
Smart Grid and Renewable Energy, 2013, 4, 325-332 
http://dx.doi.org/10.4236/sgre.2013.44039 Published Online July 2013 (http://www.scirp.org/journal/sgre) 

325

A Bivariate Chance Constraint of Wind Sources for 
Multi-Objective Dispatching 

Mostafa Elshahed, Hussein Zeineldin, Magdy Elmarsfawy 
 

Electrical Power and Machine Department, Faculty of Engineering, Cairo University, Cairo, Egypt. 
Email: eng.m.elshahed@gmail.com 
 
Received May 5th, 2013; revised June 5th, 213; accepted June 14th, 2013 
 
Copyright © 2013 Mostafa Elshahed et al. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

The economic emission dispatch (EED) problem minimizes two competing objective functions, fuel cost and emission, 
while satisfying several equality and inequality constraints. Since the availability of wind power (WP) is highly de- 
pendent on the weather conditions, the inclusion of a significant amount of WP into EED will result in additional con- 
straints to accommodate the intermittent nature of the output. In this paper, a new correlated bivariate Weibull probabil- 
ity distribution model is proposed to analytically remove the assumption that the total WP is characterized by a single 
random variable. This probability distribution is used as chance constraint. The inclusion of the probability distribution 
of stochastic WP in the EED problem is defined as the here-and-now strategy. Non-dominated sorting genetic algorithm 
built in MATLAB is used to handle the EED problem as a multi-objective optimization problem. A 69-bus ten-unit test 
system with non-smooth cost function is used to test the effectiveness of the proposed model. 
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1. Introduction 

Wind energy is the most attractive clean and fuel-free 
solution to the world’s energy challenges. Well estab- 
lished in more than 50 countries all over the world, sup- 
plying more than 250 GW as total installed capacity and 
forecasted to provide 30% of the world’s electricity by 
2030 [1]. One of the challenges is how to appropriately 
characterize Wind Power (WP) in the load dispatch 
model. A conventional economic dispatch problem uses 
deterministic models, which can not reflect situations 
considering the WP injection. Since wind farms con- 
nected to power systems have characteristics of dynamic 
and stochastic performance, stochastic models are more 
suitable. There are several studies intended to investigate 
the injection of WP into conventional power networks 
and its impact on the generation resource management 
due to its stochastic and non-dispatchable characteristics.  

A conventional way was to use the average WP. The 
probabilistic conventional approaches tried to find prob- 
abilistic characteristics of solutions of the problem under 
investigation [2-8]. This approach is called the wait-and- 
see (WS) strategy in the context of stochastic program- 
ming. Although these approaches can be easily imple- 
mented, it has a less-known pitfall, called the probabilis- 

tic infeasibility. The probabilistic feasibility of the aver- 
age WP is 0.25, or equivalently, the probabilistic infeasi- 
bility is as large as 0.75 [8,9].  

For this reason, one of the more appropriate strategies 
in contrast, the here-and-now (HN) strategy introduces 
the probabilistic characteristics to the model of optimiza- 
tion problem itself. A here-and-now model of a power 
system with wind energy generators was developed 
[10-13]. The authors introduced the stochastic distribu- 
tion of wind speed into the economic dispatch issue con- 
sidering both reserve cost of overestimation and penalty 
cost of underestimation of available wind power. The 
scheduled wind power output was an estimation value of 
available wind power output and it was treated as an op- 
timization variable, which was dependent on several fac- 
tors such as the reserve cost and the penalty cost. But 
these costs are very difficult to be exactly determined 
[10]. 

The probability of stochastic WP is included in the 
model as a constraint [9,14-17]. This strategy, the here- 
and-now approach, avoids the probabilistic infeasibility 
appearing in conventional models and avoids the de- 
pendency of the solutions on the reserve cost and the 
penalty cost. In particular, a threshold parameter pa was 
introduced into the WP constraint to characterize the 
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tolerance that the total load demand cannot be satisfied. 
Choosing small pa will mitigate the risk of insufficient 
WP, while increasing the demand for thermal power.  

To analytically remove the assumption that the total 
WP is characterized by a single random variable, the 
correlated Weibull distribution (Multivariate Distribu- 
tions according to Probability Theorems) of the sum of 
WP is derived from the Weibull distribution model of 
each WP cluster. This correlated Weibull distribution is 
used as a chance constraint in the proposed model. With 
increasing concern over global climate change, policy 
makers are promoting renewable energy sources, predo- 
minantly wind generation, as a means of meeting emis- 
sions reduction targets. Although wind generation does 
not itself produce any harmful emissions, its effect on 
power system operation can actually cause an increase in 
the emissions of conventional plants [18]. Thus, the eco- 
nomic dispatch problem can be handled as a multiob- 
jective optimization problem with non-commensurable 
and contradictory objectives.  

