the suggested algorithm is somewhat better
than the WLC algorithm in terms of balanced resources usage.

Keywords: Cluster System; WLC; Correction Potentiality

1. Introduction

Internet traffic has grown exponentially for more than 2
decades along with the popularity of the Internet. Due to
the features of the Internet, there are many new and in-
novative commercial sites attracting several million cli-
ents. These commercial sites, such as an online shopping
mall, online gaming sites, and online education sites,
could potentially lead to a decrease in QoS (Quality of
Service) and performances of network in response time
by servers [1]. To serve a huge number of client requests
with better performance, the administrators of popular
websites are facing challenges with the need of improv-
ing the capability of the Web servers to meet the satisfac-
tions of the clients.

There are two suggestions for solving these kinds of
overload problems of the system. One is to upgrade into
higher performing servers, however, it will overload
shortly when the number of requests increases. Also, the
upgrading procedures can be complex and costly. The
other suggestion is incorporating the multi-server system,
i.e. highly scalable, available and the cost-effective clus-
ters of servers [2].

The architectures of the cluster system may be classi-
fied as DNS (Domain Name Server)-based system and
dispatcher based system [3]. DNS-based system author-
izes DNS server to route a request to a Web cluster in a

permitted time interval and imposes fixed logic-name-
to-IP mapping outside its time interval. Each server de-
cides whether to fulfill a request, direct to another server,
or reject the request. However, the DNS-based system
has a downside of controlling only partial of incoming
requests in the system. And it is proved that DNS cashing
brings in a skewed load on a clustered server by an aver-
age of 40% of the total load [3]. An alternative approach
to DNS-based architecture aims to achieve full control on
client requests and masks the request routing among the
Web servers. The dispatcher-based uses simple algo-
rithms for the selection of the Web servers because the
dispatcher has to manage all the incoming requests while
the amount of processing for each request also has to be
maintained at a minimum. To present a better perform-
ance for the request, the integration with some sophisti-
cated assignment algorithms would be proposed for the
cluster system by having a centralized dispatcher with
full control on the incoming requests.

This study focuses on finding a load balancing method
to improve its performance efficiency. Numbers of load
balancing techniques for the Web server have already
been proposed [3]. Some of them solved the problem by
adding more hardware to the system, such as Round-
Robin DNS [4], others solved the problem by applying
software to the controller. The former method may
achieve similar effects of load balancing, but it costs. The

Copyright © 2013 SciRes. AJIBM

A Web Clustered System for Achieving Higher Performances through Load Balancing Mechanism 350

latter are popularly applied in network devices using
control algorithms and achieve fairly good results. Tradi-
tional control algorithms for load balancing are Random,
RR (Round-Robin), WRR (Weighted Round-Robin), LC
(Least Connection), and WLC (Weighted Least Connec-
tion). The shortcomings of traditional control algorithms
and its arising new challenges form the introduction of
new functions on the Web call for the development of
more effective new control mechanisms.

In order to analyze the dynamics of server perform-
ance due to the workload, we model system software to
evaluate the level of load balancing in the LVS (Linux
Virtual Server), and perform several experiments using
the network applications. The LVS is composed of a
cluster system formed with a number of real servers. The
LVS control load balancing across the real servers by
means of load balancer or director which assigns the in-
coming requests to real servers based on the certain rules
[5]. Some LVS would have multiple directors to improve
its system availability. The shortcomings of the existing
control mechanism and challenges when introducing a
new function on the Web asks for the development of
more effective new control mechanisms. In this paper,
the general LVS clusters using WLC algorithm are ex-
perimented. WLC, which is known to one of the best
scheduling algorithms, may have its drawback for mal-
distribution of incoming requests to the real server pool
in terms of the system resources, such as memory used
and the number of connections. This may create a more
response time for the request. This paper is motivated by
the challenges and needs of well distributed control me-
chanism that can guarantee the performance efficiency.
We suggest a control mechanism that calculates and ad-
justs the weight on real servers, after detecting the sys-
tem resource periodically. This study therefore develops
ideas in finding ways to determine the detecting time
interval for the LVS.

The paper is organized as follows. We review related
work briefly in Section 2. The design of the proposed
load balancing mechanism is presented in Section 3. In
Section 4, the performance of the proposed controlled
mechanism is evaluated and compared with those of the
general LVS cluster using WLC algorithm. Network
simulation is executed in Section 5. Finally, Section 6
gives concluding remarks and future works.

