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ABSTRACT 

This work proposes a scheme which helps digitizing hand printed and electronic planar objects or vectorizing the ge-
neric shapes. An evolutionary optimization technique namely Genetic Algorithm (GA) is used to solve the problem of 
curve fitting with a cubic spline function. GA works well for finding the optimal values of shape parameters in the de-
scription of the proposed cubic spline. The underlying scheme comprises of various phases including data of the image 
outlines, detection of corner points, using GA for optimal values of shape parameters, and fitting curve using cubic 
spline to the detected corner points. 
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1. Introduction 

Fitting curves to the data extracted from generic planar 
shapes is the problem which is immensely worked on 
during last two decades. It still grabs the attention of re- 
searchers due to its applications in diverse fields and its 
demands in the industry. The process of vectorizing out- 
lines of the images consists of several mathematical and 
computational phases and stages. This process aims to fit 
an optimal curve to the data extracted from the boundary 
of the image. Although many contributions in the litera- 
ture [1-27] can be found in this area, there is still room 
for making more advancements and finding interactive 
approaches. 

Least square fitting is common in optimization prob- 
lems in which splines and higher order polynomials are 
used to approximate the data. One can see a cubic spline 
technique [1] with least square fitting. Squared distance 
minimization has been used on B-spline curves in [2]. It 
uses iterative process to achieve an optimal curve. 

Instead of parametric form, implicit form of the poly-
nomial is also used for this purpose. Implicit B-spline 
curves [3] are used to solve curve reconstruction problem 
by approximating the point clouds. It uses the heuristic of 
trust region algorithm. In [4,5], schemes were proposed 
for fitting implicitly defined algebraic spline curves and 
surfaces. This was achieved over the scattered data by 
simultaneously approximating points and associated 

normal vectors. 
In this paper, a soft computing technique namely Ge-

netic Algorithm (GA) [6] is proposed to find the optimal 
spline curves to the data extracted from the boundaries of 
the generic images. This evolutionary technique incorpo-
rates the corner points from the outline of the input im-
age. The detection of corner points is quite significant as 
it helps minimizing the time to achieve desired curve to 
the outline of the image. Curve fitting in this scheme is done 
by using cubic spline which contains two shape parame-
ters in its description. Basic target is to find those values 
of the parameters which assure minimum error between 
detected boundary of the image and the fitted spline curve. 

The paper is organized in a way that the first and sec- 
ond steps (outline estimation and corner detection) of the 
proposed scheme are described in Section 2. A general- 
ized cubic spline curve scheme is given in Section 3. 
Genetic Algorithm is explained in Section 4, Section 5 
discusses the proposed scheme which is demonstrated 
with examples in Section 6. Finally, the paper is conclud- 
ed in Section 7. 

2. Countour Extraction and Segmentation 

First step in proposed scheme of vectorization of planar 
objects is to extract data from the boundary of the bitmap 
image or a generic shape. In this procedure, a bitmap 
image of the generic shape is used as an input. In order to 
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get the image, software like Paint and Adobe Photoshop 
can be used or some other appropriate way can be adopt- 
ed. After saving the bitmap image to the system, the 
chain code method [7,8] is used to extract boundary of 
the image. Chain codes represent the direction of the 
image and help to attain the geometric data from outline 
of the image. 

In the next step, the data extracted from the outline 
needs to be subdivided into smaller segments for curve 
fitting. For this purpose corner points or significant 
points are detected. Detection of these points is not an 
easy task as exactness of detected corners can only be 
judged by human eye and no other standard criterion 
exist. Then accuracy of any corner detection scheme can 
only be examined if the original corner positions are 
known. Generally corner detection can be defined as an 
approach which extracts the dominating features of an 
image and consequently helps deducing contents of the 
image. Plenty of corner detection schemes can be found 
in the literature [9-12]. In this paper, the scheme pre-
sented in [10] is used to divide the boundary into smaller 
segments. Each segment of the boundary consists of two 
consecutive corner points and the data points in between 
them. These corner points would be used for curve fitting. 

3. Generalized Cubic Spline 

Finding corner leads to subdivision of the data obtained 
by the boundary of the bitmap image into pieces. Each 
piece consists of two successive corner points and the 
data points in between them. Thus if there are m corner 
points F1, …, Fm then there will bem pieces P1, …, Pm. 
Each piece is treated separately and spline is fitted to it. 

First piece consists of all the contour points in between 
F1 and F2 inclusive. Second piece contains all contour 
points in between F2 and F2 inclusive. Consequently, the 
mthpiece includes all contour points between Fm and F1 
inclusive. In general, the ith piece contains all the data 
points between Fi and Fi+1 inclusive. 

