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ABSTRACT 

 , ,A CIn this paper the integrals of entwining structure   are discussed, where A  is a k-algebra,  a k-coalgebra 

and 

C

C A A C:    a k-linear map. We prove that there exists a normalized integral : Hom ,C C A


   of 

 , ,A C   if and only if any representation of  , ,A C   is injective in a functorial way as a corepresentation of . 

We give the dual results as well. 

C

k

k
k
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1. Introduction 

The integrals for Hopf algebras were introduced by Larson 
and Sweedler [1,2]. Integrals have proven to be essential 
instruments in constructing invariants of surgically pre- 
sented 3-manifolds or 3-dimensional topological quantum 
field theories [3-5]. The aim of this paper is to show that 
some results of recent paper [6] concerning integrals and 
its properties for Doi-Koppinen structure hold for the 
more general concept known as entwining structure [7,8]. 
It is a structure of an algebra, a coalgebra and a k-linear 
map such that several compatibility conditions are satis- 
fied. Unlike Doi-Koppinen structure, there is no need for 
a background bialgebra, which is an indispensable part of 
the Doi-Koppinen construction. The bialgebra-free formu- 
lation also has a remarkable self-duality property, which 
essentially implies that for every statement involving co- 
algebra structure of an entwining structure there is a cor- 
responding statement involving its algebra structure. 

This paper is organized as follows. In Section 2, we 
recall definitions and give examples of entwining struc- 
tures and entwined modules. In Section 3, we introduce 
the integrals of entwining structure and analyse its pro- 
perties generalizing the results of [6]. Finally, in Sec- 
tion 4 we derive the dual form of the integrals of entwin- 
ing structure and its properties. 

2. Preliminaries 

Throughout this paper,  will be a field. Unless spe- 

cified otherwise, all modules, algebras, coalgebras, bial- 
gebras, tensor products and homomorphisms are over . 
For a -algebra A , A  (resp. A ) will be the 
category of right(resp. left) 

 
A -modules and A -linear 

maps. H  will be a Hopf algebra over k . We omit 
Sweedler’s sigma-notion [9] extensively. For example, if 
 ,C   is a coalgebra, then for all  we write c C
 c c c  

k
   1 2

Definition 2.1 An entwining structure on  consists 
of a triple 

. 

 , ,A C , where  A  is a -algebra,  a 
-coalgebra and 

k C
k : C A A C   k, a -linear map 
satisfying the relations  

  ,ab c a b c 



    

 1 1 ,A Ac c

    

     1 2 ,Ca c a c c 
 


     

   C Cc a c a
  

, ,a b A c C

 

 , where  for all 

  .c a a c a c
 

      

Remark 2.2 Generally, we call the entwining structure 
in Definition 2.1 a right-right entwining structure. Unless 
specified otherwise, all the entwining structures men- 
tioned in this paper are right-right entwining structures.  

 , ,A C , ,A CDefinition 2.3 Let   and   
:

 be two 
entwining structures, f A A 

:
 be an algebra map and 

C C   be a coalgebra map. We call  g*Corresponding author. 
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  , : , ,f g A C   , ,A C    
 .

 is an entwining map if 
 f g g f       

Example 2.4 Let H  be a bialgebra, A  a right H - 
comodule algebra, C  a right H -module coalgebra. 
Then Doi-Koppinen structure  , ,H A C  [10] is an ent- 
wining structure. The entwining structure map is  

0 1 .a c a: ,A C c aC A         

If H  has a bijective antipode , the S   is bijective 
with  

 1 1
1 0: .a a

C

a c c S     

Example 2.5 [3] Let  be a coalgebra, A  an alge- 
bra and a right -comodule. Let  C

   , ,A AA a A ba b a   

C

B b   

and assume that the canonical right A-module, right - 
comodule map  

 : ,B A A C a a    Aa a 

C A A C

can A  

is bijective. Let :    k

  1 1 .An c a 



 be a -linear map 
given by  

 c a can ca 

 , ,A C

 

Then   is an entwining structure. The exten- 
sion  is called a coalgebra-Galois extension and 
denoted by 

B A
 C

A B .  , ,A C   is the canonical entwin- 
ing structure associated to  C

A B
 , ,A C

.  
Lemma 2.6  Let   be a right-right entwin- 

ing structure. where   is invertible, its inverse is 
: A C C A    , then  , ,A C   is a left-left ent- 

wining structure. i.e.  

