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ABSTRACT 

We present recent theoretical results on superconductivity in correlated-electron systems, especially in the two- 
dimensional Hubbard model and the three-band d-p model. The mechanism of superconductivity in high-temperature 
superconductors has been extensively studied on the basis of various electronic models and also electron-phonon 
models. In this study, we investigate the properties of superconductivity in correlated-electron systems by using 
numerical methods such as the variational Monte Carlo method and the quantum Monte Carlo method. The Hubbard 
model is one of basic models for strongly correlated electron systems, and is regarded as the model of cuprate high 
temperature superconductors. The d-p model is more realistic model for cuprates. The superconducting condensation 
energy obtained by adopting the Gutzwiller ansatz is in reasonable agreement with the condensation energy estimated 
for YBa2Cu3O7. We show the phase diagram of the ground state using this method. We have further investigated the 
stability of striped and checkerboard states in the under-doped region. Holes doped in a half-filled square lattice lead to 
an incommensurate spin and charge density wave. The relationship of the hole density x  and incommensurability  , 

x  , is satisfied in the lower doping region, as indicated by the variational Monte Carlo calculations for the 
two-dimensional Hubbard model. A checkerboard-like charge-density modulation with a roughly 4 4  period has also 
been observed by scanning tunneling microscopy experiments in Bi2212 and Na-CCOC compounds. We have 
performed a variational Monte Carlo simulation on a two-dimensional t - t - t -U  Hubbard model with a Bi-2212 
type band structure and found that the 4 4  period checkerboard spin modulation, that is characterized by multi Q 
vectors, is indeed stabilized. We have further performed an investigation by using a quantum Monte Carlo method, 
which is a numerical method that can be used to simulate the behavior of correlated electron systems. We present a new 
algorithm of the quantum Monte Carlo diagonalization that is a method for the evaluation of expectation value without 
the negative sign problem. We compute pair correlation functions and show that pair correlation is indeed enhanced 
with hole doping. 
 
Keywords: High-Temperature Superconductivity; Strongly Correlated Electrons; Monte Carlo Methods; Hubbard 

Model; Condensation Energy; Pair-Correlation Function 

1. Introduction 

The effect of the strong correlation between electrons is 
important for many quantum critical phenomena, such as 
unconventional superconductivity (SC) and the metal- 
insulator transition. Typical correlated electron systems 
are high-temperature superconductors [1-5], heavy fer- 
mions [6-9] and organic conductors [10]. The phase 
diagram for the typical high-Tc cuprates is shown in 
Figure 1 [9]. It has a characteristics that the region of 
antiferromagnetic order exists at low carrier concentra-  

tions and the superconducting phase is adjacent to the 
antiferromagnetism. 

In the low-carrier region shown in Figure 2, there is 
the anomalous metallic region where the susceptibility 
and 11 T  show a peak above Tc suggesting an existence 
of the pseudogap. To clarify an origin of the anomalous 
metallic behaviors is also a subject attracting many 
physicists as a challenging problem. 

It has been established that the Cooper pairs of high-Tc 
cuprates have the d -wave symmetry in the hole-doped 
materials [11,12]. Several evidences of d -wave pairing 
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Figure 1. Phase diagram delineating the regions of super- 
conductivity and antiferromagnetic ordering of the Cu2+ 
ions for the hole-doped La2–xSrxCuO4 and electron-doped 
Nd2–xCexCuO4–y systems. 
 

 

Figure 2. Phase diagram showing the regions of non-Fermi 
liquid and pseudogap metal for the hole-doped case. The 
boundaries indicated in the figure are not confirmed yet. 
 
symmetry were provided for the electron-doped cuprates 
Nd2–xCexCuO4 [13-15]. Thus it is expected that the 
superconductivity of electronic origin is a candidate for 
the high-Tc superconductivity. We can also expect that 
the origin of d -wave superconductivity lies in the on- 
site Coulomb interaction of the two-dimensional Hub- 
bard model. 

The antiferromagnetism should also be examined in 
correlated electron systems. The undoped oxide com- 
pounds exhibit rich structures of antiferromagnetic cor- 
relations over a wide range of temperature that are 
described by the two-dimensional quantum antiferro- 
magnetism [16-18]. A small number of holes introduced 
by doping are responsible for the disappearance of 
long-range antiferromagnetic order [19-24]. 

Recent neutron scattering experiments have suggested 
an existence of incommensurate ground states with 
modulation vectors given by  2 ,sQ       and 

 4 ,0cQ     (or  , 2sQ       and  
 0, 4cQ    ) where   denotes the hole-doping ratio 

[25]. We can expect that the incommensurate cor- 

relations are induced by holes doped into the Cu-O 
plane in the underdoped region. A checkerboard-like 
charge-density modulation with a roughly 4 4  pe- 
riod has also been observed by scanning tunneling 
microscopy experiments in Bi2212 and Na-CCOC com- 
pounds. 

Recently the mechanism of superconductivity in high- 
temperature superconductors has been extensively stu- 
died using various two-dimensional (2D) models of 
electronic interactions. Among them the 2D Hubbard 
model [26] is the simplest and most fundamental model. 
This model has been studied intensively using numerical 
tools, such as the Quantum Monte Carlo method [27-42], 
and the variational Monte Carlo method [24,43-50]. The 
two-leg ladder Hubbard model was also investigated with 
respect to the mechanism of high-temperature supercon- 
ductivity [51-59]. 

Since the discovery of cuprate high-temperature su- 
perconductors, many researchers have tried to explain the 
occurrence of superconductivity of these materials in 
terms of the two-dimensional (2D) Hubbard model. 
However, it remains matter of considerable controversial 
as to whether the 2D Hubbard model accounts for the 
properties of high-temperature cuprate superconductors. 
This is because the membership of the the two-dimen- 
sional Hubbard model in the category of strongly 
correlated systems is a considerable barrier to progress 
on this problem. The quest for the existence of a 
superconducting transition in the 2D Hubbard model is a 
long-standing problem in correlated-electron physics, 
and has been the subject of intensive study [35,36,38,46, 
60,61]. In particular, the results of quantum Monte Carlo 
methods, which are believed to be exact unbiased me- 
thods, have failed to show the existence of super- 
conductivity in this model [38,61]. 

In the weak coupling limit we can answer this question. 
We can obtain the superconducting order parameter of 
the Hubbard model in the limit of small U , that is given 
by [62-66] 

2

2
exp ,

xU
    
 

              (1) 

where U  is the strength of the on-site Coulomb 
interaction and the exponent x  is determined by solv- 
ing the gap equation. Thus the existence of the super- 
conducting gap is guaranteed by the weak coupling 
theory although   is extremely small because of the 
exponential behavior given above. x  indicates the 
strength of superconductivity. In the intermediate or 
large coupling region, we must study it beyond the 
perturbation theory. 

We investigate the ground state of the Hubbard model 
by employing the variational Monte Carlo method. In the 
region 6 12U  , the finite superconducting gap is 
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obtained by using the quantum variational Monte Carlo 
method. The superconducting condensation energy ob- 
tained by adopting the Gutzwiller ansatz is in reasonable 
agreement with the condensation energy derived for 
YBa2Cu3O7. We have further investigated the stability of 
striped and checkerboard states in the under-doped 
region. Holes doped in a half-filled square lattice lead to 
an incommensurate spin and charge density wave. The 
relationship of the hole density x and incommensurability 
 , x  , is satisfied in the lower doping region. This 
is consistent with the results by neutron scattering 
measurements. To examine the stability of a 4 4  
checkerboard state, we have performed a variational 
Monte Carlo simulation on a two-dimensional 
t t t U     Hubbard model with a Bi-2212 type band 
structure. We found that the 4 4  period checkerboard 
checkerboard spin modulation that is characterized by 
multi Q  vectors is stabilized. 

Further investigation has been performed by using the 
quantum Monte Carlo method which is a numerical 
method that can be used to simulate the behavior of 
correlated electron systems. This method is believed to 
be an exact unbiased method. We compute pair cor- 
relation functions to examine a possibility of super- 
conductivity. 

The Quantum Monte Carlo (QMC) method is a 
numerical method employed to simulate the behavior of 
correlated electron systems. It is well known, however, 
that there are significant issues associated with the 
application to the QMC. First, the standard Metropolis 
(or heat bath) algorithm is associated with the negative 
sign problem. Second, the convergence of the trial wave 
function is sometimes not monotonic, and further, is 
sometimes slow. In past studies, workers have inves- 
tigated the possibility of eliminating the negative sign 
problem [37,38,40-42]. We present the results obtained 
by a method, quantum Monte Carlo diagonalization, 
without the negative sign problem. 

2. Hubbard Hamiltonian 

The Hubbard Hamiltonian is 
† ,ij i i i i

ij i

H t c c U n n                 (2) 

where †
ic   and ic  denote the creation and annihilation 

operators of electrons, respectively, and †
i i in c c    is 

the number operator. The second term represents the 
on-site Coulomb interaction which acts when the two 
electrons occupy the same site. The numbers of lattice 
sites and electrons are denoted as N  and eN , 
respectively. The electron density is e en N N . 

In the non-interacting limit 0U  , the Hamiltonian is 
easily diagonalized in terms of the Fourier transformation. 
In the ground state each energy level is occupied by 

electrons up to the Fermi energy. In the other limit 
0ijt  , each site is occupied by the up- or down-spin 

electron, or is empty. The non-zero ijt  induces the 
movement of electrons that leads to a metallic state id 

eN N . The ground state is probably insulating at 
half-filling eN N  if U  is sufficiently large. 

