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ABSTRACT 

This paper concerns the development and application of the Hamiltonian function which is the sum of kinetic energy 
and potential energy of the system. Two dimensional water wave equations for irrotational, incompressible, inviscid 
fluid have been constructed in cartesian coordinates and also in cylindrical coordinates. Then Lagrangian function 
within a certain flow region is expanded under the assumption that the dispersion μ and the nonlinearity ε satisfied 

 2O  . Using Hamilton’s principle for water wave evolution Hamiltonian formulation is derived. It is obvious that 

the motion of the system is conservative. Then Hamilton’s canonical equation of motion is also derived. 
 
Keywords: Water Wave Equation; Lagrangian Function; Hamiltonian Function;  

Hamilton’s Canonical Equation of Motion 

1. Introduction 

Dynamics research on Hamilton systems is an important 
subject in mechanics for a long time. Hamilton’s princi- 
ples have also the big advantage of ensuring that one can 
build approximations with optimal “fit” among all the 
equations defining the problem at hand. The principles of 
Hamilton mechanics settled a series of problems effec- 
tively that could not be solved by other methods, which 
showed theoretically the importance of Hamilton me- 
chanics. Whitham [1] used fluid dynamics, Hamilton 
principles and variational principles for water waves and 
related problems in the theory of nonlinear dispersive 
waves. There are mainly two variational formulations for 
irrotational surface waves that are commonly used in 
Luke [2] and Zakharov [3]. Details on the variational 
formulations for surface waves can be found in review 
papers, e.g., Radder [4], Salmon [5], Zakharov and 
Kuznetsov [6]. The water wave problem is also known to 
have the multi-simplistic structure. These Hamilton’s 
principles have been used to build an analytical appro- 
ximation. Luke [2] assumed regarding Lagrangian that the 
flow is exactly irrotational, i.e., the Lagrangian involves a 
velocity potential but not explicitly the velocity compo-
nents. If in addition, the fluid incompressibility and the 
bottom impermeability are satisfied identically, the equa-

tions at the surface can be derived from Hamiltonian form 
by Zakharov [3]. Thus, both principles naturally assume 
that the flow is exactly irrotational, as it is the case of the 
water wave problem formulation, but the Hamiltonian 
form of Zakharov [3] is more constrained than Luke’s 
Lagrangian [2]. The variational formulations of Luke [2] 
and Zakharov [3] require that part or all of the equations in 
the bulk of the fluid and at the bottom are satisfied iden-
tically, while the remaining relations must be approxi-
mated. It is because the irrotationality and incompressi-
bility are mathematically easy to fulfill, that they are 
chosen to be satisfied identically. Beside simplicity, there 
are generally no reasons to fulfill irrotationality and in-
compressibility instead of the impermeability or the iso-
barity of the free surface, for example. It is understandably 
tempting to solve exactly as many equations as possible in 
order to “improve” the solution accuracy. This is not 
always a good idea, however. Indeed, numerical analysis 
and scientific computing know many examples when 
efficient and most used algorithms do exactly the opposite. 
These so-called relaxation methods, e.g., pseudo-com-
pressibility for incompressible fluid flows have proven to 
be very efficient for stiff problems. The same idea may 
also apply to analytical approximations. When solving a 
system of equations, the exact solution of a few equations 
does not necessarily ensure that the overall error is re-
duced. Since for irrotational water waves it is possible to *Corresponding author. 
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use a variational formulation, approximations derived 
from the latter are guaranteed to be optima. We would like 
to describe the benefit of using Hamilton’s principle for 
the water wave problem as it involves as many dependent 
variables as possible. We emphasize that our primary 
purpose here is to provide a generalized framework for 
deriving model equations for water waves. This method-
ology is explained on various examples; some of them are 
new to our knowledge. 