  ,a b cab c 



 

1 1 ,A Ac c  

   1 2 ,a c c   

  ,C C c a 

.c a c 
 


   

   

 Ca c  

 

 

c a

c C

 

for all , where  , ,a b A

  c a a    

Definition 2.7 Let  , ,A C   be an entwining struc- 
ture. An  , ,A C  -entwined module is a -module k
M  with a right A -action and a right -coaction such 
that for all ,  

C
m M,a A

  0 1 .m mM m a a 
      

A module morphism of entwining structure  , ,A C   
is a right A -module map and a right -comodule map. 
Generally, we denote the module category of 

C
 , ,A C   

C
by  A

 . Modules associated to the entwining 

cture in 

A
ctor 

w orgets the C -coactio

A A
M C

 

stru Example 2.4 are Doi-Hopf module. But 
entwined modules associated to the entwining structure 
in Example 2.5 do not seem to be of Doi-Hopf type. 

Let  :
CC

AF     be the forgetful fun
hich f n and  

 : ,  
C

C M      

its right adjoint, where the structure maps on M C   
are given by  

  ,m c a ma c     

     1 2 ,M C m c m c c       

for any , ,a A c C m M  . The unit of the adjoint pair 
 ,CF C  is  

   :1 C
A

CC F


  


 

the C -coaction :M





M M C  , therefor  M  is A- 
ear and can be view  linear and C-colin ed as a natural trans- 

formation between the functor 
 

1 C
A

 and   CC F  .  

A C  and A C CA  is a right A -module, so  
are od

 
 entwining m ule via:  

 b c a ,ba c     

     1 2 ,A C b c b c c       

  ,b c d a ba c d



       

     1 2 ,A C C b c d b c d d          

for any , , , a b A c d C  . 
 :

C

A A
    be the other forgetful func- 

to  forgets the A -ac

A

Let CG
r which tion and  

 : ,   
CCA N N A      

its left adjoint, where for  C

A
N  , N A  via the 

structures  

  0 1 ,N A n a n a n       

  ,n a b n ab    

for any , , a b A n N  . The unit an unit of the ad- 
 

d co
 , Ajoint pair A G  are  

      :1 ,
A

A A: 1 ,C CA G G A


  


 

 : , ,M M

 

M A A m a ma      

 : , 1.N NN N A n n      

In particular,  ,
C

A
C A C A A    

3. The Integrals of the Entwining Structure 

s 

. 

In this section, we first present a point of view which i
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essential for the rest of paper: the existence of an integral 
on a Hopf algebra is a necessary and sufficient criterion 
for constructing a natural transformation between two 
functors. 

Lemma 3.1 [6] Let H  be a finite dimension Hopf 
algebra over k , H   is its dual. There exists a right 
integral H   o n H  such that ,1Hh h    for 
all h   and ly if :H  if on H k   is right -H  
com ap, where k  has l right -odule m the trivia H co

s this result as follows. 

- 
moule structure. □ 

Doi [11] generalize
Definition 3.2 Let A  be a H -comodule algebra. A 

map : H A   is called an integral if   is right 
H -linear.   is called a total integral if additionally 

1 1 H A .  
rion


T

 
he  r the existence of a total integral is 

gi
crite fo

ven by the theorem following. 
Theorem 3.3 [11] Let A  be a right H -comodule 

al qugebra. The following are e ivalent 
1) There exists a total integral : H A  ; 
2) Any Hopf module HM   is injective as right 

H-comodule. i.e. the right on : H-coacti M M H    
splits in the category H ; 

3) :A A A H    splits in the category H .  
eorem of Doi s. The can be restated as follow th

Theorem 3.4 [6] Let A  be a right H -comodule 
algebra. The following are equivalent 

1) There exists a total integral : H A   
rmation  2) There exists a natural transfo