If ijt t  are non-zero only for the nearest-neighbor 
pairs, the Hubbard Hamiltonian is transformed to the 
following effective Hamiltonian for large U t  [67]: 

2
† † †

† † † †

† † ,

i j j j j
ij

j j j j j j j j

j j j j

t
H t a a a a a a

U

a a a a a a a a

a a a a

   
 

   

 

     


            

     

   

 

 

 

     (3) 

where  ,1i i ia c n     and j   and j   in- 
dicate the nearest-neighbor sites in the   and   
directions, respectively. The second term contains the 
three-site terms when   . If we neglect the three-site 
terms, this effective Hamiltonian is reduced to the t-J model: 

 † 1
h.c. ,

4i j i j i j
ij ij

H t a a J n n 


       
 

  S S  

where 24J t U . 
The Hubbard model has a long history in describing 

the magnetism of materials since the early works by 
Hubbard [26], Gutzwiller [68] and Kanamori [69]. One- 
dimensional Hubbard model has been well understood by 
means of the Bethe ansatz [70-72] and conformal field 
theory [73-75]. The solutions established a novel concept 
of the Tomonaga-Luttinger liquid [76] which is described 
by the scalar bosons corresponding to charge and spin 
sectors, respectively. The correlated electrons in two- and 
three-dimensional space are still far from a complete 
understanding in spite of the success for the one-di- 
mensional Hubbard model. A possibility of supercon- 
ductivity is a hot topic as well as the magnetism and 
metal-insulator transition for the two- and three-di- 
mensional Hubbard model. 

The three-band Hubbard model that contains d  and 
p  orbitals has also been investigated intensively with 

respect to high temperature superconductors [24,64, 
77-88]. This model is also called the d-p model. The 2D 
three-band Hubbard model is the more realistic and 
relevant model for two-dimensional CuO2 planes which 
are contained usually in the crystal structures of high- cT  
superconductors. The network of CuO2 layer is shown in 
Figure 3. The parameters of the three-band Hubbard 
model are given by the Coulomb repulsion dU , energy 
levels of p  electrons p  and d  electron d , and 
transfer between p  orbitals given by ppt . Typical 
parameter values for the three-band ( d - p ) Hubbard 
model are shown in Table 1. The Hamiltonian of the 
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Figure 3. The lattice of the three-band Hubbard model on 
the CuO2 plane. Small circles denote Cu sites and large ones 
denote O sites. 
 
Table 1. Typical parameter values for the three-band Hub- 
bard model. Energies are measured in eV. 

 Ref.[90] Ref.[89] Ref.[91] Ref.[78] 

p d 
 3.6 2.75 - 3.75 3.5 2.5 

dpt
 1.3 1.5 1.5 1.47 

ppt
 0.65 0.65 0.6  

dU
 10.5 8.8 9.4 9.7 

pU
 4.0 6.0 4.7 5.7 

dpU
 1.2 <1.0 0.8 <1 

 
three-band Hubbard model is written as [24,47,48,80] (see 
Equation (4)) where x̂  and ŷ  represent unit vectors 
along x and y directions, respectively. †

ˆ 2,i xp   and 

ˆ 2,i xp   denote the operators for the p  electrons at site 
ˆ 2iR x . Similarly †

ˆ 2,i yp   and ˆ 2,i yp   are defined. 

dU  denotes the strength of Coulomb interaction between 
d  electrons. For simplicity we neglect the Coulomb 
interaction among p  electrons in this paper. Other 
notations are standard and energies are measured in dpt  
units. The number of cells is denoted as N  for the 
three-band Hubbard model. In the non-interacting case 
 0dU   the Hamiltonian in the k-space is written as (see 
Equation (5)). 

where d k   †d k , xp k   †
xp k  and yp k   †

yp k   
are operators for d -, xp - and yp -electron of the 
momentum k  and spin  , respectively. 

In the limit  dp d p dt U     , dp p dt    , and 

p d dU   , the d - p  model is mapped to the t-J 
model with 

 
2 1 2

4 ,
2

eff
d p d p

J t
U U

 
  
    

         (6) 

where  2
eff dp p dt t    . 4K effJ t  gives the 

antiferromagnetic coupling between the neighboring d  
and p  electrons. In real materials  p d dpt   is not 
so large. Thus it seems that the mapping to the t-J model 
is not necessarily justified. 

3. Variational Monte Carlo Studies 

In this Section we present studies on the two-dimensional 
Hubbard model by using the variational Monte Carlo 
method. 

3.1. Variational Monte Carlo Method 

Let us start by describing the method based on the 2D 
Hubbard model. The Hamiltonian is given by 

 

 

†

†

h.c.

h.c. ,

i j
ij

j j j
jj

H t c c

t c c U n n

 


 


 

  

  



 


     (7) 

where ij  denotes summation over all the nearest- 
neighbor bonds and j  means summation over the 
next nearest-neighbor pairs. t  is our energy unit. The 
dispersion is given by 

        2 cos cos 4 cos cos .x y x yt k k t k k   k   (8) 

Our trial wave function is the Gutzwiller-projected 
wave functions defined as 

0 ,
en N GP P                   (9) 

,
es N G BCSP P                 (10) 

 

 
 

† † † † †
ˆ ˆ ˆ ˆ/2, /2, /2, /2,

†
ˆ ˆ ˆ ˆ/2, /2, / 2, /2,

† † †
ˆ ˆ ˆ ˆ ˆ ˆ/ 2, /2, /2, /2, /2, /2

h.c.

dp d i i d p i x i x i y i yi i i i
i i i

dp i i x i y i x i y
i

pp i y i x i y i x i y i x

H d d U d d d d p p p p

t d p p p p

t p p p p p p

     
 

    


    

      

   

     

   

      

  

  



 

†
ˆ ˆ, /2, /2, h.c. .i y i x

i

p p  


    

             (4)

    
        

0 ?

† †

2i sin 2 h.c.

2i sin 2 h.c. 4 sin 2 sin 2 h.c. ,

dp d p x x y y dp x x

dp y y pp x y x y

H d d p p p p t k d p

t k d p t k k p p

       
  

   
 

    

    

  

 

k k k k k k k k
k k k

k k k k
k k

 
        (5)
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where 

†
0

,

0 ,
Fk

c 





  k
k

             (11) 

 † † 0 .BCS u v c c     k k k k
k

       (12) 

GP  is the Gutzwiller projection operator given by 

 1 1 ;G j j
k

P g n n 
             (13) 

g  is a variational parameter in the range from 0 to unity 
and j  labels a site in the real space. 

eNP  is a pro- 
jection operator which extracts only the sites with a fixed 
total electron number eN . Coefficients uk  and vk  in 

BCS  appear in the ratio defined by 

 1 22 2
,

v

u  




  
k k

k k k k

             (14) 

where    k k  and k  is a k-dependent gap func- 
tion.   is a variational parameter working like the 
chemical potential. c k  is the Fourier transform of jc  . 
The wave functions n  and s  are expressed by the 
Slater determinants for which the expectations values are 
evaluated using a Monte Carlo procedure [43,44,92]. s  
is written as 

 

 

 

† †

† †

2

† †

exp 0

exp , 0

, 0 ,

e

e

e

s N G

N G j
j

N

G j
j

P P v u c c

P P a j c c

P a j c c

   

 

 

    
 

  
 

 
  

 







k k k k
k











      (15) 

where 

       , 1 exp .ja j N v u i     k k
k

k R R    (16) 

Then s  is written using the Slater determinants as 

 
1 2 1 2

1 2 2 1 2 2

1 2 1 2

† † † † † †

,

0 ,

e e
N Ne e

N Ne e

s G N N
j j

j j j

P A j i

c c c c c c



     






  

  

  

 
    (17) 

where  1 2 1 2,
e eN NA j i    is the Slater determinant 

defined by 

 
     
     

     

1 2

1 1 1 2 1 2

2 1 2 2 2 2

2 1 2 2 2 2

, , ,

, , ,
.

, , ,

e

e

e

e e e e

N

N

N

N N N N

A j

a j a j a j

a j a j a j

a j a j a j





   

   

   

   

 (18) 

In the process of Monte Carlo procedure the values of 
cofactors of the matrix in Equation (18) are stored and 
corrected at each time when the electron distribution is 
modified. We optimized the ground state energy 

g s s s sE H H              (19) 

with respect to g , k  and   for s  for s . For 

n  the variational parameter is only g . We can 
employ the correlated measurements method [93] in the 
process of searching optimal parameter values mini- 
mizing gE . 