This Hamilton’s principle for incompressible and in-
viscid fluid is used to derive approximate wave models. 
The formulation of Madsen et al. [7,8] is most capable of 
treating highly non-linear waves to  for disper- 
sion, with accurate velocity profiles up to . Luke 
[2] obtained a Lagrangian function yielding the Laplace’s 
equation and the boundary conditions at the surface and 
bottom. Whitham [9] studied various uses of the varia- 
tional methods in the theory of nonlinear dispersive 
waves, and presented details for water waves. Zakharov 
[3] showed that the water elevation and the potential at 
the free surface are canonical variables when formulating 
the water-waves problem in Hamiltonian formalism. The 
mathematical properties of the Hamiltonian formalism 
for free surface waves were extensively studied by Miles 
[10], Milder [11], Radder [12] and many other authors. 
Hou et al. [13] used the variational principle to establish 
a nonlinear equation for shallow water wave evolution. 
Ambrosi [14] gave a Hamiltonian formulation for surface 
waves in a layered fluid. Lvov and Tabak [15] developed 
Hamiltonian formulation for long internal waves. Hongli 
et al. [16] derived water wave solutions using variation 
method. In this paper two dimensional water wave equa- 
tions have been generalized in Cartesian coordinates and 
also in cylindrical coordinates. Then Hamiltonian for- 
mulation within a certain flow region for shallow water 
wave has been constructed and then Hamilton’s canoni- 
cal equation of motion is also derived.  

25kh 
kh 12

2. Two Dimensional Water Wave Equations 

We consider an inviscid, irrotational flow of constant 
density   subjected to a gravitational field g acting in 
the negative z-axis which is directed vertically downward. 
In its undisturbed state, the fluid, which is of infinite 
horizontal extent, is confined to a region 

 ,0 ,x z x t      . 
Here we have used Hamilton’s principle with La- 
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The relevant ingredients, needed in order to describe 
this flow, are: 

 , ,x z t  is the velocity potential, ρ is the fluid den- 
sity, g is the acceleration by the Earth’s gravity, x is the 

horizontal coordinate, x-axis represents undisturbed sur- 
face with constant depth H, z is the vertical coordinate, 
 ,x t  is the elevation of the free surface. 
Free surface is the surface of a fluid that is subject to 

constant perpendicular normal stress and zero parallel 
shear stress, such as the boundary between two homoge- 
nous fluids, for example liquid water and the air in the 
Earth’s atmosphere. Unlike liquids, gases cannot form a 
free surface on their own. A liquid in a gravitational field 
will form a free surface if unconfined from above. Under 
mechanical equilibrium this free surface must be perpen- 
dicular to the forces acting on the liquid; if not there 
would be a force along the surface, and the liquid would 
flow in that direction. Thus, on the surface of the Earth, 
all free surfaces of liquids are horizontal unless disturbed 
(except near solids dipping into them, where surface ten- 
sion distorts the surface locally). In a free liquid at rest, 
that is, one subject to internal attractive forces only and 
not affected by outside forces such as a gravitational field, 
its free surface will assume the shape with the least sur- 
face area for its volume—a perfect sphere. 

Now    , , , ,x z t x t 
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 are allowed to vary subject to 
the restrictions 0,    on the boundary D  of 
D. 

According to the standard procedure of the calculus of 
variations, Hamilton’s principle gives 
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since 0z  . 
Integrating the z-integral by parts, it turns out that 
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In view of the fact that the first z-integral in each of 
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the square brackets vanishes on the boundary D  of D, 
we obtain 
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Evidently the Laplace equation, two free surface con- 
ditions, and the bottom boundary condition constitute the 
two-dimensional water wave equation. This system of 
equation has been used by Stoker [17], Debnath [18] for 
the investigation of the linearized initial value problem 
for the generation and propagation of water waves. 

3. Water Wave Equation in Cylindrical 
Coordinates 

We consider an inviscid irrotational flow of constant 
density   subjected to a gravitational field g acting in 
the negative z-axis which is directed vertically downward. 
The fluid with a free surface  , ,z r t  
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Evidently, the Laplace equation, two flee-surface con- 
ditions and the bottom boundary condition constitute the 
non-axisymmetric water wave equations in cylindrical 
polar coordinates. This set of equations has also been 
used by several authors including Debnath [19], Mondal 
[20] and Mohanti [21] for the initial value invest

4. Linear, Non-Rotating Shallow Waters 

In non-dimensi
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take the form  
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7. Mathematical Formulation 

Hongli et al. [16] derived these solutions t

 s cos 1X h z coj jq          (15) 

where jq  is a constant. 