2. Related Works

There are several desirable features to implement the
distribution of incoming requests among certain sets of
servers. In general, these servers will provide the same
contents. The scope of this study is not only to describe
the detailed features of each distribution techniques, but
also refer the reader to the appropriate literature.

2.1. DNS-Based Approaches

DNS-based approaches are implemented by informing
different IP addresses whenever clients request the do-
main name service [3]. Since the IP address selecting in
RR or LC manner is not efficient, the better algorithm to
solve the inefficiency would be WRR. However, this
DNS-based approach has the same limits with simple
DNS-based approaches. Because of the hierarchy in DNS,
the communication delay among sub DNS makes DNS-
based approaches inefficient. Also, heavy burden on
DNS is imposed the overhead of cache update among sub
DNS, even though TTL of exchange data are set close to
zero. DNS-based approach is simply IP-based distribut-
ing mechanism and cannot be classified as fundamental
settlement to solve the problems.

2.2. Dispatcher-Based Approaches

Dispatcher, a component of a clustered system, receives
incoming requests and distributes requests to servers.
Request routing among servers is transparent, dealing
with addresses at the URL level. The dispatcher, which
has a single virtual IP address, uniquely identifies the
server in the cluster through a private address that can be
at different protocol levels, depending on the architecture.
The majority of dispatcher-based architectures use sim-
ple algorithms to decide which server will manage in-
coming requests. Such simple algorithms include random
selection, RR, and LC. Even though the dispatcher can
achieve well load balancing, it can be a bottleneck with
increased requests, and a poor performing dispatcher can
cause the whole system to fail.

2.3. Linux Virtual Server

The LVS is highly scalable server built on a cluster of
real servers, with the Linux OS based load balancing
systems [5]. The architecture of the cluster is transparent
to end users. The client only sees a single virtual server.
The real servers may be interconnected general network.
The load balancer, which distributes requests into differ-
ent real servers, is located in the front of the real server
pool. Scalability is achieved by adding or removing a
real server in the pool. The LVS uses traditional sched-
uling algorithms such as RR or WLC to allocate session
connections among real servers.

3. A Proposed Methodology

The LVS is an open software project to provide Linux
OS-based load balancing. This cluster-based Web server
consists of the load balancer and real servers, and the IP
addresses are mapped between these two groups. Excep-
tion for the real servers, 2 more IP addresses are required

Copyright © 2013 SciRes. AJIBM

A Web Clustered System for Achieving Higher Performances through Load Balancing Mechanism 351

to form this cluster system; one for the virtual server and
the other for the load balancer. The request packet des-
tined for a virtual IP address arrives at the load balancer
when accessing the service provided by the cluster of the
real servers. The load balancer examines the packet’s
destination address and port number. If they are matched
for a virtual server service, a real server is chosen from
the clusters by a scheduling algorithm. Then, the destina-
tion address and the port of the packets are rewritten as
those of the chosen real server, and the packet is for-
warded to the real server. When the reply packets come
back, the load balancer rewrites the source address and
the port of the packets as one of those virtual servers, so
that the source addresses always point to the virtual IP
address. In this manner, request and response packets
need to pass through the load balancer.

The load balancer encapsulates the packet within an IP
datagram and forwards it to the chosen real server, when
the load balancer sends requests to the real servers
through an IP tunnel. As soon as the encapsulated packet
arrives, the real server decapsulates and processes the
request, and finally returns the response directly to the
user. The load balancer sends requests to real servers
through an IP tunnel in this clustered Web server.

In this section, WLC algorithm is briefly discussed,
and a load balancing algorithm with considering dynamic
weight which depends on the state of servers, is pre-
sented.

3.1. WLC Scheduling Algorithm

WLC scheduling algorithm basically allocates the re-
quests to the real server with the smallest number of
connections. Additionally, WLC algorithm considers each
server’s capability. It assigns a weight to each server ac-
cording to its capacity so that the more capable server is
ready to receive the more requests. Consequently, the
initial assignment to real servers is the server with the
biggest weight, and the next assignment is the server that
satisfies the following equation.

min min

where 1, 2,3 ...

i

all i

i

C

C conn C

Wi W

i n

 
       
   
  



 (1)

In (1), Call-conn and Ci denote the total number of con-
nections and the current number of connections in server
i respectively. And Wi also represents the weight for
server i. As seen in (1), the same result is obtained when
Ci, the current number of connections in server i divided
by its corresponding weight, Wi, since Call-conn is constant
applied for all servers.