A Monte Carlo algorithm developed in the auxiliary 
field quantum Monte Carlo calculations can also be 
employed in evaluating the expectation values for the 
wave functions shown above [94-96]. Note that the 
Gutzwiller projection operator is written as 

exp ,G i i
i

P n n  

   
 

             (20) 

where  log 1 g  . Then using the discrete Hubbard- 
Stratonovich transformation, the Gutzwiller operator is 
the bilinear form: 

     
 

exp

1 2 exp 2 ,
2

i

i i
i

N

i i i i i
s i i

n n

a s n n n n





 

   

  
 

       



  
(21) 

where   2cosh 2 ea  . The Hubbard-Stratonovich au- 
xiliary field is  takes the values of 1 . The norm 

n n   is written as 

  
  

   

†
0

0

const det exp ,

exp , ,

i i

n n
u s

V u

V s

 



 

   

 

 



 
  (22) 

where  ,V s   is a diagonal N N  matrix corre- 
sponding to the potential 

  2 .
2i i i

i i

h s a s n n
 

             (23) 

 ,V s   is written as 

   1, diag 2 2, ,2 2,0, ,NV s a s a s          

(24) 

where  diag ,a   denotes a diagonal matrix with ele- 
ments given by the arguments ,a  . The elements of 
 0 ij

   1, , ; 1, , 2ei N j N    are given by linear 
combinations of plane waves. For example, 

   0 exp .i jij
i  r k            (25) 

Then we can apply the standard Monte Carlo sampling 
method to evaluate the expectation values [94,95]. This 
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method is used to consider an off-diagonal Jastrow cor- 
relation factor of exp(–S)-type. The results for the im- 
proved wave functions are discussed in Section 3.10. 

3.2. Superconducting Condensation Energy 

We study the cases of the d -, extended s - ( s -) and 
s -wave gap functions in the following: 

        cos cos ,x yd k k   k         (26) 

       cos cos ,x ys k k    k        (27) 

    .s   k                 (28) 

In Figure 4 calculated energies per site with 84eN   
on the 10 10  lattice are shown for the case of 8U   
and 0t  [46]. gE N  is plotted as a function of   
for three types of gap functions shown above. We impose 
the periodic and the antiperiodic boundary conditions for 
x - and y -direction, respectively. This set of boundary 
conditions is chosen so that k  does not vanish for any 
k-points occupied by electrons. gE  was obtained as the 
average of the results of several Monte Carlo calculations 
each with 75 10  steps. gE N  has minimum at a 
finite value of 0.08  in the case of the d-wave gap 
function. 

The energy gain gE  in the superconducting state is 
called the SC condensation energy in this paper. 

gE N  is plotted as a function of 1 N  in Figure 5 in 
order to examine the size dependence of the SC energy 
gain [97]. Lattice sizes treated are from 8 8  to 
22 22 . The electron density en  is in the range of 
0.80 0.86en  . Other parameters are 0.20 0.0t    
and 8U t   in t  units. Bulk limit N   of SC 
condensation energy condE  was obtained by plotting as 
a function of 1 N . The linear fitting line indicates very 
 

 

Figure 4. Ground state energy per site gE N  for the 2D 

Hubbard model is plotted against   for the case of 84 
electrons on the 10 × 10 lattice with U  8  and t  0 . 
Solid curves are for the d-wave gap function. Squares and 
triangles are for the s*- and s-wave gap functions, 
respectively. The diamond shows the normal state value 
[46]. 

 

Figure 5. Energy gain per site in the SC state with reference 
to the normal state for the 2D Hubbard model is plotted as 
a function of N1 . L is the length of the edge of the square 

lattice. YBCO attached to the vertical axis indicates the 
experimental value of the SC condensation energy for 
YBa2Cu3O4 [97]. 
 
clearly that the bulk limit remains finite when 

0.25 0.10t     and 0.84en  . When 0.86en  , 
0.20t    and 8U  , the bulk-limit condE  is 

0.00117 site 0.60 meV sitecondE   , where t = 0.51 
eV is used [98]. Thus the superconductivity is a real bulk 
property, not a spurious size effect. The value is re- 
markably close to experimental values 0.17 ~ 0.26 
meV/site estimated from specific heat data [99,100] and 
0.26 meV/site from the critical magnetic field cH  [101] 
for optimally doped YBa2Cu3O4 (YBCO). This good 
agreement strongly indicates that the 2D Hubbard model 
includes essential ingredients for the superconductivity in 
the cuprates. 

We just point out that the t-J model gives 
= 0.026 13 meV sitecondE t   at 0.84en   for J = 4 

t2/U = 0.5 and 0t   [102]. This value is 50 times larger 
than the experimental values indicating a serious quan- 
titative problem with this model. This means that the t-J 
model made from the leading two terms in the expansion 
in terms of t U  of the canonical transformation of the 
Hubbard model should be treated with the higher-order 
terms in order to give a realistic SC condensation ener- 
gy. 

Here we show the SC condensation energy as a 
function of U  in Figure 6. The condensation energy 

condE E N   is increased as U t  is increased as far 
as 12U t  . In the strong coupling region 8U t , we 
obtain the large condensation energy. 

3.3. Fermi Surface and Condensation Energy 

Now let us consider the relationship between the Fermi 
surface structure and the strength of superconductivity. 
The experimental SC condensation energy for 
(La,Sr)2CuO4 (LSCO) is estimated at 0.029 meV/(Cu site) 
or 0.00008 in units of t which is much smaller than that 
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Figure 6. Energy gain per site in the SC state with reference 
to the normal state for the 2D Hubbard model as a function 
of the Coulomb repulsion U. The system is 10 × 10 with the 
electron number eN  84  and t  0.3 . 

 
for YBCO. [103] The band parameter values of LSCO 
were estimated as 0.12t    and 0.08t  [104]. This 
set corresponds roughly to 0.0010condE  . The latter 
value is much larger than the above-mentioned experi- 
mental value for LSCO. However, the stripe-type SDW 
state coexists with superconductivity [105,106] and the 
SC part of the whole condE  is much reduced. Therefore, 
such a coexistence allows us to qualitatively understand 
the SC condE  in LSCO. 

On the other hand, Tl2201  93 KcT   and Hg1201 
 98 KcT   band calculations by Singh and Pickett [107] 
give very much deformed Fermi surfaces that can be 
fitted by large t  such as 0.4t  . For Tl2201, an 
Angular Magnetoresistance Oscillations (AMRO) work 
[108] gives information of the Fermi surface, which 
allows to get 0.2t   and 0.165t . There is also 
an Angle-Resolved Photoemission Study (ARPES) [109], 
which provides similar values. In the case of Hg1201, 
there is an ARPES work [110], form which we obtain by 
fitting 0.2t   and 0.175t . For such a deformed 
Fermi surface, condE  in the bulk limit is reduced con- 
siderably. [111,112] Therefore, the SC condE  calculated 
by VMC indicates that the Fermi surface of LSCO-type 
is more favorable for high cT . The lower cT  in LSCO 
may be attributed to the coexistence with antiferro- 
magnetism of stripe type. 

3.4. Ladder Hubbard Model 

The SC condensation energy in the bulk limit for the 
ladder Hubbard model has also been evaluated using the 
variational Monte Carlo method [54]. The Hamiltonian is 
given by the 1D two-chain Hubbard model: [51,52,55, 
56,85,113-116] 

   
2

† †
1 2 , 1,

1

2
† †

0
1

h.c. h.c.

,

ladder d j j
j

j j j j
j

H t c c t c c

U c c c c

   
 




   


    



 



   
 

   


(29) 

where †
jc    jc   is the creation (annihilation) 

operator of an electron with spin   at the  th site 
along the j th chain  1,2j  . t  is the intrachain 
nearest-neighbor transfer and dt  is the interchain 
nearest-neighbor transfer energy. The energy is measured 
in t  units. The energy minimum was given when the 
components of the gap function k  take finite values 
plotted in Figure 7 for the lattice of 20 2  sites with 34 
electrons imposing the periodic boundary condition [54]. 
Each component of k  was optimized for 0 8U   and 

1.8dt  . There are two characteristic features; one is that 
the components of the bonding and antibonding bands 
have opposite signs each other and second is that the 
absolute values of k  of the antibonding band 
 yk    is much larger than that of the bonding band  

 0yk  . In order to reduce the computation cpu time,  

k  of each band was forced to take a fixed value 
specific to each band, i.e. 1  for the bonding band and 

2  for the antibonding band. This drastically reduces 
the number of the variational parameters but still allows 
us to get a substantial value of the condensation energy. 

1  and 2  take opposite sign, which is similar to that 
of the 2 2x y

d


 gap function. 
The energy gain 2cF  remains finite in the bulk limit 

when 1.2 1.6dt  . The SC condensation energy per 
site in the bulk limit is plotted as a function of dt  in 
Figure 8 [54]. The SC region derived from the SC 
condensation energy in the bulk limit is consistent with 
the results obtained from the density-matrix renormali- 
zation group [55,56] and the exact-diagonalization 
method [51,52,115]. The maximum value of 2cE  is 
0.0008 which is of the same order of magnitude as the 
maximum condensation energy obtained for the 2D 
Hubbard model [46]. 
 

 

Figure 7. The values of components of k  for the two- 

chain Hubbard model. All the values of xk  of the bonding 

band  yk  0  and antibonding band  yk    corre- 

spond to the energy minimum for 20 × 2 lattice with 34 
electrons. The parameters in the Hamiltonian are dt  1.8  

and U 0 8  and the variational parameters are 

 0.0182  and g  0.415  [54]. 
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Figure 8. dt  dependence of the SC condensation energy 

E N 2  for the two-chain Hubbard model in the bulk 

limit [54]. 