In this paper, an EED model is developed for the 
system consisting of both thermal generators and wind 
turbines with more realistic and practical considerations. 
A nondominated sorting genetic algorithm based appro- 
ach was used for solving the proposed EED model. The 
problem was formulated as a nonlinear constrained 
multi-objective optimization problem where fuel cost and 
environmental impact are treated as competing objectives. 
Two runs were carried out on a standard test system with 
non-smooth cost function and the results are analyzed 
and compared to those of previous works. The effecti- 
veness and potential of the proposed multi-objective 
EED model are demonstrated. 

2. Economic Emission Dispatch Model  

The EED problem is to minimize two competing objec- 
tive functions, fuel cost and emission, while satisfying 
several equality and inequality constraints. Generally the 
problem is formulated as follows. 

2.1. Objective Functions 

 Minimization of Fuel Cost: 
In the past, to solve economic dispatch problem effec- 

tively, most algorithms require the incremental cost 
curves to be of monotonically smooth increasing nature 
and continuous. The generating units with the multi- 
valve steam turbines exhibit a greater variation by the 
fuel-cost functions, where the valve point results in the 
ripple form of the heat-rate curve and the cost function 
contains higher order nonlinearity due to the valve-point 
effects, as shown in Figure 1. The more general fuel cost 
function of each thermal generator considering the valve- 
point effect in terms of real power output is expressed as  
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Figure 1. Non-smooth cost function with five valves. 
 
the sum of a quadratic and a sinusoidal function as fol- 
low [16]: 

    2
,minsini i i i i i i i i i iC p a b P c P d e P P      (1) 

 Minimization of Emission: 
The atmospheric pollutants such as sulphur oxides 

(SOx) and nitrogen oxides (NOx) caused by conventional 
thermal units can be modeled separately. However the 
total emission of these pollutants which is the sum of a 
quadratic and an exponential function can be expressed 
as [19]: 

  2 expi i i i i i i i i iE p P P P        

N

      (2) 

2.2. Real Power Operating Limits 

,min ,max ; 1,2, ,i i iP P P i             (3) 

2.3. Stochastic Chance Constraint 

The power balance constraint is expressed as following: 

Losses

N

i d
i

P W P P                (4) 

In chance-constrained programming in the context of 
stochastic programming, the probability distribution 
functions of the random variables are used as constraints 
in the optimization problem. The main goal with chance 
constraints is, therefore, to determine deterministic equi- 
valents [20]. If the total WP is characterized by a single 
random variable, the stochastic WP constraint and power 
balance constraint can be expressed as following [9,14- 
16]: 

  LossesPr
N

i d
i

P W P P
 

ap    
 
      (5) 
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In particular, a threshold parameter pa is introduced 
into the constraint to characterize the tolerance that the 
total load demand cannot be satisfied [9]. Choosing small 
pa will mitigate the risk of insufficient WP, while in- 
creasing the demand for thermal power. Using Weibull 
PDF of wind power (5) will be: 
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  (6) 

This assumes that all wind turbines are located in a 
coherent geographic area. To analytically remove this 
assumption, the correlated Weibull distribution is needed. 
Practically, a large wind farm can be divided into multi- 
ple clusters. Hence, from the Weibull distribution model 
of each cluster, the correlated Weibull distribution of the 
sum of WP will be derived to be used in proposed mod- 
els in the next section. For simplification, we only start 
with two random variables. It implies that we assume 
that total WP is characterized by two random variables or 
that wind turbines are located in two different geographic 
areas. 

3. The Correlated Distribution Function  

Often an experiment involves measuring two or more 
random numbers, say X and Y. The fact that we know the 
distribution of X, and the distribution of Y separately 
doesn’t determine probabilities of events that involve 
both X and Y simultaneously [21]. The distribution func- 
tions FX(x) and FY(y) of the given random variables de- 
termine their separate (marginal) statistics but not joint 
statistics simultaneously [22].  