3.1. Cubic Spline Interpolant 

As a curve fitting technique, the algorithm proposed in 
Section 5 makes use of a generalized cubic spline method. 
This spline embodies a number of desirable features need- 
ed for an optimum solution. The curve-fitting method 
employed here seeks the cubic spline for the determina- 
tion of good shape parameters in its description. 

Cubic spline function [13] is used for fitting curves at 
corner points. Let Fi, Fi+1, iZ be the two corner points 
of ith piece. Also let Di and Di+1 be the corresponding 
tangents at corner points. Then the cubic function, where 

and are shape parameters, is defined by: iv iw
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The functions Rj,i, j = 0, 1, 2, 3 are Bernstein Bézier 
like basis functions, such that 
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The cubic function (1) has the following properties: 
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Figure 1 representscurve fitting to the given data by 
using cubic function (1) for assigning the different values 
to the parameters νi and i . The effect of different val-
ues of the shape parameters on the shape of the curve are 
also shown in Figure 1. In Figure 1(a) cubic curve (1) is 
fitted to the data with the values of parameters as: νi = 

i  = 0, νi = i  = 1, νi = i  = 2 and νi = i  = 3. 
Figures 1(b) and 1(c) show cubic curves with parameters 
νi = 3,  = 1 and νi = 1,  = 3 respectively. 
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3.2. Parameterization 

Number of parameterization techniques can be found in 
literature for instance uniform parameterization, linear or 
chord length parameterization, parabolic parameteriza-
tion and cubic parameterization. In this paper, chord 
length parameterization is used to estimate the parametric 
value t associated with each point. It is as follows: 
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(a) 

 
(b): = 1 and νi = 3 iw

 
(c): = 3 and νi = 1 iw

Figure 1. Demonstration of cubic function (1) for different 
values of parameters. 

It can be observed that ti is in normalized form and 
varies from 0 to 1. Consequently, in our case, hi is always 
equal to 1. 

3.3. Estimation of Tangent Vectors 

A distance based choice of tangent vectors Di’s at Fi’s is 
defined as: 

For open curves: 

   
   
   

0 1 0 2 0

1 2

1 1

2 2

2 2

1 ,

1, 2,..., 1.

n n n n n

i i i i i i i

D F F F F

D F F F F

D a F F a F F

i n

 

 

   



,

,


    


     
  

   (7), 

For close curves: 
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4. Genetic Algorithm 

Genetic Algorithms (GAs) are the evolution based search 
techniques. In GAs, every solution, in a given well-de- 
fined search space, is represented by a bit string. This bit 
string is called a chromosome. Selection, crossover and 
mutation are the three operators used in agenetic algo- 
rithm. A GA creates a population of chromosomes itera- 
tively and is attempted to improve on the quality of chro- 
mosomes. 

A GA allows a populationcomposed of many indi- 
viduals to evolve under specified selection rules toa state 
that maximizes the “fitness” (i.e., minimizes the cost 
function). A set of input variable, in the form of a chro- 
mosome solution, is represented in a well-defined search 
space. A cost function, which may be a game, or an ex- 
periment or a mathematical function, is used to generate 
an optimal output from the chromosome. 

The GA begins by defining a chromosome or an array 
of variable values to be optimized. The variable values 
are represented in binary form, so the binary GA works 
with bits. However, the cost function normally needs 
continuous variable to use in its description. Therefore, 
the chromosome is decoded whenever the cost function 
is evaluated. 

How, a chromosome is encoded in binary for, is shown 
in Figure 2. 

The GA starts with a group of chromosomes known as 
the population. Next the variables are passed to the cost  
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Chromosome A

Chromosome B 11010010010101

10011010110110

 

Figure 2. Example of binary encoding. 
 
function for evaluation. Natural Selection process leads 
to Survival of the fittest i.e. discarding the chromosomes 
with the highest cost. Natural selection occurs in each 
generation or iteration of the algorithm. It is somewhat 
arbitrary to discard the undesired chromosomes or to 
keep the desired ones. If only very few chromosomes are 
allowed to survive for the next generation, it limits the 
available genes in the offspring. Similarly, if too many 
chromosomes are allowed to stay for next generation, the 
bad performers get a chance to contribute to the next 
generation in a bad way. Therefore, to have a natural 
selection process, it is recommended to keep 50% of the 
chromosomes. 

Thresholding is another approach to the process of 
natural selection. All the chromosomes having a cost 
value less than some threshold are assumed to be sur- 
vived in this approach. In order that parents produce off- 
spring, the threshold allows some of the chromosomes to 
continue. Otherwise, to find some chromosomes that pass 
the test, there would be the case that the whole new 
population would be generated. In the whole process, in 
the beginning, a small number of chromosomes may sur- 
vive. However, in the generations afterwards, most of the 
chromosomes will survive provided the threshold is not 
changed. 