3.5. Condensation Energy in the d-p Model 

The SC energy gain for the d-p model, namely, three- 
band Hubbard model in Equation (4) has also been evalu- 
ated using the variational Monte Carlo method. For the 
three-band model the wave functions are written as 

†

,

0 ,
F

n G k
k k

P 


 


              (30) 

 † † 0 ,
eSC G N k k k k

k

P P u v           (31) 

where k  is the linear combination of kd  , xkp   and 

ykp   constructed to express the operator for the lowest 
band (in the hole picture) or the highest band (in the 
electron picture) of the non-interacting Hamiltonian. The 
numerical calculations have been done in the hole picture. 
The Gutzwiller parameter g , effective level difference 

p d   , chemical potential   and superconducting or- 
der parameter   are the variational parameters. 

The similar results to the single-band Hubbard model 
were obtained as shown in Figure 9 for 0.0ppt  , 

8dU   and 2d p    in dpt  units where the cal- 
culations were performed in the hole picture [24]. The 
SC condensation energy for the three-band model is 

0.0005 0.75cond dpE t   meV per site in the optimally 
doped region. We set 1.5 eVdpt   as estimated in Table 
1. There is a tendency that condE  increases as d p   
increases which is plotted in Figure 10. This tendency is 
not, however, in accordance with NQR (nuclear quad- 
rupole resonance) study on cuprates. [117] We think that 
the NQR experiments indicate an importance of the 
Coulomb interaction on oxygen sites. This will be dis- 
cussed in Section 3.11. 

3.6. Antiferromagnetic State 

When the density of doped holes is zero or small, the 2D 
single-band or three-band Hubbard model takes an anti- 
ferromganetic state as its ground state. The magnetic 

 

Figure 9. Ground-state energy per site as a function of   
with the d-wave gap function for the three-band Hubbard 
model. The size of lattice is 6 × 6. Parameters are U  8 , 

ppt  0  and p d  2   in units of dpt . The doping rate is 

 0.111  for (a) and  0.333  for (b). Squares denote 
the energies for the normal-state wave function [24]. 
 

 

Figure 10. Energy gain per site in the SC state as a function 
of the level difference dp p d     for the three-band 

Hubbard model with dU  8  and ppt  0.2  [24]. The size 

of lattice is 6 × 6 sites. 
 
order is destroyed and superconductivity appears with the 
increase of doped hole density. The transition between 
the d-wave SC and the uniform SDW states has been 
investigated by computing the energy of the SDW state 
by using the variational Monte Carlo method. The trial 
SDW wave function is written as 

,AF G SDWP                 (32) 
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   † † † † 0 ,SDW Q Qu c v c u c v c        


    k k k kk k k k
k k

 

(33) 

  
1 2

1 22 21 2 ,AFu w w      k k k        (34) 

   1 2
1 22 21 2 ,AFv w w      k k k        (35) 

  2.k Qw  k k                (36) 

Summation over k  and k  in Equation (33) is 
performed over the filled k-points, as in the calculation of 
the normal state energy. Q  is the SDW wave vector 
given by  ,   and AF  is the SDW potential am- 
plitude. 

As shown in Figure 11, the energy gain per site in the 
SDW state rises very sharply from 0.84en   for 0t   
[46]. At 0.84en   it is slightly larger than that in the 
SC state, and at 0.80en   there is no more stable SDW 
state. Thus the boundary between the SDW and the SC 
states is given at 0.84en  . The results of the bulk limit 
calculations indicate that the energy gain in the SC state 
at 0.84en   takes the extremely small value and the 
value at 0.80en   vanishes as 0N  . Hence the pure 
d-wave SC state possibly exists near the boundary at 

0.84en  , but the region of pure SC state is very 
restricted. 

Let us turn to the three-band model. We show the 
antiferromagnetic-paramagnetic boundary for 0.0ppt   
and 2p d    in the plane of U  and the hole density 
in Figure 12 where AF denotes the antiferromagnetic 
region [47]. The value 2p d    is taken from the 
estimations by cluster calculations [89-91]. The phase 
boundary in the region of small U  is drawn from an 
extrapolation. For the intermediate values of 8 -12U  , 
 

 

Figure 11. Energy gain per site in the SDW state (diamonds) 
against electron density for t  0  and the energy gain in 
the SC state for t  0  (open circles) and t  0.1  (solid 
circles). The model is the 2D Hubbard model on 10 × 10 
lattice [46]. 

 

Figure 12. Antiferromagnetic region in the plane of U and 
the hole density for ppt  0.0  and p d  2  . 

 
the antiferromagnetic long-range ordering exists up to 
about 20 percent doping. Thus the similar features are 
observed compared to the single-band Hubbard model. 

Since the three-band Hubbard model contains several 
parameters, we must examine the parameter dependence 
of the energy of SDW state. The energy gain SDWE  in 
the SDW state is shown in Figure 13 as a function of 
doping ratio for several values of dp p d    . SDWE  
increases as dp  increases as expected. In Figure 14 

ppt - and dU -dependencies of SDWE  are presented. 
The SDW phase extends up to 30 percent doping when 

dU  is large. It follows from the calculations that the 
SDW region will be reduced if p d   and dU  de- 
crease. 

From the calculations for the SDW wave functions, we 
should set p d   and dU  small so that the SDW 
phase does not occupy a huge region near half-filling. In 
Figures 15 and 16, we show energy gains for both the 
SDW and SC states for 8dU  , 0ppt  , 0.2  and 

2p d   , where the right hand side and left hand side 
indicate the hole-doped and electron-doped case, res- 
pectively. Solid symbols indicate the results for 8 8  
and open symbols for 6 6 . For this set of parameters 
the SDW region extends up to 20 percent doping and the 
pure d-wave phase exists outside of the SDW phase. The 
d-wave phase may be possibly identified with supercon- 
ducting phase in the overdoped region in the high- cT  
superconductors. 

3.7. Stripes and Its Coexistence with  
Superconductivity 

Incommensurate magnetic and charge peaks have been 
observed from the elastic neutron-scattering experiments 
in the underdoped region of the Nd-doped 
La2–x–yNdySrxCuO4 [118] (Figure 17). Recent neutron 
experiments have also revealed the incommensurate spin 
structures [119-123]. Rapid decrease of the Hall re- 
sistivity in this region suggests that the electric con- 
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Figure 13. Energy gain per site  normalE E N  in the 

SDW state as a function of hole density   for the three- 
band Hubbard model. Parameters are ppt  0.4  and 

dU  8  in dpt  units. From the top, dp p d    3  , 2, 1.5 

and 1. The results are for 6 × 6, 8 × 8, 10 × 10 and 16 × 12 
systems. Antiperiodic and periodic boundary conditions are 
imposed in x- and y-direction, respectively. Monte Carlo 
statistical errors are smaller than the size of symbols. 
Curves are a guide to the eye [24]. 
 

 

Figure 14. Uniform SDW energy gain per site with 
reference to the normal-state energy as a function of the 
hole density for the three-band Hubbard model. Data are 
from 8 × 8, 10 × 10, 12 × 12 and 16 × 12 systems for 

p d  2  . For solid symbols dU  4  (circles), dU  8  

(squares), dU  12  (triangles) and dU  20  (diamonds) 

for ppt  0.2 . For open symbols dU  8  and ppt  0 , and 

for open squares with slash dU  8  and ppt  0.4 . The 

lines are a guide to the eye. The Monte Carlo statistical 
errors are smaller than the size of symbols [47]. 
 
duction is approximately one dimensional [124]. The 
angle-resolved photo-emission spectroscopy measure- 
ments also suggested a formation of two sets of one- 
dimensional Fermi surface [125]. Then it has been 
proposed that these results might be understood in the 
framework of the stripe state where holes are doped in 
the domain wall between the undoped spin-density-wave 

 

Figure 15. Condensation energy per site as a function of 
hole density for the three-band Hubbard model where 

ppt  0.0 , p d  2   and dU  8 . Circles and squares 

denote the energy gain per site with reference to the 
normal-state energy for d-wave, ext-s wave and SDW states, 
respectively. For extremely small doping rate, the extended 
s-wave state is more favorable than the d-wave state. Solid 
symbols are for 8 × 8 and open symbols are for 6 × 6. 
Curves are a guide to the eye. 
 

 

Figure 16. Condensation energy per site as a function of 
hole density for the three-band Hubbard model where 

ppt  0.2 , p d  2   and dU  8 . Circles and squares 

denote the energy gain per site with reference to the 
normal-state energy for d-wave and SDW states, res- 
pectively. Solid symbols are for 8 × 8 and open symbols are 
for 6 × 6. Curves are a guide to the eye. 
 
domains. This state is a kind of incommensurate SDW 
state. It was also shown that the incommensurability is 
proportional to the hole density in the low-doping region 
in which the hole number per stripe is half of the site 
number along one stripe [118,120]. A static magnetically 
ordered phase has been observed by   SR over a wide 
range of SC phase for 0.05 0.1x   in La2–xSrxCuO4 
(LSCO) [126]. Thus the possibility of superconductivity 
that occurs in the stripe state is a subject of great interest 
[127-130]. The incommensurate magnetic scattering 



T. YANAGISAWA  ET  AL. 

Copyright © 2013 SciRes.                                                                                 JMP 

43

spots around  ,   were observed in the SC phase in 
the range of 0.05 0.13x   in the elastic and inelastic 
neutron-scattering experiments with LSCO [127,128,130]. 
The hole dependence of the incommensurability and the 
configuration of the spots around the Bragg spot in the 
SC phase indicated the vertical stripe. The neutron- 
scattering experiments have also revealed that a diagonal 
spin modulation occurs across the insulating spin-glass 
phase in La2–xSrxCuO4 for 0.02 0.05x  , where a 
one-dimensional modulation is rotated by 45 degrees 
from the stripe in the SC phase. The incommensurability 
  versus hole density is shown in Figure 18 sche- 
matically [129,130]. The diagonal stripe changes into the 
vertical stripe across the boundary between the insulating 
and SC phase. 