 
1

2tan
cos 1 sin .j j

h
q h z

 


 
     X


  (16) 

Here we consider, 

             (17) 

From Laplace equation using Equation (17), we obtain 



 1 .
n

n z 


 
0n

    
2

2
22

0n x

2 1 1 0
nn

nn n z


 




 
       (18) 

e with  
each coefficient in power of must be zero, thus 

 

Since z be an arbitrary valu in the flow region, so
 z l  

  
22

2 2
, 0,1,2, .n

n n
 


      (19) 

g Equ
surface n yields

2 1n n x  

On the other hand, usin ation (17) on the last free 
 conditio  1 0  . erefore, for all odds, Th

0n  , i.e., 1 0.3 5   
g that 

   
Supposin 0   , we have 

   
2 2

2 2 12
1 , 0, 0,1, 2,3

2 !n x

Now,

n n
n

n nn
n

  
 

      

 the expression of velocity potential   is ob- 
tained: 
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     
2 2

2

2
0

1 1
2 !

n n
n n

n
n

z
nx






 
  

  
Therefore, the velocity potential   can be found to 

be:     , , cos cos .x t z q X h z  1   

   , , cos 1x z t h z     using Equation (20) By linear approximation, we also consider  

 cos .jq   X              (20) Now 
 

       

       

        

  

2 22 2
2 2 2 2 2 2 2

2 2

2
2 2 2 2 2 2

2
2 2 2 2

2 2
2 2 2

1 1
sin cos 1 cos sin 1

2 2

sin cos 1 cos sin 1
2

sin 1 cos 2 1 cos cos 2 1 1
4

sin cos
4

q X h z q X h z
x z

q X h z q X h z

q X h z q X h z

q X X

        
 

    

    

 

                         

     

      

  

 

    

     

2 2

2 2
2 2

cos 2 1 sin cos
4

cos 2 cos 2 1
4 4

q h z X X

q X q h z

 

   

 

   

2

 

           
2 2

22 2 1
sin 1 cos 2 1 sin 2 1

4 8
L h q X q h

t

  
2

       
 


      


        (21) 

 
The case of  2O  , was considered by Benjamin 

[22] and Whitham [9], who obtained the Korteweg de 
Vries (KdV) equation. Here we also consider the case, 
and expand Lagrangian function up to  8O   order 

 

 

   

 

2 4 6 2 4
2 4 6 2 2 2

2 4 2 2
2 2

2
2 2 4 2 4 2 2

1 19 401 1
1 sin 1 1

6 360 630 24 6 5! 7! 2 24 2

cos 1 1 cos 2 1
6 120 2 4

2 2 2 1
1 2

4 3 15 3 2

L q X

q X q X

q

            

       

          


                     

  
        

   

          
 8O 

   (22) 

 

 2 4
1 2 3a a a OHou et al. [13] used the lowest-order of  in their ar-

ticle. 

6        

Let  2 4 6
1 2 3 4a a a a O Based on the dynamical boundary condition of the free 

surface, we have 

6          
4Expanding   to  th term, we have 

 

 

       

         

2 2

2

2 4 6
1 2 3

2
2 2 2

4 4
2 2 2 2 6

1

2

sin sin cos sin
3 2

1
sin sin cos

2 90 2

z
z

t x z

a a a O

q X q X q X q X

q X q q X q X O

 

   


  

     

      

 

                    

   

    

      



 

          (23) 
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From Equation (23), equating the coefficients of con-

stant, 2  and 4  terms, we have 

1

2 2
2

2 2 2
3

sin

1 1
cos sin sin

3 2
1 1 1

cos sin sin
2 2 90

j

j j j

j j j j

a q X

a q X q X q X

a q X q q X q

 

   

    



 X

 (24) 

Substituting Equations (22) and (23) in Hamilton’s 
principle and neglecting the terms higher than 8  order 
terms, we have the Lagrangian 

        2 4 2 4 41 3
, .

4 64 jL q q q q           

Obviously, Lagrangian is a function of generalized 
coordinates and generalized velocity. 

We also used the generalized momentum 

 2 41

2j
j

L
p q

q
  

  





 

Now Hamiltonian function  

2 4 2 2 4 2 4 4

2 4 2 4 4

1 1 3

2 4 64
1 3

4 64

j j j j

j j

jH p q L q q q

q q

    

  

     

  

   


 

Hamilton’s canonical equation of motion  

2 41

2

0.

j j
j

j
j

H
p q

q

H
q

p

 
  



  








 

8. Conclusion 

Firstly, we have generalized two dimensional water wave 
equation in Cartesian and in cylindrical polar coordinates. 
We have also discussed water wave equation with La- 
grangian and Hamiltonian with canonical variables. Then 
the Lagrangian function within a certain flow region ex- 
panded up to  8O  . It is obvious that Lagrangian is a 
function of generalized coordinate and generalized ve- 
locity and Hamiltonian is the sum of kinetic energy and 
potential energy. Using generalized momentum Hamilto- 
nian function is formulated and then Hamilton’s canoni- 
cal equations of motion have been also developed. 
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