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ABSTRACT 

Rhythmic phenomena are one of the most striking manifestations of dynamic behavior in biological systems. Under- 
standing the mechanisms of biological rhythms, is crucial for understanding the dynamic of life. Each type of dynamic 
behaviors may be related to the performance of both normal physiology and pathological. Conductive system of the 
heart can be stimulated to action as a network of elements and these elements show the oscillatory behavior then can be 
modeled as nonlinear oscillators. This paper provides the mathematical model of the heart rhythm by considering dif- 
ferent states of Vanderpol nonlinear oscillators. Proposed oscillator model is designed in order to reproduce time series 
of action potential of natural pacemakers cardiac, such as SA or AV nodes. So model of heart is presented by a system 
of differential equations and to be considered chaotic or nonchaotic for different parameters of the model by using of 
the 0-1 test. Finally, the model is synchronized by applying an appropriate control signal, if it is needed. 
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1. Introduction 

Normal rhythm can be regular or irregular through time 
and place. Each type of dynamic behaviors related to me- 
dical systems may be related to the performance of both 
normal physiological and pathological groups. The very 
regular dynamics of heart may also show diseases includ- 
ing periodic: breathing, definite abnormal rhythms of the 
heart, cycling blood diseases, epilepsy, nervoustics and 
tremors. On the other hand, phenomena such as sleep and 
wakefulness cycles and menstrual rhythm in which have 
regular dynamic reflects healthy behavior [1]. Moreover, 
irregular rhythms can reflect diseases. 

Rhythmic variations in blood pressure, heart pulse and 
other cardiovascular measures indicate importance of un- 
derstanding the dynamic aspects of cardiovascular rhy- 
thms. Cardiac conduction system can be considered as a 
network of elements self stimulates, such as: SA node 
(the first pacemaker), AV node and His-Purkinje system. 
Because these elements show oscillation behavior, they 
can be modeled as nonlinear oscillators. 

There are different methods for the evaluation of car- 
diac function by measuring certain signals. Strip (ECG) 
measures the electrical activity of the heart. Electrical 

signals associated with cardiac function represents elec- 
tric current in different regions of the heart are recorded 
waveform [2]. 

Mathematical modeling of heart rhythm is the goal of 
many research efforts. Since the qualitative features of 
the excitation potential of heart is very close to the dy- 
namic behavior of the classical oscillator Vanderpol [3], 
so this oscillator can be considered as starting point for 
this modeling. 

For modeling, cardiac pacemaker the Vander pol os- 
cillator, is offered to be considered as followed 

 
1 2

2
2 1 2 11 co

x x

sx d x x x a t


     




         (1) 

where , ,a d   are system parameters, which depend on 
their amounts. The heart dynamics may be chaotic or 
nonchaotic. 

In Section 2, briefly describes the structure and elec- 
trical activity of the heart and records of these activities 
by using ECG and in Section 3, we describe the mathe- 
matical model and analysis its properties in terms of phy- 
siology. In Section 4, the 0-1 test and synchronization 
method is presented. In Section 5, chaotic or nonchaotic 
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of this model is examined for different parameters, by 
using of the 0-1 test. We will synchronize the model by 
applying an appropriate control signal it is if necessary. 
Section 5 contains the conclusions. 

2. The Heart and the Record of Its Electrical 
Activity 

The walls of the heart muscle called myocardium, which 
consists of four cavities, such as: right and left atrium 
(Upper part), and right and left ventricles (lower part). 
Blood returning from the systemic circulation goes into 
the right atrium and then right ventricle, and finally into 
the lungs. After being oxygenated, oxygenated blood 
from the lungs goes to the left atrium and left ventricle 
then blood through the aortic valve goes into the aorta 
and then is pumped in systemic circulation. Sinus node 
(SA node) is located in the right atrium the upper vna- 
kavay. SA node cells are self stimulate pacemaker cells, 
which produce an active potential. Activation of the SA 
node through the atria will release, but can not be spread 
of the wall between the atria and ventricles. Atrio ven- 
tricular node (AV node) is located at boundary between 
the atria and ventricles. In a normal heart, node AV pro- 
vides the only guidance signals of atrial to ventricular. So, 
in unusual conditions, the ventricles can stimulate only 
through pulses that will be spread among them.  

There are different methods for the assessment of car- 
diac function is done by measuring certain signals, in- 
cluding tape (ECG) is the recording of the waves of elec- 
trical activity of the heart record by putting electrodes on 
the chest and around the heart. Each of the components 
on tape indicates the electrical activity of the heart cells. 
Stimulates sinus node cause electrical stimulation of the 
atria and creates a P wave, that is the wave of atrial de- 
polarization. After the wave of ventricular depolarization, 
the QRS complex series arise, and the subsequent wave 
creates T wave by ventricular repolarization. Sometimes 
another small wave after wave of T is seen that is called 
U wave. The reason of creation of the wave is repolariza- 
tion papillary muscles in the heart. In distance of this 
waves. There is no appropriate electrical activity and 
electrogram draws a horizontal straight line that is called 
the isoelectric line (Figure 1). 