 : 1 H
A

H
A AF H F F   


 that splits   

 : 1 H
A

H
A AF F H F  

:

  


; 

3) A A A H    splits in the category H .  
rk 3.5 1) T still lid 

le
Rem he above theorem is  vaa

aving aside the normalizing condition  1 1H A  . 
More exactly, there exists an integral : H A  d 
only if there exists  :

 if an
1 H

A

H
AF H F  


. In 

particular, if 
AF 

A k , ight 
integral :

 we obtain that there exists a r
H k   on H  if and only if there exists a 

natural tr on  .ansformati : 1 H
HH F  


 Further- 

more,  1 1H k   if and only if   splits 
:1 H   HH F  

forgetful functo



. This is equivalent to he fact 
 :H H

kF    is separable. 
2) Let 

 t
that the r

A  be a right H -comodule 
ve

algebra. The 
rsion of Theorem 3.4 for e category  th H

A  is still 
true. In this case the H-colinear split of  

:M M M H    associated to a right total integral 
: H A   is given by the formula  

: ,M M H M    

    0 1 .S m h  

We will now give the definition of integral of entwine- 

in

M m h m   

g structure arising from Theorem 2.4 and the definition 
of integral of Doi-Koppinen structure in [6]. 

Definition 3.6 Let  , ,A C   be an entwining struc- 
tu : HC re. A k-linear map  om ,C A  is called an 
integral of  , ,A C   if  

            1 2 2 1 ,c d c d dc 


  

for all ,c d C

  

 . An integral  : Hom ,C C A   is 
rmalized   

 

called no  if for all c C

  1 .c c c    2 1 A  

Remark 3.7 If Doi-Koppinen structure  , ,H A C  in 
Example 2.4 takes place of the entwining structure in the 
above definition and obviously entwining structure map 
is  

0 1: , .C A A C c a a c a         

Definition 3.6 is just the definition of integral of Doi- 
K

e that the existence of an integral 
oppinen structure.  
We shall now prov

 : Hom ,C C A  permits the deformation of k - 
n two entwined modules until it 

becomes a C -colinear map. 
Propositi  3.8 Let 


linear map betwee  

on  , ,CA   be an entwining 
st C

A
 an

. Suppose that there exi
ructure.   ,

C
M N   d :u N M  a k- 

linear map sts  
 : Hom ,C C A  . Then 

1) For all n N ,  

 

 the map 

     0 1 00 1
u n n u n    

 
   is right  

C-colinear; 

: ,N M u u n

2) If Hom ,C C A  is a normalized integral 
an

:
d :f M ism in  C

N  is a morph
A

  which is a 
k-spl resp. a k -split surje hen it injection ( ction), t f  has 
a C -colinear retraction( esp. a section). 

oof. 1) For n N
r

Pr  , we have  

  

     

           

        

     
     

0 1 00 1

0 1 0 00 1 2 1 1

0 1 1 0 1 20 1

0 0 0 1 0 0 10 1

0 1

 

.

M

M

N

u n n u n

u n n u n u n

u n n u n n

u n n u n n

u n n u id n

u n





 









       

             

 

 

    

 

2) Let :u N M  be a k -linear retraction(resp. 
se

 

fction) of . Then 
sp n) of 

:u N M  is a right C -colinear 
retraction(re . a sectio f . Then, for m M   
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0 1

1
0

0 2 1 ,

0
0 1

0 0 1

u f m f m u f m

u f m m u f m

m m m m











 

 

hence  is a right C of 

u f m 

 u -colinear retraction f . 
of On the other hand f :u N M  is a section , i f , 

then for n N   

  

     
        
  

0 1

0 1

0 2 1 .

f u

00 1

0
0 1

f u n n u n

f u n n f u n

n n n n







       



 



 

i.e.  is a right C -colinear section of 

n

 u f . □ 
leD inition 3.9 [11] A right C -comodu  ef M  is 

inj
called 

 ective, if for any k -split onomorhism :i U V  
in C  and for any C -colinear map :

m
f U M , 

there exists C -colinear map :g V M  su t ch tha
g i f .  