In process of matchmaking, two chromosomes are se- 
lected from the mating pool of survived chromosomes to 
produce two new offspring. There are several schemes 
for parent selection like roulette wheel, tournament se- 
lection, random pairing etc. The next step after selecting 
parents is mating to create one or more offspring. 

The crossover operator is a commonly used form of 
mating. It deals with two parents to produce two off- 
spring. The first and the last bits of the parent’s chromo- 
somes are used to randomly select a crossover point. The 
left of the crossover point to the first offspring is passed 
the binary code of the first parent. In the same way, the 
left of the crossover point to the second offspring is 
passed the binary code of the second parent. Moreover, 
the binary code to the right of the crossover point of first 
parent goes to second offspring and second parent passes 
its right side’s code to first offspring. As a result of 
crossover operator the offspring contain parts of both the 
parents. Crossover operator is demonstrated in Figure 3.  

Another way of creating new chromosomes is muta- 
tion in which new traits can be introduced to chromo- 
somes that are not present in the original population. A 

single point mutation changes a 1 to a 0, and vice versa is 
shown in Figure 4. 

The process of GA described is iterated and would be 
repeated until the achievement of best solution for the 
problem. Flowchart of GA is shown in Figure 5. 

5. Proposed Approach 

In this Section the proposed scheme to the curve fitting 
problem is described. It includes the phases of problem 
matching with Genetic Algorithm using cubic spline 
function, description of parameters used for GA and 
curve fitting. 

5.1. Problem Mapping 

In this section Genetic Algorithm formulation of the pro-  
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110011011

100101011
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crossover

Crossover point

(a)
Existing 

chromosomes

(b)
Chromosomes obtained 
after applying crossover 

operator  

Figure 3. Example of crossover operator. 
 

 

Figure 4. Example of mutation operator. 
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Evaluate 
objective 
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Figure 5. Flow diagram of genetic algorithm. 
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blem discussed in this paper is described in detail. 
Suppose, for i = 0, 1, …, n − 1, the data segments Pi,j = 

(Xi,j, Yi,j,), j = 1, 2, …, m are given as ordered sets of the 
universal set of data points. Then the squared sums Si’s 
of distance between Pi.j’s and their corresponding para-
metric points P(ti)’s on the curve are determined as  

  2

, ,
1

im

i i i j i j
j

S P u P


    i = 0, 1, …, n − 1, 

where u’s are parameterized in reference to chord length 
parameterization. For the best fitting of the curve to 
given data, such values of parameter νi and i , are re-
quired so that the sums Si’s are minimal. Genetic Algo-
rithm is used to optimize this value for the fitted curve. 
We start with initial population of values of νi and i  
chosen randomly. Successive application of search op-
erations to this population leads to optimal values of νi 
and . 

w

w

iw

5.2. Initialization 

Once we have the bitmap image shown in Figures 6(a), 
7(a) and 8(a), the method of Section 2 is used to extract 
the boundary of the image. The boundary of the image is 
then used to detect the corner points in the next phase. It 
uses the corner detection method pointed out in Section 2. 
Figures 6(b) and 6(c), Figures 7(b) and 7(c) and Fig-
ures 8(b) and 8(c), show boundary of the bitmap images 
and detected corner points respectively. Table 1 gives 
number of contour points and initial corner points of the 
images. 

5.3. Curve Fitting 

Detection of the corner points leads towards the subdivi- 
sion of the boundary of the image into segments. The 
interpolation spline of Section 3.1 is then used to ap- 
proximate each segment of the boundary. This spline has 
the parameters v and w in its description. The initial solu- 
tion of the parameters v and w is randomly selected. Af- 
ter an initial approximation for the segment is obtained, 
The GA is run to get the optimal solution of v and w. 
Genetic Algorithm helps to obtain better approximations 
to achieve optimal solution. The tangent vectors at knots 
are estimated by the method described in Section 3.3. 

5.4. Breaking Segment 

For some segments, the best fit obtained through iterative 
improvement may not be satisfactory. In that case, we 
subdivide the segment into smaller segments at points 
where the distance between the boundary and parametric 
curve exceeds some predefined threshold; such points are 
termed as intermediate points. A new parametric curve is 
fitted for each new segment as shown in Figures 6(e)  

 
(a)                           (b) 

 
(c)                           (d) 

 
(e)                            (f) 

Figure 6. Image of Plane with detected corner points and 
fitted cubic curve. (a) Bitmap image; (b) Boundary ex- 
tracted; (c) Corners detected; (d) Cubic curve interpolated 
to corner points for 1st iteration of GA; (e) Cubic curve 
interpolated to corner points for 2nd iteration of GA with 
breakpoints; (f) Cubic curve interpolated to corner points 
for final (5th) iteration of GA with breakpoints. 
 