3.2. Dynamic Load Balancing Mechanism

In LVS cluster system with WLC algorithm, the connec-
tions to servers can be preponderant to a server excep-
tionally, since WLC algorithm only counts the current
number of connections without counting the load for
each real server. It is known that the performance for the
cluster system depends on the poor capable server. Thus,
the LVS system typically consists of the same capable
servers to overcome this possible performance problem.
And the weights for all servers are set to 1 initially.

However, if we have a grip of the system information
for each real server, an efficient LVS can be possible
based on this information. The system information can be
defined as any performance characteristics such as avail-
able memory, processor utilization and number of con-
nection established. Among them, the available memory
is the only factor we could figure out. The stress of a
server in terms of performance counters is tested and
analyzed using three types workload, small size but very
frequent, large size and various size [5,6]. In this section,
we present an efficient LVS cluster system that the
weight for each real server is obtained periodically. Fig-
ure 1 gives a demonstration of how LVS works.

Figure 2 is an algorithm that computes weight based
on memory’s consumption of each collected real server.
Basic conception of weight computation is that the dif-
ferences of available memory estimated from each real
server is divided by mean memory per connection, and
the result is given to real servers which have available
memories as weights, and 1 is given to real servers with
relatively low available memory.

   
 

max

max min

min

weight

available memory available memory

mean memory used per connection

weight 1






 (2)

(2) shows how to computes weight, let say alternative
1. In this method, weightmax means weight of a real server
with more available memory, and weightmin for less
available memory respectively. And (available mem ory)max

time

20 sec. 20 sec. 20 sec.

1min.

end

weighting period

measurement
start

measurement
start

measurement
start

endend

Figure 1. Web load sampling process.

Copyright © 2013 SciRes. AJIBM

A Web Clustered System for Achieving Higher Performances through Load Balancing Mechanism 352

push(@wei_a,swap($vs1[0],$vs1[1],$vs1[3],$vs1[5],$weights),swap($vs2[0],$vs2[1],$vs2[3],$vs2[5],$weig
hts));
$min_mem = min_value($vs1[2],$vs2[2]);

if(($wei_a[0] == 0)&&($wei_a[1] == 0))
{
 $wei_a[0] = 1000000;
 $wei_a[1] = 1000000;
}

@c_mem = ([$wei_a[0],$vs1[2],$min_mem],[$wei_a[1],$vs2[2],$min_mem]);
for ($i = 0; $i < 2; $i++)
{
 push(@weight,check_weight_mem($c_mem[$i][0],$c_mem[$i][1],$c_mem[$i][2]));
}

for ($i = 0; $i < 2; $i++)
{
 $weight[$i] = int($weight[$i] * 1000);
}
 $max_weit = max_value($weight[0],$weight[1]);

if ($max_weit > 65535)
{
 for ($i=0;$i<2;$i++)
 {
 $weight[$i] = int ($weight[$i] * dec_rate($max_weit));
 }
}

system("ipvsadm -e -t 210.107.211.59:80 -r 210.107.211.52 -i -w $weight[0]");
system("ipvsadm -e -t 210.107.211.59:80 -r 210.107.211.53 -i -w $weight[1]");

$dblvs->do("insert into server_weight values(null,null,'$weight[0]','$weight[1]')");

Figure 2. Dynamic load balancing algorithm.

and (available memory)min denote maximum unused
memory and minimum unused memory of corresponding
real servers. mean memory used per connection is de-
fined as mean used amount of memory that HTTPD
process and PERL process of real server occupies, is
used 3500 KByte as an empirical value in this experi-
ment. After computing the weights for real servers, (1) is
applied for assigning each connection to real servers.

  





max

max min

min

weight

available memory - available memory

mean memory used per connection

weight

k

k

 



(3)

As can be seen in (3), the second alternative to com-
pute weights for real servers, is simply add constant
value k to weights in (2). The difference from load dis-
tributing alternative 1 is that k is given to the real server,
not 1, so that one can desensitize the degree of reflection
of load distribution more than alternative 1. The value k
depends on number of access to real server in a minute,
lies between 1 and 2000 in this experiment. The reason
why we are setting this number is because roughly 4000
requests in a minute from load test are dispersed to 2 real
servers.