3.1. Joint Cumulative Distribution and  
Probability Distribution Functions 

The joint (bivariate) cumulative distribution function 
(CDF) FXY (x, y), or simply, F (x, y) of two random vari- 
ables X and Y is the probability of the event [22]: 

       , Pr Pr , ,XYF x y X x Y y x y D       (7) 

The joint probability distribution function (PDF) of X 
and Y is by definition [22]: 

   2 ,
,

F x y
f x y

x y




 
              (8) 

3.2. One Function of Two Random Variables 

Given two random variables X and Y with Z is the sum of 
them, we want to find the random variable Z joint statis- 
tic probability distributions [21]. 
 The Joint CDF is obtained as following: 

   
z-y
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 And Joint PDF is obtained as following: 
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 Statistically Independent Events and Convolution: 
If X and Y are statistically independent then: 
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where : Convolution  
If two random variables are independent, then the PDF 

of their summation equals the convolution of their PDF 
[21]. 

3.3. Bivariate PDF of WP with Two Weibull  
Random Variables 

Since the probability distribution of the WP random 
variable Wi: 
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Hence the joint statistic probability distributions of 
random variable W, where W is the sum of two random 
variables W1 and W2, is: 

     
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Then the Stochastic WP Constraint will be:  
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 
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N

d Losses i
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All integrations, differentiations, and convolution op- 
erations required in the previous derivation or in the op- 
timization problem solution are executed by using the 
symbolic MuPAD built in MATLAB. 

Hence the economic emission dispatch model can be 
mathematically formulated as follows: 
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This model, referred to as the here-and-now approach, 
avoids the probabilistic infeasibility appearing in con- 
ventional models and used the derived correlated Weibull 
distribution of the sum of WP as constraint to avoid the 
assumption that the total WP is characterized by a single 
random variable. The transmission losses in terms of 
B-coefficients in the power balance constraint and more 
practical cost functions for thermal units were considered 
in the proposed model. 

4. Results and Discussion  

The practical EED problems have non-smooth cost func- 
tions with equality and inequality constraints in addition 
to the wind power chance constraint that make the prob- 
lem of finding the global optimum difficult using any 
mathematical approaches, so a numerical optimization 
procedure is needed. In this paper, therefore, we imple- 
mented the nondominated sorting multi-objective genetic 
algorithm in MATLAB to deal with proposed model, the 
flow chart can be found in the Appendix B [23]. A 69- 
bus ten-unit test system with non-smooth fuel cost func- 
tion is used in this paper to demonstrate the performance 
and the effectiveness of proposed model. Thermal units’ 
data was taken from [24] and can be found in Appendix 
C. 

Kalyanmoy introduced full details about Multi-objec- 
tive Genetic Algorithm, but are beyond the scope of dis- 
cussion here [25]. The proposed model was tested with 
the 69-bus 10-unit at forecasted load 1800 MW. Thre- 
shold parameter pa = 0.4. The Pareto front population 
fraction was considered in two different cases as follow: 

 Case (1) with Pareto front population fraction = 0.7. 
 Case (2) with Pareto front population fraction = 0.35. 

Figures 2 and 3 show a set of nondominated optimal 
Pareto solution of the proposed model with Pareto front 
population fraction 0.7 and 0.35, respectively. As shown 
in Figures 2 and 3, there is no single solution that is op- 
timal with respect to all objectives of the multi-objective 
optimization problem. Instead, there is a set of solutions 
that are superior to the rest of the solutions in the search 
space considering all objectives. Further, there is no so- 
lution in this set is absolutely better than the other solu- 
tions. This set is called the Pareto optimal set. It can be 
seen that the most left side Pareto solution of Figures 2 
and 3 gives the Pareto solution of the minimum fuel cost 
and the most right side Pareto solution of Figures 2 and 
3 denotes the Pareto solution of the minimum emission. 
Also, there is the Pareto solution that means the turning 
point of a set of optimal Pareto solutions.  
 

 

Figure 2. The set of Pareto solutions of the proposed system 
Case 1. 
 

 

Figure 3. The set of Pareto solutions of the proposed system 
Case 2. 
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Area A shows the Pareto solutions that emphasize the 
economy, while the area B gives the Pareto solutions that 
emphasize the environmental protection. Table 1 gives 
values of objective functions and the generators outputs 
for solutions S, T and U in Figure 2 with Pareto front 
population fraction 0.7. Table 2 gives values of objective 
functions and the generators outputs for minimum fuel 
cost and minimum emission with Pareto front population 
fraction 0.35 at the most left side and the most right side 
of Figure 3, respectively. 
 
Table 1. The objective functions and the generators outputs 
for Case 1. 