1] A right CLemma 3.10 [1 -comodule M  is in- 
jective, if :M M M C    splits in C , . there 
exists a C -colin :M

i.e
ear map M C M    such that 

M M Mdi   . □  
We will prove now the  3.4 for version of Theorem

entwining modules which have inverse entwining struc- 
ture map. Parts of the following theorem are closely 
related to the ideas presented in [6]. 

Theorem 3.11 Let  , ,A C   be an entwining struc- 
ture, where   is inv its inverse is ertible,  . The 
following state ents are equivalent: 

1) There exists a normalized integral  


m

 : Hom ,C C A ; 
nsf   2) The natural tra ormation

   : 1 C
A

C
A AF F C F


   




3) The right C -co
 splits; 

n on actio A C ,  
:r

A C A C A C C      spl 
onse f the equivalent co


C

its in . 
, nditions 

ho

C C

quently  if one o
lds, any entwined module is injective as a right C - 

comodule.  
Proof.    1 2  Let  : Hom ,C C A   be a no

malized integral. 
r- 

 construct a naW  toe have tural trans- 
formation   that splits  . Let  C

A
M   and 

:Mu M C M  ,    Mu m c c  inear 
retraction of 

m  be the k-l
:M M M C  

 c m , for all c
 given by  

 Mu m c  ,C m M  . We define 

M Mu   , i.e. for all 

 
, c C m 

M

M ,  

: ,C M  

   

M M   

 0 1M m c m c m  

It follows from Proposition 3.8 that the map 

.  

M  is a 
right C -colinear retraction of M . 

It remains to prove that      is a natur rans- 
formation. Let :

al t
f M N  be o a m r

C
phism in  A

 . 
We have to prove that  

 .M N Cf f id     

Since f A is right -linear, we have  

  

   
    

0 1

0 1 ,

f m c m

f m c m











 

Mf m c

    
  

      
    

0 1

0 1 .

N C

N

f id m c

c f m

f m c f m

f m c m









 

 







 

i.e.   is a natural transformation that splits  . 
   2 3  C

A
  Assume that for any M 

C -c action splits in C . In particular,  
, the 

o
r :A C A C A C C      splits in 

:A C

C . Let  
A C C CA       be a right C -colinear 

retraction of r
A C  . Using the naturality of A C  , we 

will prove that A C   is also left C -coline r, where a
A C  and A C C   are left C -comodules via:  

  

     1 2 .l

a c c

a c d c a c d


    1 2 ,l a c
  

     

Let V  be a k -module and  C

A
M

 

 . Then 
C

V M  A
  he structures a  the 

es of
  via t rising from

on  M  as follows  

  ,   .m v ma idV M V Mv        

Using the naturality of  , we shall prove that  

.V M V Mid     

 Let v V  and : , .V Vg M V M g m v m     From 
the naturality of   we obtain that  

.CV M V M Vg g    id   

Hence  

 
   

  .

V M

V M M

V M

v m c

g m c v m c

id v m c



 



  

    

   

  

In particular, let ,M A C V C  , then  
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A C C

A
C    es arisin via the structur g from the 
ones of A C , i.e. fo

 c



,c ba d

r all , , , a b A c d C  ,  

b d a 
   

   1 2 .b d   

 thes  

,

   

 C A C c b d    

e structures the map 

A C

r c  d

With

:lf A C C    A C   

 1 2   f a c c 

rphism in  C

A

a c   

is a mo  . From the naturality of  , 
the following diagra mutative. m is com

A C C  A C  A C

l
A C Cid   l

A C 

C A C C   C A Cid  
C A C   

i.e. A C    is also left C -colinear. 
 -c



:r

A C

3 he right C oaction  1  T
A C A C    is a C-bicoC module map. Let  

A C


: A C C A C        be a split of r

A C   in 
, ,A c CC C . In particular, for all a    

a c     

, c d C , define 

 1 2 .c c

 

 m , ,C A  

  1 .A A c   

 a 

For all 

We will 

: HoC 

   c d id  

prove that 

d

  is a normalized integral. 
- odule Because the right C coaction r

A C   is a C-bim
ma

on the othe

p, on the one hand  

    