4. Network Simulation

4.1. Composition of Clustering System

The system in this study is based on LVS-Howto [7] and
other references [8]. To compose basic LVS cluster sys-

tem, which is the basis of study, IP tunneling method is
selected as logical topology, and WLC method and two
load distributing alternatives are chosen as work assign-
ment algorithm. The experiments are executed under
isolated Ethernet environment at night to exclude all the
factors that can affect system as much as possible. Labo-
ratory equipments consists of 1 director, 2 real servers, 3
load servers to generate load to LVS cluster system, and
1 monitoring system, and specific information on equip-
ments will be emitted. Following softwares are installed
to LVS cluster system and load servers above, and the
composition form of system and load server clusters con-
sist of like Figure 3.

NT and Windows XP servers are used for load servers
with normal options except for WWW and ftp services.
Load generator and TestTalk, which generates web load
and communicates with load server respectively, are in-
stalled in these three servers. In this research, virtual cli-
ent, which is created by load generator, is connected to
LVS cluster system to impose load. Each connection is
transferred to the director, and distributed to real server
according to work assignment algorithm. Real server
processes requests, and transfers the results to the client.
The status of available memory is calculated every single
minute after booting in each real server itself, and the
results are stored in MySQL database in director server.
Finally, TestTalk and monitoring softwares are installed
to the monitor that observes and controls load test proc-
ess.

Resources used to see the degree of load of a real
server are the amount of available physical memory, the
number of processes in uninterruptible sleep status, the
number of processes that are swapped out, and so on.
The amount of available physical memory is selected as a
main parameter. In the case of servers with pre-forking
method like Apache, when there is a request from a client,
arbitrary numbers of servers are executed and the servers
process all requests from clients. If there is no spare
server process to manage, the servers increase the num-
ber of processes so that they can manage requests. In this
procedure, server process usually occupies 2.7 - 3.5
Megabytes and swap memory. Web server can be
thought that there are some processes that wait for I/O or

Figure 3. LVS clustering system.

Copyright © 2013 SciRes. AJIBM

A Web Clustered System for Achieving Higher Performances through Load Balancing Mechanism 353

other events, if the uninterruptible process value is non-
zero. This is because if this value keeps being non-zero,
one can judge there is a throughput problem. Finally, if
the number of swapped out process is non-zero, the sys-
tem shows lack of the amount of physical memory. If
there is enough memory in page-in and page-out proc-
esses, only page-in and page-out will be occurred, but
otherwise, unnecessary processes are swapped-out from
the present memory, and the data of previously swapped
out processes are swapped-in from the disk. In this proc-
ess, CPU time is dissipated relatively to do swapping, so
throughput of system is remarkably decreased. If the
number of swapped out processes is steadily non-zero, it
means a lack of memory, so it can affect the capability of
the system [9]. To estimate load for each real server, the
above mentioned parameters are measured by using
vmstat, which is one type of UNIX.

In this research, there are some assumptions. The first
assumption is that the capability of CPU is not consid-
ered in the view of distributing the amount of available
web server memory equally. This is because the capabil-
ity of web server is more affected by the amount of
available memory than the capability of CPU. The ability
of director is not considered is the second assumption.
That is, even if there are many clients’ requests, the se-
ries processes that make the requests head to real servers
again do not cause huge load.

4.2. Load Generating Procedures

In this study, after virtual clients produce requests to
transfer to LVS cluster system, they transfer to LVS
cluster system to make diverse connections virtually
headed for LVS cluster system. 100 virtual clients are
produced every 30 seconds for 15 minutes in a load
server. WebLoad is used for the tool to produce virtual
clients in this research, and the procedures of WebLoad
are as follows.
 Actual client visits a specific site, and write out an

agenda file that contains the contents to request using
script text.

 Produce many virtual clients that repeat contents of
the composed Agenda file for designated time, and
connect to LVS cluster system.

 Request the selected contents of Agenda file, and add
a load to the specific site. If the request is done, and
the results are returned, make a record, and virtual
clients will be disappeared.