 
Minimum Cost 

(S) 
Middle  

(T) 
Minimum Emission 

(U) 

P1, optm 216.6096 226.4008 235.2070 

P2, optm 216.8540 225.1419 233.5409 

P3, optm 215.1373 207.2091 201.6535 

P4, optm 217.8698 210.6210 202.3924 

P5, optm 219.5344 218.3747 217.3775 

P6, optm 159.9989 158.7998 157.5778 

P7, optm 129.9989 129.2052 128.1667 

P8, optm 119.9996 119.8012 119.4389 

P9, optm 79.9989 79.4731 79.7809 

P10, optm 53.9970 54.9721 54.8632 

PW1 110.0158 110.0454 110.2052 

PW2 109.9852 109.9553 109.7958 

Cost ($/h) 96047.7637 96725.1128 97916.7323 

Emission (ton/h) 9414.4405 9328.6960 9282.2429 

 
Table 2. The objective functions and the generators outputs 
for Case 2. 

 Minimum Cost (S) Minimum Emission (U) 

P1, optm 194.2673 216.8842 

P2, optm 222.2665 222.2665 

P3, optm 200.3812 200.4361 

P4, optm 225.0851 202.4132 

P5, optm 243.0000 243.0000 

P6, optm 160.0000 160.0000 

P7, optm 130.0000 130.0000 

P8, optm 120.0000 120.0000 

P9, optm 80.0000 80.0000 

P10, optm 55.0000 55.0000 

PW1 110.6009 110.9655 

PW2 109.3991 109.0345 

Cost ($/h) 95264.9837 96124.4515 

Emission (ton/h) 9419.2402 9253.4931 

In Figure 2, it can be seen that the Pareto solution of 
solution U succeeds in reducing 1.42% of amount of 
emission and degrading 1.95% of the fuel cost in com- 
parison with solution S. In addition, solution T succeeds 
in reducing 0.93% of amount of emission and degrading 
0.71% of the fuel cost in comparison with solution S. 
Table 1 also shows outputs of generators in Pareto solu- 
tions. It can be seen that 1st and 2nd generators have low 
emission output and high fuel cost because their powers 
are increasing from solution S to solution T to solution U. 
Case 1, with Pareto front population fraction 0.7, pre- 
serves the diversity of the nondominated solutions over 
the trade-off front and solve effectively the problem.  

The results of the proposed EED model were com- 
pared to previous work [15] which obtained the effect of 
emission constraint and representation of losses. It can be 
seen that the minimum fuel cost in the proposed model is 
more than that by Elshahed et al. [15] without consider- 
ing emission constraint by about 1.9 % and the savings 
with the proposed model in fuel cost are about 1.4 % 
when the emission constraint is considered by Elshahed 
et al. [15]. In addition, the proposed model gives more 
efficient and noninferior solutions of multi-objective 
optimization problems.  

In contrast with single objective optimization problem 
found by Elshahed et al. with emission constraint [17], 
the single solution that is optimal with respect to all ob- 
jectives of the multi-objective optimization problem does 
not exist. Instead, there is a set of solutions that is supe- 
rior to the rest of the solutions in the search space con- 
sidering cost and emission objectives, so there is no solu- 
tion in this set is absolutely better than the other solutions. 
The final decision will be taken by the system dispatch- 
ers according to the dispatcher’s attitude. The considered 
model in this paper achieved saving in minimum fuel 
cost about 5.8 % when compared with that with single 
objective function and emission constraint [17]. It can be 
seen that the wind power results in all solutions are al- 
most constant, because the wind units’ parameters are not 
changed and also the two units are identical. 

5. Conclusions 

In this paper, an accurate multi-objective EED model is 
presented including: 
 The transmission losses in terms of B-coefficients, 
 Non-smooth cost functions due to valve-point effect, 

and  
 The correlated Weibull probability distribution of the 

WP constraint for a system consisting of both thermal 
generators and wind turbines.  

The use of the correlated Weibull probability distribu- 
tion of the WP analytically removes the assumption that 
the total WP is characterized by a single random variable 
in the proposed model. The proposed model minimizes 
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the risk due to uncertainty and can result in minimizing 
the required spinning reserve. Hence this model is more 
realistic, practical, and accurate economic emission dis- 
patch model. 