In general, signal waves are as follow [4]. 
Wave P: The first wave was recorded in the ECG, and 

indicates right atrial activation after stimulation of the 
sinus node. Typically lasts between 60 and 90 millisec- 
onds in the adults, its shape is round and has a maximum 
range between 0.25 and 0.30 volts. 

Interval PR: From beginning of P wave to beginning 
of the QRS complex and lasts 90 ms. 

Complex QRS: Is composed of three waves and sum 
of total of three waves is indicated depolarization. The  

 

Figure 1. ECG description. 
 
first negative wave after P wave is Q. The first positive 
wave after P wave is R, and the first negative wave after 
of R, is called S. Because of all three waves may be not 
seen, the sum of these three waves together is called a 
QRS complex. 

Interval ST: Starts from the end of QRS complex and 
lasts to the begining of the T wave and is part of process 
of the repolarization. 

Wave T: Indicates ventricular activation and has a cir- 
cular shape with amplitude is 0.60 volts. 

3. Mathematical Model of the Heart  

The idea modeling of the heartbeat system with coupled 
nonlinear oscillators, first was explained in 1928 by Van- 
der pol and Vander mark. Cardiac conduction system 
may be assumed as a self stimulate pacemaker that is 
composed of two oscillator subsystems. The first subsys- 
tem is atrial sinus node (SA) that between other oscilla- 
tors of heart has the highest pulse (60 - 100 impulse per 
minute). The second subsystem consists of AV node (40 
- 60 impulse per minute). Fluctuation of sinus node and 
atrioventricular node (AV) can be nonlinear modeled 
equations of two coupled oscillator Vander pol. 

Modeling the interaction between the oscillators heart 
model is considered the following equation [5-7], 
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







     (2) 

where pairs  1 2,x x  and  3 4, x x , respectively, show 
SA and AV oscillators. Frequency of the SA node is de- 
noted by c1 and frequency of the AV node, is denoted by 
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c2. and 1 2  express coupling coefficients between 
two nodes. If 1 2  indicates that only oscilla- 
tor SA affects on oscillator AV in a physiological way. 
The condition 1 2 1 2 , indicates this fact 
that node AV has little effect on the SA node. Coeffi- 
cients 1  and 2  affects on term of nonlinear equation, 
and cause stability of limit cycle in the phase plate 

1 2

,R R



0, 0R R 

, 0,R R R

d

R

d

 ,x x  that a limit cycle is adapted with the behavior of 
the heart in a physiological way.  

As was mentioned earlier, first normal cardiac rhythm 
is produced by SA node (Pacemaker normal) and causes 
stimulate the AV node. However, it was observed that 
the two oscillators for producing ECG signals are not 
very accurate. This is because, the signal of first oscilla- 
tor is related to the activation of SA node and right 
atrium, the signal of second oscillator is of only related to 
the left ventricular depolarization. According to this hy- 
pothesis, it is possible to produce P curve, but complex 
QRS may not be produced, because this distance is 
mainly due to ventricular repolarization. These observa- 
tions make us incorporate a third oscillator, which repre- 
sents the spread of a pulse through the heart, that indicate 
His-Purkinje complex in a Physiological way. 

In order to create a general model, we assume that all 
oscillators should be coupled asymmetry. In addition, ex- 
ternal stimulation is entered into the system with regard 
to the oscillator frequency. 

This developed model can be shown with a set of dif- 
ferential equations as follows 
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where coefficients i  and i  expressed in the prevous 
formula and the coupling coefficients of ij  are be- 
tween pair oscillators. Because even small delays may 
alter the dynamics of the system, differential equations 
incorporating time delay can cause drastic changes and 
creation of chaos in the system that described by the 
regular behavior.  

R

Accordingly, proposed mathematical model can change 
to consideration of aspects of delay in coupling terms. 
Thus, the governing equations is changed as following, 
where i ix x t
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4. Applying the 0-1 Test and  
Synchronization to Study Chaotic  
Heart Model 

4.1. Description of the 0-1 Test and  
Synchronization Method 

This test was proposed in 2003 by Gatvald and Mel- 
bourne. Also, this test is used to detect the dynamical 
system with is chaotic or nonchaotic [8-11]. 

This method directly is implemented on the time series 
which is made from the original system. If out put is 
close to 1 that system is chaotic and if, is close to 0 it will 
be nonchaotic. 

Suppose,         1 2, , , nx t x t x t x t 
  

 is the answer 
of dynamical system, and x t  is a arbitrary obser- 
vation function of the system, for example   1 2x x x  

c
. 