 
 

1 2

1A A

A C

c d c

id d

id id





 

  





 1r d c  

 

    

 
1 2

C

c c

id

  



 

 1A C A d c   

   1 21 .

d

d c







 

 

We adopt the temporary notion  

 1 ,A i i
i

d c a c A C        then  

 

   2

1

,

l
A C A C C A

l
i i

d c

a c c a c


 



    

      
 

 

 
 1 ;

A C C A

r
A C

A

id id

d c

 



 

  

  



r hand,  

  c d    

       
   

2 1

1 2

A A

d c d

d id



 

 

 

  

1A C i i i
i i

  
 

   
      
    

1 2

1 2

1

1

1 ,

l
C A C A C C A

C A C A

A

id

id d d c

d d c

 





  



 

    

   

 

For A C

d c

   is left C -colinear,  

        1 2 1 21 .A ii i
i

d d c c a c
        

Hence  

       1 21 ,i i
i

d id d c c a
A A         

i.e.  

       1 .A A i i
i

d id d c a c 1 2        

We have proved that  is a normalized integral of 
 , ,A C   at last. □ 

ving aside the normalizing condition, we obtain the 
ing corollary. 

Corollary 3.12 Let 

Lea
follow

 , ,A C   be an entwining 
structure, where   is invertible. The following state- 
m

1) The  integral 
ents are equivalent 

re exists an  : Hom ,C C A   of 
 , ,A C  ; 

2) There exists    
: 1 C

A

C
A AF C F F      a 

na
 


tural transformation; 
3) There exists : A C C A C      a C -bico- 

module map. □ 
If the entwining structure map ect is invertible, the obj

 take an important role in  C

A
A C   . We shall 

pr plication of the existence of a 
is paper. 

Let 

ove the main ap
normalized integral in th

 , ,A CTheorem 3.13   be an
 

 entwining 
structure, where  is invertible, its inverse is   . 
Suppose there exists a normalized integral of  , ,A C   

 Hom ,C A , for any 
C

M: C   A
 the map  

: ,

, 

f M A C M    

    0 1f m a c m am c     

is a k -split epimorphism in  C

A
 . In p , articular

A  is a generato tegory r in the ca C

A
C  

Proof. 
.  

M A C  as an
 C

A

 is viewed  object in 
 , with the structures arising from the ones of 

, i.e.  A C
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 m b c a ,m ba c   

 1c 

   

   2 .m b c m b c      

bfo ,A c C m r all , ,a M . First we shall prove that 
f  is a k -split surjection. Let  

  0 1,   1 ,A:g M  M A C g m m m      

r all . Thenfo m M  g  is right C -colinear. For 
m M , we ve   ha

    
  

  
 m m m 

0 1

0 0

1A m

m 



 1 0 1

0 2 1

0 1 ,

f g m f m

m m

m m m

 





 

i.e. g  is a right c -colinear section of f . For  
,c C m M   , we ve  , ,a b A  ha

  
    

  0 1

f m b c a

 
0 1

,

f m ba c m c

m c m b a f m

 








 m b a

b c a


  

  

   

    

 

i.e. f  is right A - r  linear. It remains to ove thatp f  is 
ght C -colinearalso ri . In fact,  

   

    
 

 

  
     10 1 ,

1 2

1 2

2

C M A C

C

f id m b c

f id m b c c

f m b c c

    

    

   
 

 

m c m b c
 

   

     
   
   
        
      

    

0 1

0 0 1

0 2

0 2

0 11

0 1

0 1

(

( )

M

M m c m

m c m

m c m b

m c m

m c m b

m c m b

m c m b



 

0 1

1

1

2

1 2

1 2 ,

f m b c

b

b m

m

b m

c

c

c




















 





















 

 

i.e. 



 

 

 









 

 

 

 

 

 

f  is right C -colinear. 
Hence, f  is an epimorphism in  C

A
  and has a 

rig C -colinear section. 