In addition, the nondominated solutions in the ob- 
tained Pareto-optimal set are well distributed and have 
satisfactory diversity characteristics which give informa- 
tion regarding the available trade-offs to the system op- 
erators. Finally, we can conclude that the proposed EED 
model provides valuable information and suggestions for 
safe, reliable, and economic operation of power systems. 
The results obtained provide direct guidelines for system 
operators to make correct decisions to schedule the sys- 
tem with WP. 
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Appendix A 

 

Nomenclatures 
ai, bi, ci, di, and ei: Cost coefficients of ith unit 
αi, βi, γi, ηi, δi: Emission coefficients of ith unit 
c: Scale factor of the Weibull distribution 
k: Shape factor of the Weibull distribution 
N: Number of Thermal generators 
Pi,min and Pi,max: Min and Max power generated by gen- 
erator i 
Pi: Real power generated by generator i 
Pd: Total Load Demand  
PLosses: Transmission System Losses 
Pr (E): Probability of event E 
Pd: Total Load Demand  
PLosses: Transmission System Losses 
pa: specified threshold representing the tolerance that the 
total demand cannot be satisfied.  
vr, vin, and vout: Rated, cut-in, and cut-out wind speeds 
W: Real power generated by wind farm 
wr: Rated wind power 
(W): a Weibull PDF functional of random variable W 

Appendix B 

The flowchart of the multi-objective genetic algorithm 
used in this paper is shown in Figure 4. 
 

Figure 4. Flowchart of the mu ti-objective genetic algorithm. l 
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Appendix C 

Table C1. Conventional generators characteristics. 

 Generator Limit Non-smooth Cost Coefficients Emission Coefficients 

Generator 
number i 

Pi,Min 

MW 

Pi,Max 

MW 
ai 

$/h 
bi 

$/MWh 
ci 

$/(MW)2h
di 

$/h 

ei 

rad/MW 

αi 

lb/h 
βi 

lb/MWh 
γi 

lb/(MW)2h 
ηi 

lb/h 
δi 

1/MW

1 150 470 786.7988 38.5397 0.1524 450 0.041 103.3908 −2.4444 0.0312 0.5035 0.0207

2 135 470 451.3251 46.1591 0.1058 600 0.036 103.3908 −2.4444 0.0312 0.5035 0.0207

3 73 340 1049.9977 40.3965 0.0280 320 0.028 300.3910 −4.0695 0.0509 0.4968 0.0202

4 60 300 1243.5311 38.3055 0.0354 260 0.052 300.3910 −4.0695 0.0509 0.4968 0.0202

5 73 243 1658.5696 36.3278 0.0211 280 0.063 320.0006 −3.8132 0.0344 0.4972 0.0200

6 57 160 1356.6592 38.2704 0.0179 310 0.048 320.0006 −3.8132 0.0344 0.4972 0.0200

7 20 130 1450.7045 36.5104 0.0121 300 0.086 330.0056 −3.9023 0.0465 0.5163 0.0214

8 47 120 1450.7045 36.5104 0.0121 340 0.082 330.0056 −3.9023 0.0465 0.5163 0.0214

9 20 80 1455.6056 39.5804 0.1090 270 0.098 350.0056 −3.9524 0.0465 0.5475 0.0234

10 10 55 1469.4026 40.5407 0.1295 380 0.094 360.0012 −3.9864 0.0470 0.5475 0.0234

 
Table C2. Two wind units parameters. 

Unit No. k c (m/sec) vin (m/sec) vout (m/sec) vr (m/sec) wr (pu) 

1 1.7 15 5 45 15 150 

2 1.7 15 5 45 15 150 

 
The Transmission Losses Coefficients: 

0.000049 0.000014 0.000015 0.000015 0.000016 0.000017 0.000017 0.000018 0.000019 0.000020

0.000014 0.000045 0.000016 0.000016 0.000017 0.000015 0.000015 0.000016 0.000018 0.000018

0.000015 0.000016 0.000039 0.000010 0.0000

B 

12 0.000012 0.000014 0.000014 0.000016 0.000016

0.000015 0.000016 0.000010 0.000040 0.000014 0.000010 0.000011 0.000012 0.000014 0.000015

0.000016 0.000017 0.000012 0.000014 0.000035 0.000011 0.000013 0.000013 0.000015 0.000016

0.000017 0.000015 0.000012 0.000010 0.000011 0.000036 0.000012 0.000012 0.000014 0.000015

0.000017 0.000015 0.000014 0.000011 0.000013 0.000012 0.000038 0.000016 0.000016 0.000018

0.000018 0.000016 0.000014 0.000012 0.000013 0.000012 0.000016 0.000040 0.000015 0.000016

0.000019 0.000018 0.000016 0.000014 0.000015 0.000014 0.000016 0.000015 0.000042 0.000019

0.000020 0.000018 0.000016 0.000015 0.000016 0.000015 0.000018 0.000016 0.000019 0.000044

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
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