Let us investigate the doped system from the point of 
modulated spin structures [131-141]. The stripe SDW 
state has been studied theoretically by using the mean- 
filed theory [132-136]. They found that the stripe state 
appears when an incommensurate nesting becomes  
 

 

Figure 17. Charge and spin density as a function of the 
distance for a striped state [50]. 
 

 

Figure 18. Schematic illustration of the incommensurability 
versus hole density. 

favorable in the hole-doped 2D Hubbard model. When 
the electron correlation correlation is strong or inter- 
mediate, it was shown that the stripe state is more stable 
than the commensurate spin-density-wave state with the 
wave vector  ,   in the ground state of the 2D 
Hubbard model by using the variational Monte Carlo 
method [131]. It has also been confirmed by the same 
means that the stripe states are stabilized in the d-p 
model [48]. The purpose of this section is to examine 
whether the superconductivity can coexist with static 
stripes in the 2D Hubbard model in a wider doping 
region and investigate the doping dependence of the 
coexisting state. 

We consider the 2D Hubbard model on a square lattice. 
We calculate the variational energy in the coexistent state 
that is defined by 

,
e

MF
coexist N G coexistP P                (37) 

where MF
coexist  is a mean-field wave function. The 

effective mean-field Hamiltonian for the coexisting state 
is [105] represented by 

 †
† ,

ijij j

MF i i
ij ji ji j

H F c
H c c

F H c

 
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 

  
       
      (38) 

where the diagonal terms describe the incommensurate 
spin-density wave state: 

  sign 1 ,
2

i ix y

ij ij i i ij

U
H t n m              (39) 

where   is the chemical potential. The vertical stripe 
state is represented by the charge density in  and the 
spin density im  that are spatially modulated as 

1 cosh ,i
i

c

y Y
n 


 

   
 

 


         (40) 

tanh ,i
i

c

y Y
m m


 

  
 

 


          (41) 

where Y  denotes the position of vertical stripes. The 
amplitude   is fixed by i ei

n N . The off-diagonal 
terms in Equation (38) are defined in terms of the d-wave 
SC gap as 

ˆ
ˆ

,ij ij ji e
e

F                  (42) 

where ˆ ˆe x  , ŷ  (unit vectors). We consider two 
types of the spatially inhomogeneous superconductivity: 
anti-phase and in-phase defined as 

  ˆ. cos ,i i x y iq y Y             (43) 

  ˆ, ˆcos 2 ,i i y y iq y Y y           (44) 

and 
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  ˆ. cos ,i i x y iq y Y              (45) 

  ˆ, ˆcos 2 ,i i y y iq y Y y           (46) 

respectively. Here,  0,2  q  and   is a in- 
commensurability given by the stripe’s periodicity in the 
y direction with regard to the spin. The anti-phase (in- 
phase) means that the sign if the superconducting gap is 
(is not) changed between nearest domain walls. 

The wave function 0
coexist  is made from the solution 

of the Bogoliubov-de Gennes equation represented by 

  ,j ij j iij
j

H u F v E u   
            (47) 

  .ji j j iji
j

F u H v E v   
          (48) 

The Bogoliubov quasiparticle operators are written in 
the form 

   †  0 ,i ii i
i

u c v c E  
             (49) 

   † 0 .i ii i
i

u c v c E  
             (50) 

Then the coexistence wave function is written as 
[105,142] 

 

 

0 ?

1 ?

2

1 ?

0

exp 0

0 ,

e

e

e

coexist N

N i jij
ij

N

i jij
ij

P

CP U V c c

C U V c c

 


  


 


 



 
  

 

 
  
 







     (51) 

for constants C  and C . The calculations are 
performed for the wave function 0

coexist G coexistP  . The 
variational parameters are  , m , g , c  and s . The 
system parameters were chosen as 0.20t    and 

8U   suitable for cuprate superconductors. It has been 
shown that the “anti-phase” configuration is more stable 
than the “in-phase” one [105]. 

Here, the system parameters are 0.2t    and 8U  . 
We use the periodic boundary condition in the x-di- 
rection and anti-periodic one in the y-direction. In Figure 
19, we show the total energy of the coexistent state, 

coexistE , as a function of the SC gap   for the cases of 
anti-phase and in-phase. The SC condensation energy 

coexistE  is estimated as 0.0008 t per site at the hole 
density 0.125 on the 12 8  lattice with periodic 
boundary condition in x-direction and antiperiodic one in 
y-direction. coexistE  in the coexistence state is defined 
as the decrease of energy due to finite  . If we use 

0.5 eVt  , this is evaluated as 0.4 meV . The SC 
condensation energy per site is shown as a function of 

hole density in Figure 20. One finds that coexistE  in the 
stripe state decreases as the hole density decreases. This 
tendency is reasonable since the SC order is weakened in 
the domain of the incommensurate SDW because of the 
vanishingly small carrier concentration contributing the 
superconductivity in this domain. This behavior is con- 
sistent with the SC condensation energy estimated from 
the specific heat measurements [143]. 

There is a large renormalization of the Fermi surface 
due to the correlation effect in the striped state [144]. We 
considered the next-nearest transfer t  in the trial 
function as a variational parameter t . In Figure 21, 
 

 

Figure 19. Coexistent state energy per site coexist sE N  

versus   for the case of 84 electrons on 12 × 8 sites with 
U  8  and t  0.2 . Here the vertical stripe state has 
8-lattice periodicity for the hole density p  0.125 . Only 

coexist sE N  for the optimized gap is plotted for the in-phase 

superconductivity. 
 

 

Figure 20. Superconducting condensation energy per site in 
the coexistence state as a function of the hole density 
p  0.0833 , 0.10 and 0.125. The model is the single-band 

Hubbard Hamiltonian with t  0.20 . The stripe interval 
is preserved constant. The inset shows the hole dependence 
of the incommensurability in the coexistent state [105]. 
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Figure 21. Optimized effective second neighbor transfer 
energy t t  as a function of U t . The system is a 16 × 16 

lattice with t t  0.2  and the electron density 0.875. 

 
optimized values of t t  for the striped state are shown 
as a function of U t . The t t  increases as U t  
increases. We also mention that the optimized t t  
almost vanishes. The renormalized Fermi surface of 

0.30t t   , 0.40  and 0.50  are plotted in Figure 
22. The system is a 16 16  lattice with 0.2t t    and 
the electron density 0.875. As U t  is incresed, the 
Fermi surface is more deformed. We show the the 
gradient of the momentum distribution function, kn , 
calculated in the optimized stripe state in Figure 23. The 
brighter areas coincide with the renormalized Fermi 
surface with 0.31t t    and 0.0t t    for 8U t  . 

The calculations for the three-band Hubbard model has 
also been done taking into account the coexistence of 
stripes and SC [15,106]. The energy of antiferromagnetic 
state would be lowered further if we consider the incom- 
mensurate spin correlation in the wave function. The 
phase diagram in Figure 24 presents the region of stable 
AF phase in the plane of ppt  and dp p d    . For 
large dp p d    , we have the region of the AF state 
with an eight-lattice periodicity in accordance with the 
results of neutron-scattering measurements [118,123]. 
The energy at 1 16x   is shown in Figure 25 where the 
4-lattice stripe state has higher energy than that for 
8-lattice stripe for all the values of ppt . 

The Bogoliubov-de Gennes equation is extended to the 
case of three orbitals d , xp  and yp .  ijH   and 
 ijF  are now 3 3N N  matrices. The energy of the 
state with double order parameters   and m  is shown 
in Figure 26 on the 16 4  lattice at the doping rate 1/8. 
The SC condensation energy per site is evaluated as 

0.00016 dpt  for 8dU  , 0.4ppt   and 2p d   . 
If we use 1.5 eVdpt   [89-91], we obtain coexistE   
0.24 meV  which is slightly smaller than and close to the 
value obtained for the single-band Hubbard model. We 
show the size dependence of the SC condensation 

 

Figure 22. Renormalized quasi-Fermi surface for 
t t  0.3 , 0.4  and 0.5 . The system is the same as 

that in Figure 21. 
 

 

Figure 23. Contour plot of kn  measured for the pro- 

jected stripe state on 24 × 24 lattice with t t  0.2 . The 

electron density is 0.875. 
 

 

Figure 24. Phase diagram of stable antiferromagnetic state 
in the plane of dp p d     and ppt  obtained for 16 × 4 

lattice. 
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Figure 25. Energy as a function of ppt  for 16 × 16 square 

lattice at x  1 16 . Circles, triangles and squares denote 

the energy for 4-lattice stripes, 8-lattice stripes, and 
commensurate SDW, respectively, where n-lattice stripe is 
the incommensurate state with one stripe per n ladders. The 
boundary conditions are antiperiodic in x-direction and 
periodic in y-direction [47,106]. 
 