The Agenda file that virtual clients have is composed
of the object site’s html documents, graphic files, and a 1
kbyte message at CGI bulletin board, and 40 contents
including the object site’s html documents, graphic files,
and CGI applications are required in this research. When
a virtual client connects to the object site, 3.6 MByte
memory is consumed due to HTTPD process, and after

that, if the client requests CGI bulletin board, a son
process of 1.7 MByte memory is produced. However, it
occupies swap space as well as physical memory space.

Normal html documents, gif formed icon or banner,
and database are not used for The web site contents that
are not used in the network simulation of this research,
and the simulation consists of CGI bulletin board that are
programmed by Perl, which is a Interpreter method that
process file-level I/O. Each real server's estimated results
of LVS cluster system are saved in the database of direc-
tor. There are 3 tables at the database in Figure 4, and
the attributes in each table have identical names, but the
same attributes are in two tables.

vmstat_1 and vmstat_2 are composed of not having
any relationship to examine time difference of the esti-
mated capability results for each server. It can be said
that the capability estimation for each real server during
the research is measured almost simultaneously, because
the time difference to compose between the data of
vmstat_1 and vmstat_2 is about 1~2 seconds.

vmstat_1 and vmstat_2 are the tables that save the ca-
pability results of real server1 and real server2, and the
attributes are as follows.

id: the order that each data is stored (auto increment);
date: time when the data, that is, r, b, w, free, idle val-

ues are stored;
r: the number of process that are produced now, and

running;
b: the number of uninterruptible process;
w: the number of swapped out process;
so: the amount of data that are swapped out for a sec-

ond (KByte/s);
idle: the percentage of pause time for the entire CPU.

5. Analysis of Network Simulation

In the LVS cluster system by WLC algorithm, resource
loss of real server is not considered and a manager se-
lects the weights at random. LVS cluster system assigns
the following connection with the server having value (1)
as weight and the number of connections per each real
server. Figure 5 indicates the amount of free memory of
two real servers that compose LVS cluster system, when

id
data
r
b
w
free
so
idle

vmstat_1

id
data
r
b
w
free
so
idle

vmstat_2

id
date
server_1_weight
server_2_weight

server_weight

lvs_weightinglvs_weighting

Figure 4. Attributes in database.

Copyright © 2013 SciRes. AJIBM

A Web Clustered System for Achieving Higher Performances through Load Balancing Mechanism 354

Figure 5. Amount of free memory under WLC algorithm.

constant load is given to LVS cluster system. In the ex-
periment, when approximately 4000 requests for every
30 seconds are connected to LVS cluster system, a
change of memory for each real server is indicated. Each
real server is booted simultaneously, and the amount of
available memory for each server is the same. The de-
fault weights of each real server are 1.

From the result of the experiment, one can see that
more loads were assigned to real server 2. Requests with
returned results having small magnitude are assigned to
real server 1, and requests for real server 2 have the re-
sults with relatively large magnitude, for instance there is
CGI. This is because CGI requests, transferred to the
server with small connection, require much more mem-
ory than all the memory for html, or small image files
transferred so far So it has equal variance when it comes
to the number of connections, but it’s not possible to
forecast that it has equal variance in the aspect of the
assumption of memory resources. If this process is re-
peated by a raft of clients, memory consumption can
place too much on a specific server. Throughout all ex-
periments, agenda files that virtual clients perform are
the same Agenda, but requests have their own magnitude
of returned results, which is shown in Figure 6.

In the meantime, another simulation results by alterna-
tive 1 and 2 is shown in terms of memory consumption
and change of its weight in Figures 7 and 8, respectively.
Network simulation is performed under LVS cluster sys-
tem circumstance and condition that load effect is not
considered, and fault weight is 1 for both real server 1
and 2. Also, a series of processes that modulate each
server’s weight every minute in director are included.
The simulation results are that memory consumptions of
real server 1 and real server 2 were relatively balanced
mostly, even though memory consumption of each real
server was placed much on one particular server partly.
Figures 7 and 8 show memory consumption and its cor-
responding weight difference, which is not tend to be
balanced between times, it is because uninterruptible
process was caused after 3 minutes of the beginning of
the experiment. That means fault requests are rushed
from clients and bottleneck happened due to the disk of
real server 2, which is much slower than rapid CPU or
memory as much as 1000 times in the process reading
data from disk, so weight became 0. If weight becomes 0,