By choosing an arbitrary positive constant , we define 
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 
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 

 








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Now, for detection chaotic of system the growth of the 
functions  P t  and  q t  is determined. Therefore, we 
define function  M T  as follows 

 

          2 2

0

1
lim d

T

T

M t

p t p q t q
T

   


      
 

Also, asymptotic growth rate of function  M t  are 
defined as follow  

  
 

log
lim

logt

M t
K

t
  

   and  , are time delay. 
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Now, If K is close to zero, the system is not chaotic, 
and if is near one, the system is chaotic. 

The synchronization of chaos is process in which two 
or more identical or non-identical chaotic systems, a dis- 
tinct feature of motion set through a foreign force to 
achieve a set of common behaviors. 

The most common configuration for synchronous sys-
tems is considered as two subsystems are coupled, the 
one as slave system and the other as the master system.  

Purpose of synchronous this is that slave system fol- 
low dynamics of master system. Chaotic systems, ac- 
cording to the type and intensity of the coupling between 
the two systems is established, with different methods are 
synchronous with each other. 

For clarification, the following relationship between 
slave and master systems, respectively, as we think  

   
   

,

,

u

v

u t f u t

v t f v t








 

where  the system state variables u,nu R v R  n f , and 

vf  are chaotic nonlinear functions. These two systems 
can, by applying an appropriate control signal, and the 
special relationship between their trajectories, be syn- 
chronous. 

In this case we have 

     1 2lim 0
t

D u t D u t


   

Functions 1  and 2  determine the optimum rela- 
tionship between state variables systems. In fact, they 
specify the type of synchronization. 

D D

4.2. Applying the 0-1 Test to Study Chaotic 
Heart Model  

The results of the 0-1 test using the MATLAB, for one, 
two and three oscillators model are as follow  

For the one oscillator system, with hypothesis  
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The system is chaotic .  0.5411k 
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The system is nonchaotic   (Figure 2). 0.3408k 
For the two oscillators system, with hypothesis  
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The system is chaotic  0.5405k   (Figure 3). 
For the three oscillators system, with hypothesis  
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Figure 2. Performance of test 0-1 for one oscillator model. 
 

 

Figure 3. Performance of test 0-1 for two oscillator model. 
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The system is nonchaotic  0.366k  . 
With hypothesis  
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The system is chaotic  (Figures 4 and 5).  0.718k 

5. Designing Proper Control Signal  

In problem of synchronization of system explained in 
Equations (2), First system is considered as master sys- 
tem and second system as a slave system, Figure 6. 
However, by applying a suitable control signal on it, 
which has the form 
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Figure 4. Performance of test 0-1 for three oscillator model. 
 

 

Figure 5. Performance of test 0-1 for three oscillator model. 

 

Figure 6. Two oscillator diagram befor applying synchro- 
nization. 
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A state variables of system slave will converget to 
state variables of system master after a transient time. In 
fact, the second oscillator has to follow the behavior of 
the first oscillator, which has a dominant frequency. 

Since we want the slave system state variables to con- 
verge to the master system state variables after a transient 
time, the error of synchronization should be considered 
as follow [12-15]. 
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The purpose of the synchronization is to vanish the 
error. Therefore, control signal is calculated as follow 
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With placement, have 
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   

 
 

1 2 4

2 2 4

2
1 1 2 1 1 1 1 1 3

2
2 3 4 2 3 2

2 2 4

1 cos

1 cos

e x x

e x x

d x x c x a t R x x

d x x c x a t

R x x u





 
 

      

   

  


  

 

In this case 
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And, our goal is to find proper control functions , 
such that subsystems of Equation (2) asymptotically syn- 
chronize. i.e. 

u

lim 0
t

e
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  

where 1 2  for this end, we propose the follow- 
ing control laws for system Equation (2) 

 ,e e e 
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With applying the control u and with retesting of 0-1, 
[16-18], and simulation we will see that, 1x  synchronize 

3x  and 2x  sy chronize 4n x  (F ures 7 and 8). ig

6. Conclusion  

In this paper, we have shown that nonlinear oscillators 
can be used to model the heartbeat activity. Also mathe- 
matical modeling of dynamic rhythm was provided in  
 

 

Figure 7. Synchronization of x1 and x3. 

 

Figure 8. Synchronization of x2 and x4. 
 
different states of single oscillator, two oscillators and 
three oscillators, and was modified by applying the 0-1 
test. We have shown that heart model for parameters can 
be chaotic or nonchaotic. Numerical simulations are car- 
ried out to show that the proposed model is capable to 
capture the general heartbeat dynamics, representing the 
normal ECG form with P, QRS and T waves. Afterwards, 
some pathological rhythms are of concern by establishing 
different coupling situations. Basically, it is assumed some 
communication interruptions are in the heart electric sys- 
tem. Finally, by applying a proper control signal, we 
have Synchronized the model if necessary. In this model, 
each oscillator represents one of the heart natural impor- 
tant pacemaker: atrial sinus node (node SA) and atrial 
ventricular (node AV) and His-Purkinje complex. 
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