Taking a k -free presentation of 

ht 

M  in the category 
of k -modules  

  0,Ik M   

we obtain an epimorphism in  C

A
  

     0
I I gA C k A C M       

where  A C Af I I   . Hence g C  is a gene- 

rator in  C

A
 . □ 

Remark 3.14 An important application of integrals in 
finite dimension Hopf algebra is Maschke theorem. It 
finds the condition of finite dimension Hopf algebras to 
be semisimple. [12-14] have studied the relation between 
the integral of Doi-Koppinen structure and Maschke 
theorem. The integrals of entwining structure we study 

 al with Maschke theorem, the 
re r .  

4. n

e has the property of self- 
duality, we will get some dual results of Section 3. In 

nition of integrals of the 
tly, we have the lemma as 

follows 
 Let 

here so have a tend relation 
aders can efer to the reference [3,15]

 The Coi tegrals of Entwining Structure 

Because the entwining structur

order to give the dual defi  
entwining structure convenien

 , ,A CLemma 4.1   be an ent
The fol : 

1) The  a nor

wining structure. 
lowing are equivalent

re exists malized integral  
 : Hom ,C C A ; 

2) There exists a k -linear map : C C A


    such 
that for all , .c d C   

         1 2 2 1 ,c d d c d c


       

      1 2 1 .Ac c c     

Proof. Let     d c c d   . The proof of the 
lemma is obvious. □ 

Definition 4.2 Let  , ,A C   be an entwining 
structure. A k -linear map : C A A    is called an 
cointegral of  , ,A C   if for any  

     1 2,c C c c c A A       ,  

   c a a    1 2 1 2 .c c c 
       

A cointegral   is called normalized if  

     1 2 1 .Ac c     

 have the dual Proposition 3.8, 
.11 and Th em 3.13. 

Proposition 4.3 Let 

c

We shall  results of 
Theorem 3 eor

 , ,A C   be a entwin g struc- 
ture.   ,

C

A
M   AN

in
 , :u N M  a k -linear 

map. Suppose that there exists : C A A  , then: 
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1) For all n N , the map  

   1 1:u N n    

is 

1 2
0, M u u n n

right A -linear; 
2) Let : C A A    is lized cointegral and 
:

a norma  
f M N  phism in is a m  C

or
A

  which is a 
k -split injection (resp. a k -split sur ection), then j f  
has a A -linear retraction . a section). 

Proof. It is just the dual of Proposition 3.8. □
 Let 

(resp
  

Theorem 4.4  , ,A C   be an entwini truc- 
ture, where 

ng s
  is invertible, its inverse is  . The 

fo e
1) There exists a normalized cointegral  
: C A A

llowing statem nts are equivalent: 

   ; 


 splits; 

 

2) The natural transformation  

   
: 1 C

C C
AG A G G    

A

3) The right A -action on C A ,  
 in A A . 

l e equivalent ns 
ho ntwin e is projective as a right 
C -comodule.  

 : C A A


:r

C A C A A C A       splits
n conditioConseque  one of th

lds, any e ed modul
t y, if

Proof.    1 2  Let     be a norma- 
in to construct a natural trans- lized co tegral. We have 

formation   that splits  . Let  C

A
M   and for 

, , : 1any , M M Ac C u M M m       
 the k -linear section of :M

m A uM m
be M A M   . We d - 
fine 

e

M Mu   , i.e.  

  : ,M M M M A     

 



   1 2
0 1 1M m m m m     

w
ma

here m M . It follows from Proposition 4.3 that the 
p M  is a r ht ig A -linear section of M . It remains 

to prove that      is a natural transformation. 
Let :f M N  be a  C

A
 morphism in  . We 

at 

 .

have to prove th  

M N Af id f     

For any m M , using that f  is right C -colinear, 
we have  

   

      
    

     

1

1 2
1

1 2
1 1 ,

Af id

m

f m m



 

 

1 2
0 1

0 1

0

M

A

m

f id m m m

f m m

m



 

 

 

  

 

 

       
     1 2

0 1 1 ,f m m m  

i.e. 