do GET("http://210.107.211.59/책표지/learning_perl.gif") {
}
do GET("http://210.107.211.59/cgi-bin/wowboard/board.cgi") {
}
do GET("http://210.107.211.59/image/write.gif") {
}
do GET("http://210.107.211.59/image/fix0.gif") {
}
do GET("http://210.107.211.59/image/delete0.gif") {
}
do GET("http://210.107.211.59/image/list0.gif") {
}
do GET("http://210.107.211.59/image/back0.gif") {
}
do GET("http://210.107.211.59/image/next0.gif") {
}
do GET("http://210.107.211.59/image/admin.gif") {
}
do
GET("http://210.107.211.59/cgi-bin/wowboard/board.cgi?bd=&list=0&j=form"
) {
}
do POST("http://210.107.211.59/cgi-bin/wowboard/board.cgi") {
 FORMDATA {
 j = "write";
 u = "";
 bd = "";
 id = "kalsman";
 passwd = "kalsman";
 email = "kalsman@keobuksun.kmu.ac.kr";
 upfile ="";
 title = "2000";
 content = "2000년11월4일오후7시테스트를 하고 있습니다.";
 }
}

“2010”
“tested in 2010” ;

Figure 6. Agenda for network simulation.

Figure 7. Amount of free memory under alternative 1.

Figure 8. Weight difference under alternative 1.

director of LVS cluster system do not assign clients’ re-
quests to real server 2.

As a result, after 3 minutes of the experiment, the
memory of real server 1 consumed a lot as seen in Fig-
ure 7. After that time, idle time percentage of CPU be-
came 0, so CPU was not included to weight computation
anymore. The reason why the results are generated might
be because more html are required than CGI at the last
part of the experiment.

All the simple process of alternative 2 is the same as
those of method 1, and sensitivity of weight was tried to
be desensitized applying (3) as a weight computation
method. The results of a change for the amount of avail-
able memory of real server and weight difference are

Copyright © 2013 SciRes. AJIBM

A Web Clustered System for Achieving Higher Performances through Load Balancing Mechanism 355

obtained by load distributing alternative 2 in Figures 9
and 10. As can be seen in Figure 10, the weight differ-
ence is changed relatively. For example, calculated
weights after the first minute are 405 and 400 for real
server 1 and real server 2, respectively, and 8 minutes
later, 667 and 670. Real server has larger change of
weight for the first few minutes, but gradually, weight of
real server 2 and real server 1 intersect each other, which
is called waveform. This phenomenon is because each
real server’s memory is consumed by turns so that mem-
ory consumption can be distributed equally. In the actual
data, memory difference value was smaller than previous
experiments, and it means correction potentiality was
improved.

As can be seen in Table 1, it is clear that this method
distributes memory consumption of each real server bet-
ter than load distributing method 1, and mean of memory
difference is decreased by half. Though simulation re-
sults were more improved than by WLC algorithm, al-
ternative 1 does not meet our expectation. Because the
improvements of LVS cluster system are caused by WLC
algorithm. (1) is used to select a real server which will
assign next connection in WLC algorithm. The number
of remained connections in hash table of each real server
is calculated by the sum of the number of active connec-
tions and inactive connections. Table 1 indicates the re-
sults that the number of active connections and inactive

‐100000
‐50000

0
50000
100000
150000
200000
250000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

fr
e
e
 m

e
m

o
ry

(1
0
K

B
)

time (minute)

real server 1
real server 2
memory difference

Figure 9. Amount of free memory under alternative 2.

Figure 10. Weight difference under alternative 2.

Table 1. Average free memory (MByte).

 real server 1 real server 2 Memory difference

WLC algorithm 129680.1 145873.9 -16193.1

Alternative 1 132279.8 143608.1 -11328.3

Alternative 2 134530.9 141352.6 -6821.7

connections are measured at random. And at some point
of time, when there are 4000 connections for every 30
seconds, servers are connected to cluster system for
whole experiment.

LVS cluster system decides recorded connection to
real server using the number of active connections and
inactive connections. These connections affect actual real
server memory the most, and connection numbers in-
clude the number of inactive connections and active
connections in the process to calculate the weight. When
a change of weight occurs at some point of time, many
connections will be assigned to real server 1 if weight of
real server 1 is larger than that of real server 2, and as a
result, memory for real server 1 will be consumed more,
and the number of the server connections will increase.
Also, most of the connections will be inactive connec-
tions constantly. If this situation is repeated, a specific
real server can have large weight and large numbers of
inactive connections.