 

Figure 26. Energy of the coexistent state as a function of the 
SC order parameter for x  0.125  on 16 × 4 lattice. We 
assume the incommensurate antiferromagnetic order 
(stripe). Parameters are p  0 , d  2 , ppt  0.4  and 

dU  8  in dpt  units. For solid circles the SC gap function 

is taken as   ˆ ˆ
i i x x iQ x x   , cos 2  and  

  ˆi i y x iQ x  , cos , while for the open circles  

  ˆ ˆ
i i x x iQ x x   , cos 2  and   ˆi i y x iQ x  , cos .  

xQ    2 4 . 

 
energy for 0.2x  , 0.125 0.08333 and 0.0625 in Figure 
27. We set the parameters as 2p d    and 0.4ppt   
in dpt  units, which is reasonable from the viewpoint of 
the density of states and is remarkably in accordance 
with cluster estimations [89-91], and also in the region of 
eight-lattice periodicity at 1 8x  . We have carried out 
the Monte Carlo calculations up to 16 16  sites (768 
atoms in total). In the overdoped region in the range of 
0.18 0.28x  , we have the uniform d-wave pairing 
state as the ground state. The periodicity of spatial 

variation increases as the doping rate x  decreases pro- 
portional to 1 x . In the figure we have the 12-lattice 
periodicity at 0.08333x   and 16-lattice periodicity at 

0.0625x  . For 0.2x  , 0.125 and 0.08333, the results 
strongly suggest a finite condensation energy in the bulk 
limit. The SC condensation energy obtained on the basis 
of specific heat measurements agrees well with the 
variational Monte Carlo computations [99]. In general, 
the Monte Carlo statistical errors are much larger than 
those for the single-band Hubbard model. The large 
number of Monte Carlo steps (more than 75.0 10 ) is 
required to get convergent expectation values for each set 
of parameters. 

In Figure 28 the order parameters AF  and SC   
 

 

Figure 27. Energy gain due to the SC order parameter as a 
function of the system size atom sN N 3 . Parameters are 

p  0 , d  2 , ppt  0.4  and dU  8 . The open circle is 

for the simple d-wave pairing at the hole density x  0.2 . 
The solid symbols indicate the energy gain of the coexistent 
state; the solid circle is at x  0.125 , the solid square is at 
x  0.08333  and the solid triangle is at x  0.0625 . The 

diamond shows the SC condensation energy obtained on the 
basis of specific heat measurements [99]. 
 

 

Figure 28. Phase diagram of the d-p model based on the 
Gutzwiller wave function [106]. 
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were evaluated using the formula     21 2 0condE N   
where  0N  is the density of states. Here we have set 

 0 5 dpN t  since  0N  is estimated as  0 2N    

to 3   1
eV


 for optimally doped YBCO using 

  2
0 2B cN k T  [100]. The phase diagram is consistent 

with the recently reported phase diagram for layered 
cuprates [145]. 

3.8. Diagonal Stripe States in the Light-Doping  
Region 

Here we examine whether the relationship x   holds 
in the lower doping region or not, and whether the 
diagonal stripe state is obtained in the further lower 
doping region [50]. The elastic neutron scattering 
experiments of LSCO in the light-doping region, 
0.03 0.07x  , revealed that the position of incom- 
mensurate magnetic peaks changed from  1 2,1 2   
to  1 2 ,1 2     as x  becomes less than 0.06 
[129,130]. This means that the stripe direction rotates by 
45 degrees to become diagonal at this transition. In the 
diagonal stripe states, the magnetic peaks are observed to 
keep a relation x   that holds in the vertical stripe 
state in the low doping region. 

In Figure 29, we show the incommensurability of the 
most stable stripe state as a function of x . Open squares 
and triangles are values for diagonal and vertical 
incommensurate SDW’s obtained in the elastic neutron 
scattering experiments on LSCO, respectively. Solid 
squares and triangles show our results for the diagonal 
and vertical stripes, respectively. These results are in a 
good agreement with experimental data. We also found 
that the phase boundary criticalx  between the diagonal 
and vertical stripe states lies at or above 0.0625 in the 
 

 

Figure 29. Incommensurability   as a function of the hole 
density x for U  8  and t  0.2  [50]. The numerical 
results for the vertical and the bond-centered diagonal 
stripe state are represented by solid triangles and square 
symbols, respectively. Open triangles and squares show the 
results of the vertical and diagonal incommensurate SDW 
order observed from neutron scattering measurements, 
respectively [131]. 

case of 8U   and 0.2t   . The following factors 
may give rise to slight changes of the phase boundary 

criticalx : the diagonal stripe state may be stabilized in the 
low-temperature-orthorhombic (LTO) phase in LSCO. 
The diagonal stripe state is probably stabilized further by 
forming a line along larger next-nearest hopping di- 
rection due to the anisotropic t  generated by the Cu-O 
buckling in the LTO phase. 

3.9. Checkerboard States 

A checkerboard-like density modulation with a roughly 
4 4a a  period ( a  is a lattice constant) has also been 
observed by scanning tunneling microscopy (STM) 
experiments in Bi2Sr2CaCu2O8+, [146] Bi2Sr2–xLaxCuO6+, 
[147] and Ca2–xNaxCuO2Cl2 (Na-CCOC) [148]. It is 
important to clarify whether these inhomogeneous states 
can be understood within the framework of strongly 
correlated electrons. 

Possible several electronic checkerboard states have 
been proposed theoretically [134,149,150]. The charge 
density i  and spin density im  are spatially mo- 
dulated as 

  0cos ,c
i iQ    r r 


          (52) 

  0cos .s
i im m Q   r r 


         (53) 

where   and m  are variational parameters. The 
striped incommensurate spin-density wave state (ISDW) 
is defined by a single Q vector. On the other hand, the 
checkerboard ISDW state is described by the double-Q 
set; for example, vertical wave vectors  

 1 , 2sQ       and  2 2 ,sQ       describe a 
spin vertical checkerboard state, where two diagonal 
domain walls are orthogonal. Diagonal wave vectors 

 1 2 , 2sQ          and  2 2 , 2sQ         
lead to a spin diagonal checkerboard state with a 
1  -period. The hole density forms the charge vertical 
checkerboard pattern with vertical wave vectors 

 1 0, 4cQ     and  2 2 4 ,2cQ       in which the 
hole density is maximal on the crossing point of 
magnetic domain walls in the spin diagonal checkerboard 
state. If 1 8   is assumed, the charge modulation 
pattern is consistent with the 4 4a a  charge structure 
observed in STM experiments. 

We found that the coexistent state of bond-centered 
four-period diagonal and vertical spin-checkerboard 
structure characterized by a multi-Q set is stabilized and 
composed of  4 4  per iod  checkerboard sp in 
modulation. [151] In Figure 30(a), we show the 
condensation energies of some heterogeneous states, 
 normal hetero siteE E N , with fixing the transfer energies 

0.32t    and 0.22t   suitable for Bi-2212. The 
system is a 16 16  lattice with the electron-filling 



T. YANAGISAWA  ET  AL. 

Copyright © 2013 SciRes.                                                                                 JMP 

48 

 

Figure 30. (a) Condensation energies of inhomogeneous 
states with the bond-centered magnetic domain wall. The 
system is a 16 × 16 lattice with t  0.32 , t  0.22 , and 
U  8  for the case of  0.875 . The static error bars are 
smaller than the size of symbols; (b) Expectation value of 
the spin density im  measured in the four-period spin-DC- 

VC solution. The length of arrows is proportional to the 
spin density. 
 

0.875e siteN N   . The energy of the normal state 

normalE  is calculated by adopting 0m    . In our 
calculations, the condensation energies of both bond- 
centered stripe and checkerboard states are always larger 
than those of site-centered stripe and checkerboard states. 
The vertical stripe state is not suitable in this parameter 
set since this state is only stabilized with the LSCO-type 
band. The four-period spin-diagonal checkerboard (DC) 
state is significantly more stable than the eight-period 
spin-DC state. We found that the coexistent state of the 
bond-centered four-period spin-DC and four-period 

spin-vertical checkerboard (VC) with 0   is most 
stable, as shown in Figure 30(a). The measured ex- 
pectation value of the spin density is shown in Figure 
30(b). 

3.10. Improved Gutzwiller Function 

We have presented the results based on the Gutzwiller 
functions for the normal state, SDW state and BCS state. 
We must consider a method to go beyond the Gutzwiller 
function-based Monte Carlo method. One method to 
achieve this purpose is to multiply the Jastrow correla- 
tion operators to take into account the intersite correla- 
tions. The simplest possible candidate is an introduction 
of the diagonal intersite correlation factor [152]: 

  
 0

1 1 ,Jastrow j j n
j

g n n 


 


      


     (54) 

for the variational parameter  g  . We have inves- 
tigated the 2D Hubbard model by using the Jastrow- 
Gutzwiller function [111]. The ground-state energy is 
lowered considerably by considering the intersite corre- 
lations such as nearest neighbor and next nearest neigh- 
bor spin and charge correlations. 