1 2

0 1 1

N f m

f m f m f m



    

  is a na sformation that splits tural tran  . 
   3  Assu  C

A
2  me that for any M   right ,

A -action splits in A . In particular,  
:C A C A A C A      splits in  . Let  

: C A C A A
A

A     be a right   C A  -linear 
se C Action of   . Using the naturality of C A  , we will 
prove that -linear, where C AA C A  is also left    
and C A A A  are left -modules via:  

  ,a c b c a b
     

  ,a c b b c a b b
        

where , , , .a b b A c C   
First let V  be a k -module and  C

A
M  . Then 

 C

A
V M   , via the structures arising from the 
ones of , i.e.  M

  , .V M V Mv m a v ma id     

Using the naturality of 

 

 , we prove that  

.idV M V M     

v VLet   and  : , v v .g M V M g   From 
e naturality of 

m m
th

v
  we obtain that  

  .V A Mg idV M Vg     

Hence  

 
     

V M m

    
V M V V A M

M V M

v

.

g m g id

 

   m

v m id m

 

 





   

 

In particular, let ,M C A V A   , then  
 C

A
A

 
A C   a the st  vi ructures arising from the 

ones of  

  ,b c b a b c ba       

    1 2
r
A C A b c b b c b c           

fo

 .

r all , , , a b b A c C  . ith these structureW s the map  

: ,l
C Af A C A A       C

 c b c aa b     

is a morphism in  C

A
 . From the naturality of  , 

the following diagram is commutative. 

C A C A A 
A C 

l
C A 

A C A A C Aid   A C A A  

l
C A Aid  
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i.e.        1 2 1 2 .c c a a c c 
       

Then we obtained that 

A C A  is also left  -linear. 
   right 3 1 : The A -action  

A A  is a   is a normalized cointegral 
of 

:r
C A  C A  C A -bimodule m p. Let a

 , ,A C :C C AA C A A      be a split of C A  r
  in 

 . all , ,a A c CA A In particular, for     
  c  a c a .  

, we define  

  1 .A A Ac   

t 

id m

 finally. □ 
Leaving aside the normalizing condition, we obtain the 

following corollary 
Corollary 4.5 Let  , ,A C   be an entwining struc- 

ture, where 
For all c C


  : ,   C A A c id i      d

We will prove tha   is

 
  

1

1 1 .

A A A

A A

c

c

 

 
 

, ,c C a A   on the one hand  


 

 

A



  

jc a

j j jc a b
 

      
 

on the other hand,  


 
1

1

A

A A

a

c a

 

 

 

we have ed 

 a normalized cointegral.  

     1 2c c m id id    

 is invertible. The following statements 
are equivalent: 

1) There exists a cointegral : C A A   ; 
2) There exists 

   : 1 C
A

C C
AG G A G


    


 a 

natural transformation; 
3) There exists : C A C A A   id id m c   

For any 

   
   
  
 
  

1 2

A A

A A A

A A

A

a c c

m id id c a

m id id id id

id

m

 




 

 





   

    

 

  





 1c a

 1 ,A A Aid a id id c  

j j
j

b , then  

1 2 

Let  1Ac   
  a c c  

   

;

A A A
j

j

m id a id id






     

 j j jc a a b 

   
 

   
   
   
   
    
 

 

 

1 2

1

A A

A A A A

A A A A

A A

A A

A A A

A A j j j
j

A A j j j
j

j

c c a

id c a

id m id id id c

id id id id m id

id id c a

id id c a

id id a c

id id a c a b

id id c a a b

c a

 

 








 



 











   

    

     

   

   

   

  
         

 
     

 



















 j j
j

j

a b 

 



 id m

  ,j j jc a a b

 us   is a A -bimodule map. Hence  

 A    an  -bi- 
module map. □ 

Theorem 4.6 Let  , ,A C   be an entwining struc- 
ture, where  is invertible, its inverse is   . Suppose 
there exists a normalized cointegral of  , ,A C   

: C A A  , for any  C

A
M  , the map  

: ,


f M M C A    

     1 2m 
0 1 2 1 .f m m m m


    

for all , ,a A c C m M    is a k -split monom  
in  C

orphism


A
 . In particular, C A  is a cogenerator in 

the category  C

A
 . 

Proof.  just the dual It is  of Theorem 3.13. □ 

ents 
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