During a whole simulation, various experiments were
performed, but it was not possible to correct unbalance of
memory consumption perfectly. However, when a load is
considered like alternative 2, resources of each real
server were used effectively. The most important factor
is to compute mean connection and weight per a minute
for clients who use LVS cluster system. To compute the
number of connections and weight, “access.log” file of
each server needs to be analyzed and it has to be con-
cluded by the number of HTTP process related to web
service, the amount of memory that HTTPD process oc-
cupies, the amount of available memory at the measuring
point of time, and process information on CGI or server
API which is used on web site using tools like ps, vmstat,
and uptime of UNIX.

6. Conclusions

The objective of this study is to suggest methods to util-
ize the information on the amount of load of real server
to distribute server resources so that LVS cluster system
which reduces memory unbalance phenomenon of serv-
ers can be suggested. The suggested method is to meas-
ure each real server’s load periodically and from the
measured results, compute weight of each real server in
LVS cluster system, and apply the weight periodically.
As a result, it was shown that load of real server could be
reflected, and the phenomenon that a specific real ser-
ver’s memory of LVS cluster system is consumed con-
stantly was complemented. Through actual experiments,
it was proven that the suggested method in this research
can treat system resources more effectively than a me-
thod that doesn’t consider status information of real ser-
ver loads.

The result of this research is a methodology that com-

Copyright © 2013 SciRes. AJIBM

A Web Clustered System for Achieving Higher Performances through Load Balancing Mechanism

Copyright © 2013 SciRes. AJIBM

356

poses cluster system, and suggests a methodology that
can compose cluster system with heterogeneous server
beyond fixed ideas of IT society that server’s specifica-
tion has to be composed of same products or server with
same capacity. That is, if server resources are properly
distributed, effective cluster system can be composed.
Though it is not mentioned in this research, the band-
width of network, arrangement and magnitude of con-
tents that compose web site, proper choice for CGI ap-
plication language and application problems of database,
and limit of service need to be considered as well. Col-
lecting data from each real server itself can have load
temporarily, because the accuracy of collected data is
low due to load of real server itself.

REFERENCES
[1] D. A. Menasce and V. Almeida, “Capacity Planning for

Web Performance,” Prentice Hall PTR, 1998.

[2] K. Q. Li, “Minimizing the Probability of Load Imbalance
in Heterogeneous Distributed Computer System,” Mathe-
matical and Computer Modeling, Vol. 36, 2002, pp. 1075-
1084.

[3] S. Beak, H. Rim and S. Kim, “Socket-Based RR Sched-
uling Scheme for Tightly Coupled Clusters Providing
Single-Name Image,” Journal of System Architecture,
Vol. 50, 2004, pp. 299-308.

[4] D. C. Li, C. Wu and F. Chang, “Determination of the
Parameters in the Dynamic Weighted Round-Robin Me-
thod for Work Load Balancing,” Computers & Opera-
tions Research, Vol. 32, 2005, pp. 2129-2145.

[5] E. M. Choi, “Performance Test and Analysis for an Adap-
tive Load Balancing Mechanism on Distributed Server
Cluster Systems,” Future Generation Computer Systems,
Vol. 20, 2004, pp. 237-247.

[6] M. Hamdi and C. K. Lee, “Dynamic Load-Balancing of
Image Processing Applications on Clusters of Worksta-
tions,” Parallel Computing, Vol. 22, 1997, pp. 1477-1492,

[7] J. Mack and W. Zhang, “The Linux Virtual Server HO-
WTO,” 1999.
http://www.linuxvirtualserver.org/Joseph.Mack/LVS-HO
WTO-991205.gz

[8] W. Zhang, S. Jin and Q. Wu, “Creating Linux Virtual
servers,” Ottawa Linux Symposium, 2000.

[9] J. Purcell, “Linux Complete Command Reference,” Red-
hat Press, 1997.

	2.1. DNS-Based Approaches
	2.2. Dispatcher-Based Approaches
	2.3. Linux Virtual Server
	4.1. Composition of Clustering System
	4.2. Load Generating Procedures