Here we consider the method to improve the wave 
functions by an off-diagonal Jastrow correlation oper- 
ators [94,95,153]. The off-diagonal correlation factors 
are more effective to lower the ground state energy in 2D 
systems. Let us consider the wave functions  m  de- 
fined in the following way: [95] 

 1
0e ,V

G
                  (55) 

 2
0e e ,K V                  (56) 

   3 2e e ,K V                  (57) 

                         (58) 

and so on, where K  denotes the kinetic part of the 
Hamiltonian 

 † h.c. ,i j
ij

K t c c 


              (59) 

and V  denotes the on-site Coulomb interaction.  , 
 ,  ,  ,   and   are variational parameters. It 
is considered that  m  approaches the true ground state 
wave function as m  grows larger since the ground state 
wave function is written as 

1 1
0 0e e e e e ,m mK VK VH               (60) 

for large 1 m      and small i   1, ,i m  . If 
we can extrapolate the expectation values from the data 
for    1 2, ,   , we can evaluate correct expectation 
values. 

The computations are performed by using the discrete 
Hubbard-Stratonovich transformation as described in 
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Section 3.1. In the evaluation of the expectation values 
we generate the Monte Carlo samples by the importance 
sampling [95] with the weight function w w w   
where 

      †
0 0det exp , exp , .w V u V s   

       (61) 

Since the Monte Carlo samplings are generated with 
the weight w , the expectation values are calculated 
with the sign of w  in the summation over the generated 
samples. In our calculations the negative sign problem 
has become less serious due to the variational treatment, 
although we encounter the inevitable negative sign 
problem in the standard projector Monte Carlo ap- 
proaches [154]. 

In Figure 31 the energy is shown as a function of m  
where the SDW and normal states are chosen as the 
initial state 0 . The extrapolated values for different 
initial states coincide with each other within Monte Carlo 
statistical errors. The energy expectation values as a 
function of U  for 8 8  square lattice are presented in 
Figure 32 for  1

n  , AF ,  3 . The extrapolated 
curve is shown by the solid curve and the results 
obtained by the quantum Monte Carlo simulation (QMC) 
[28] are also shown as a reference. A good agreement 
between two calculations support the method although 
the QMC gives slightly higher energy for 8U  . 

One can formulate an approach to consider the BCS 
function with correlation operators. [96] For this end the 
electron-hole transformation is introduced for the down 
spin and the up-spin electrons are unaltered [155]. We 
show the energy versus 1 m  in Figure 33 for  m  
and  m

s . From an extrapolation to the limit m , 
both formulations predict the same limiting value for the 
energy. The energy is lowered considerably due to the 
 

 

Figure 31. Energy as a function of m1  for the single-band 

Hubbard model for eN  14  and U  4  on the lattice of 

4 × 4 sites. For the upper and lower curves, the initial wave 
function 0  is the Fermi sea and SDW state, respectively. 

The diamond indicates the exact value obtained from the 
diagonalization [95]. 

 

Figure 32. Energy as a function of U  for 8 × 8 lattice at 
half-filling for the single-band Hubbard model. From the 

top the energies for n , AF ,  3  and extrapolated 

values are shown. The quantum Monte Carlo results are 
shown by open circles [95]. 
 

 

Figure 33. The energy versus m1  for the single-band 

Hubbard model on the lattice of 10 × 10 sites. Solid and 
open symbols are obtained for m  with the normal and 

d-wave state initial functions 0  and BCS , respectively. 

Parameters are given by U  8 , t  0.09  and eN  80  

[96]. 
 
correlation operators compared to that for the Gutzwiller 
function. The energy in the d-wave SC state is always 
lower than that in the normal state for each m . The 
energy gain in the SC state remains the same order after 
the multiplication of correlation factors. 

3.11. cT  and p d   

Relationships between cT  and structural features in 
cuprate high-temperature superconductors are very 
interesting. Torrance and Metzger found the first such 
relationship between cT  and the Madelung potential 
difference MV [156]. Here MV  is the potential 
difference between Cu and O sites in the CuO 2  plane. 

cT  was found to increase with decreasing MV . There 
is an interesting tendency of increasing cT  with 
increasing relative ratio of hole density at oxygen site 
against that at copper site [117]. 

Here we show the results obtained by using the 
perturbation theory [62-66], There have been many 
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similar works by making some kind of approximation 
such as random phase approximation (RPA) [157-159], 
fluctuation-exchange approximation (FLEX) [160-163], 
effective spin-fluctuation method [4,164,165], and pertur- 
bation theory in terms of U [166-168]. An application 
was made for Sr2RuO4 where we need to consider th 
emulti-band structure α and β orbitals [169], and also to 
the three-dimensional d-p model [170]. In our formu- 
lation the gap function is written as 

2

2
exp .

dxU

 
   

 
              (62) 

The exponent x  indicates the strength of supercon- 
ductivity. The results are in Figures 34 and 35 [171]. As 
shown in the figure, for positive p d  , with increase of 

p d   the exponent x  increases monotonously. This 
means the increase of superconducting gap and so of cT , 
and is consistent with the wide-range tendency of the 
variational Monte Carlo calculation [24,172]. This ten- 
dency can be understood in terms of 
 

 

Figure 34. The exponent x (superconductivity strength) as a 
function of p d  , where the level difference p d   is 

positive. 
 

 

Figure 35. The exponent x as a function of p d  , where 

the level difference p d   is negative. 

 

2

20

22

1
1 ,

4 1 16

d
eff d

dp p d

U
U U u

t

 
    
   

k

 
  (63) 

where 0uk  is the weight ofd electrons. This clearly 
indicates that increase of p d   leads to the increase of 

effU  and subsequently of x . In the case of 0p d   , 
we take account of finite Coulomb repulsion pU  on 
oxygen sites. The effective interaction coming from pU  
is similarly given by the susceptibility with the weight of 
p  electrons. The results of x  with 6 8p dU U   

indicates that all four types of even parity ( 1gb , 2gb , 

1ga  and 2ga ) SC strength values increase, so that cT  is 
raised, as the absolute value p d   increases in this 
region. This result shows that pU  also plays an im- 
portant role as well. 

Let us give a discussion on this result. Increase of 

p d   in the region of 0p d    means decrease of 

 O Cu
M M MV e V V    since  

   O Cu O Cu
2 3p d M MA I e V V      , where O

2A  is the  

second electron affinity of oxygen atom and CuI3  is the 
third electron ionicity of copper atom and e  is the 
charge of electron. Therefore, this relation is consistent 
with the systematics reported in [156]. With increase of 
the distance of the apex oxygen away from the CuO2 
plane, cuprate superconductors are known to increase 

cT [173]. The accompanying raise of d  should tend to 
increase cT . 

The Coulomb interaction between p electrons on 
oxygen atom will raise the level of p electrons effectively. 
This leads to the lowering of p hole level p  or the raise 
of d  relatively. This indicates that cT  will be in- 
creased by the Coulomb interaction between p elec- 
trons. 

4. Quantum Monte Carlo Studies 

4.1. Quantum Monte Carlo Method 

The Quantum Monte Carlo (QMC) method is a numeri- 
cal method that is employed to simulate the behavior of 
correlated electron systems. We outline the QMC method 
in this section. The Hamiltonian is the Hubbard model 
that contains the on-site Coulomb repulsion and is writ- 
ten as 

 † h.c. ,ij i j j j
ij j

H t c c U n n 


           (64) 

where †
jc    jc   is the creation (annihilation) operator 

of an electron with spin   at the j -th site and 
†

j j jn c c   . ijt  is the transfer energy between the sites 
i  and j . ijt t  for the nearest-neighbor bonds. For all 
other cases 0ijt  . U  is the on-site Coulomb energy. 



T. YANAGISAWA  ET  AL. 

Copyright © 2013 SciRes.                                                                                 JMP 

51

The number of sites is N  and the linear dimension of 
the system is denoted as L . The energy unit is given by 
t  and the number of electrons is denoted as eN . 

In a Quantum Monte Carlo simulation, the ground 
state wave function is 

0e ,H                  (65) 

where 0  is the initial one-particle state represented by 
a Slater determinant. For large  , e H  will project out 
the ground state from 0 . We write the Hamiltonian as 
H K V   where K and V are the kinetic and 
interaction terms of the Hamiltonian in Equation (64), 
respectively. The wave function in Equation (65) is 
written as 

    0 0e e e ,
M MK V K V               (66) 

for M    . Using the Hubbard-Stratonovich trans- 
formation [27,94], we have 

 

   
1

exp

1 1
exp 2 ,

2 2

i i

i i i i i
si

Un n

as n n U n n





 

   




      
 


  (67) 

for    2
tanh tanh 4a U   or   2cosh 2 e Ua  . 