Table 1. Details of digital contours and corner points. 

Image Name 
#of  

contours

#of contour  
points 

#of initial  
corner points

Fork.bmp 1 673 15 

Plane.bmp 3 915 + 36 + 54 28 

Fish.bmp 1 975 32 

 
and 6(f), Figures 7(e) and 7(f) and Figures 8(e) and 7(f). 
In Table 2, number of intermediate points is presented 
which is obtained while fitting the optimized cubic spline 
for different iterations of GA. 

6. Demonstration 

Curve fitting scheme, proposed in Section 5 has been 
implemented on different images. In Figure 6, (a) repre- 
sents original image, (b) shows outline of the image, (c)  
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(a)                           (b) 

 
(c)                           (d) 

 
(e)                           (f) 

Figure 7. Image of fork with detected corner points and 
fitted cubic curve. (a) Bitmap image; (b) Boundary ex-
tracted; (c) Corners detected; (d) Cubic curve interpolated 
to corner points for 1st iteration of GA; (e) Cubic curve 
interpolated to corner points for 2nd iteration of GA with 
breakpoints; (f) Cubic curve interpolated to corner points 
for final (4th) iteration of GA with breakpoints. 
 
Table 2. Number of corner points together with number of 
intermediate points for iterations 1, 2 and final iteration of 
GA along with total time elapse in running GA. 

Number of intermediate points in
cubic interpolation with threshold

value 3 
Image 
Name 

Number of  
initial corner 

points 
Itr.1 Itr.2 Final iteration

Time 
Elapsed

Fork.bmp 15 23 27 31 
0.453000 

sec. 
Plane.bm

p 
28 33 38 40 

0.609000 
sec. 

Fish.bmp 32 25 29 31 
0.625000 

sec. 

 
demonstrates corner points (d), (e) and (f) give fitted 
outline for 1st , 2nd and final iterations for threshold 3 
respectively using Genetic Algorithms together with 
corner points and intermediate points). Figures 7 and 8 
can also be described in similar fashion. Time elapsed for 
applying the proposed scheme for different images is 
given in Table 2. 

 
(a)                           (b) 

 
(c)                           (d) 

 
(e)                           (f) 

Figure 8. Image of Fish with detected corner points and 
fitted cubic curve. (a) Bitmap image; (b) Boundary ex- 
tracted; (c) Corners detected; (d) Cubic curve interpolated 
to corner points for 1st iteration of GA; (e) Cubic curve 
interpolated to corner points for 2nd iteration of GA with 
breakpoints; (f) Cubic curve interpolated to corner points 
for final (4th) iteration of GA with breakpoints. 
 

Figures 9-13 show behaviors of fitness function for 
the image of fish on running GA again and again. It can 
be observed in Figure 9 that minimum value of cost 
function is achieved after iteration 20, whereas Figure 10 
and Figure 11 indicate that minimum fitness function is 
obtained at iteration 10 and iteration 5 respectively. 
While Figures 12 and 13 depict a bit different behavior 
as in these cases initially fitness function increases and 
then it starts decreasing. 

In Figure 14, stopping criteria followed to run GA is 
given and in Figure 15 best (^), worst (o) and mean (*) 
values of objective functions are shown in each iteration 
for the image of fish.Flowchart for proposed algorithm is 
given in Figure 16. 

7. Conclusion 

In this paper a scheme is presented which vectorizes the 
generic shapes. A cubic function is used for curve fitting 
and a soft computing technique genetic algorithm is used  
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Figure 9. Graph of fitness function. 
 

 

Figure 10. Behavior of fitness function. 
 

 

Figure 11. Behavior of fitness function. 

 

Figure 12. Mix behavior of fitness function. 
 

 

Figure 13. Increasing and decreasing fitness function. 
 

 

Figure 14. Stopping criteria met by GA in %. 
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Figure 15. Best, worst and mean scores in different itera-
tons. 
 

Digitized image Boundary 
detection

Detecting corner 
points

Curve fitting with 
cubic spline

Using Genetic 
Algorithm

Breaking 
segments

Outline of digitized 
image

yes

No 

 

Figure 16. Outline of proposed algorithm. 
 
to find optimal values of the parameters in the descrip- 
tion of the cubic function. The method proposed starts 
with initial random population of parameters and finds 
those values of the parameters which can assure best op- 
timal curve to the data extracted by bitmap images. The 
scheme presented is automatic and no human interces- 
sion is required. It also ensures computational efficiency 
as far as curve fitting is concerned. 
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