The wave function is expressed as a summation of the 
one-particle Slater determinants over all the configu- 
rations of the auxiliary fields 1js   . The exponential 
operator is expressed as 

    
  

     1 1

1
e e

2

1 1 ,

i

MK V
M iNM

s

M i i

B s M

B s M B s

  



 

 





 

 



   (68) 

where we have defined 

       e e ,iV sK
iB s   

           (69) 

for 

   1
2 ,

2i i i i
i i

V s a s n U n              (70) 

 † h.c. .ij i j
ij

K t c c               (71) 

The ground-state wave function is 

,m m
m

c                   (72) 

where m  is a Slater determinant corresponding to a 
configuration   im s    1, , ; 1, ,i N M     of 
the auxiliary fields: 

     1 01 .m M i i m mB s M B s 


           (73) 

The coefficients mc  are constant real numbers: 

1 2c c  . The initial state 0  is a one-particle state. 
If electrons occupy the wave numbers 1 2, , , Nk k k


  for 

each spin  , 0  is given by the product 0 0    
where 0

  is the matrix represented as [31] 

1 1 2 1 1

2 2 2

1 2

1 2

e e e
ee e .

e e e

N

N

N N N N

ik r ik r ik r

ik r ik r ik r

ik r ik r ik r







  

  

  

 
 
 
 
  
 




   


         (74) 

N  is the number of electrons for spin  . In actual 
calculations we can use a real representation where the 
matrix elements are  cos i jk r  or  sin i jk r . In the 
real-space representation, the matrix of   iV s  is a 
diagonal matrix given as 

    1diag 2 2, ,2 2 .i NV s a s U a s U          

(75) 

The matrix elements of K  are 

   , are nearest neighbors

0   otherwise.ij

t i j
K


 


     (76) 

m
  is an N N  matrix given by the product of the 

matrices e K , eV  and 0
 . The inner product is 

thereby calculated as a determinant [38], 

 †det .m n m n
                   (77) 

The expectation value of the quantity Q  is evaluated 
as 

.
m n

mn

m n
mn

Q
Q

 

 




            (78) 

If Q  is a bilinear operator Q  for spin  , we have 

 
   

   
   

†

† †

† †

† †

det

det det

det det
.

det det

m n m n m n m n
mn mn

m n m n m n m n
mn mn

m n m n m n

mn m nm n m n
m n

Q

Q Q

Q



       
 

       

     


    

       

       

     

    

   

   

 

 
   

 

 

 

 

 




(79) 

The expectation value with respect to the Slater de- 
terminants m nQ 

   is evaluated using the single- 
particle Green’s function [31,38], 

  
†

1† † .
m i j n

ij n m n m
ijm n

c c 
     
 

 
    

 


       (80) 

In the above expression, 
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   det detmn m n m nP                  (81) 

can be regarded as the weighting factor to obtain the 
Monte Carlo samples. Since this quantity is not ne- 
cessarily positive definite, the weighting factor should be 

mnP ; the resulting relationship is, 

   

mn mnmn
mn mn

mn mn mn mnmn
mn mn

Q P Q P

P sign P Q P sign P

 







 

 
 (82) 

where  sign a a a  and 

.
m n

mn
m n

Q
Q

 


  

 

 
              (83) 

This relation can be evaluated using a Monte Carlo 
procedure if an appropriate algorithm, such as the Me- 
tropolis or heat bath method, is employed [94]. The 
summation can be evaluated using appropriately defined 
Monte Carlo samples, 

 

 

1

,
1

mn mn
mnMC

mn
mnMC

sign P Q
n

Q
sign P

n



 



         (84) 

where MCn  is the number of samples. The sign problem 
is an issue if the summation of  mnsign P  vanishes 
within statistical errors. In this case it is indeed im- 
possible to obtain definite expectation values. 

4.2. Quantum Monte Carlo Diagonalization 

4.2.1. Basic Method and Optimization 
Quantum Monte Carlo diagonalization (QMD) is a 
method for the evaluation of Q  without the negative 
sign problem [41]. A bosonic version of this method was 
developed before in Ref.[174]. The configuration space 
of the probability mnP  in Equation (84) is generally 
very strongly peaked. The sign problem lies in the 
distribution of mnP  in the configuration space. It is 
important to note that the distribution of the basis 
functions m   1,2,m    is uniform since mc  are 
constant numbers: 1 2c c  . In the subspace  m , 
selected from all configurations of auxiliary fields, the 
right-hand side of Equation (78) can be determined. 
However, the large number of basis states required to 
obtain accurate expectation values is beyond the current 
storage capacity of computers. Thus we use the vari- 
ational principle to obtain the expectation values. 

From the variational principle, 

,
m n m n

mn

m n m n
mn

c c Q
Q

c c

 

 




            (85) 

where mc   1,2,m    are variational parameters. In 
order to minimize the energy 

,
m n m n

mn

m n m n
mn

c c H
E

c c

 

 




            (86) 

the equation 0nE c     1,2,n    is solved for, 

0.m n m m n m
m m

c H E c             (87) 

If we set 

,mn m nH H               (88) 

,mn m nA                 (89) 

the eigen-equation is 

,Hu EAu                (90) 

for  1 2, ,
t

u c c  . Since m   1,2,m    are not 
necessarily orthogonal, A  is not a diagonal matrix. We 
diagonalize the Hamiltonian 1A H , and then calculate 
the expectation values of correlation functions with the 
ground state eigenvector. 

In Quantum Monte Carlo simulations an extrapolation 
is performed to obtain the expectation values for the 
ground-state wave function. If M  is large enough, the 
wave function in Equation (72) will approach the exact 
ground-state wave function, exact , as the number of 
basis functions, statesN , is increased. If the number of 
basis functions is large enough, the wave function will 
approach, exact , as M  is increased. In either case the 
method employed for the reliable extrapolation of the 
wave function is a key issue in calculating the 
expectation values. The variance method was recently 
proposed in variational and Quantum Monte Carlo 
simulations, where the extrapolation is performed as a 
function of the energy variance. We can expect linearity 
in some cases [175]: 

,exactQ Q v                (91) 

where v  denotes the variance defined as 

 2

2

H H
v

H


               (92) 

and exactQ  is the expected exact value of the quantity 
Q . 

The simplest procedure for optimizing the ground- 
state wave function is to increase the number of basis 
states  m  by random sampling. First, we set   and 
M , for example, 0.1,0.2,   , and 20,30,M   . 
We denote the number of basis functions as statesN . We 
start with 100 300statesN    and then increase up to 
10,000. This procedure can be outlined as follows: 
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1) Generate the auxiliary fields is   1, ,i N   in 
  iB s

  randomly for 1, ,M   for m  
 1, , statesm N  , and generate statesN  basis wave func- 
tion  m . 

2) Evaluate the matrices mn m nH H   and 

mn m nA   , and diagonalize the matrix 1A H  to 
obtain m mm

c  . Then calculate the expectation 
values and the energy variance. 

3) Repeat the procedure from 1) after increasing the 
number of basis functions. 

For small systems this random method produces 
reliable energy results. The diagonalization plays an 
importance producing fast convergence. In order to lower 
the ground-state energy efficiently, we can employ a 
genetic algorithm [176] to generate the basis set from the 
initial basis set. One idea is to replace some parts of 

  is    1, , ; 1, ,i N M     in n  that has the 
large weight 

2

nc  to generate a new basis function n . 
The new basis function n  obtained in this way is 
expected to also have a large weight and contribute to 
 . The details of the method are shown in Ref.[41]. 

4.2.2. Ground State Energy and Correlation  
Functions 

The energy as a function of the variance is presented in 
Figures 36-38 for 4 4 , 6 2  and 6 6 , respectively. 
To obtain these results the genetic algorithm was 
employed to produce the basis functions except the open 
symbols in Figure 4. The 4 4  where 10eN   in 
Figure 2 is the energy for the closed shell case up to 
2000 basis states. The other two figures are for open shell 
cases, where evaluations were performed up to 3000 
states. We show the results for the 4 4 , 6 2  and 
6 6  systems in Table 2. 

The Figure 39 is the momentum distribution function 
 n k , 

  †1
,

2
n c c 


  k kk             (93) 

for 14 14  sites where the results for the Gutzwiller 
VMC and the QMD are indicated. The Gutzwiller 
function gives the results that  n k  increases as k  
approaches Fk  from above the Fermi surface. This is 
clearly unphysical. This flaw of the Gutzwiller function 
near the Fermi surface is not observed for the QMD 
result. 

4.2.3. Spin Gap in the Hubbard Ladder 
Here we show the results for one-dimensional models. 
The ground state of the 1D Hubbard model is no longer 
Fermi liquid for 0U  . The ground state is insulating at 
half-filling and metallic for less than half-filling. The 
Figure 40 is the spin and charge correlation functions, 
 S k  and  C k , as a function of the wave number, for 

Table 2. Ground state energy per site from the Hubbard 
model. The boundary conditions are periodic in both 
directions. The current results are presented under the 
column labeled QMD. The constrained path Monte Carlo 
(CPMC) results are from Ref.[38]. The column VMC is the 
results obtained for the optimized variational wave function 

 2
  except for 6 × 2 for which  1

  is employed. The 

QMC results are from Ref.[35]. Exact results are obtained 
using diagonalization [177]. 

Size eN U QMD VMC CPMC QMC Exact

4 4 10 4 −1.2237 −1.221(1) −1.2238  −1.2238

4 4 14 4 −0.9836 −0.977(1) −0.9831  −0.9840

4 4 14 8 −0.732(2) −0.727(1) −0.7281  −0.7418

4 4 14 10 −0.656(2) −0.650(1)   −0.6754

4 4 14 12 −0.610(4) −0.607(2) −0.606  −0.6282

6 2 10 2 −1.058(1) −1.040(1)   −1.05807

6 2 10 4 −0.873(1) −0.846(1)   −0.8767

6 6 34 4 −0.921(1) −0.910(2)  −0.925  

6 6 36 4 −0.859(2) −0.844(2)  −0.8608  

 

 

Figure 36. Energy as a function of the variance for 4 × 4, 
U  4  and eN  10 . The square is the exact result. The 

data fit using a straight line using the least-square method 
as the variance is reduced. We started with statesN  100  

(first solid circle) and then increase up to 2000. 
 

 

Figure 37. Energy as a function of the variance for 6 × 2 

eN  10  and U  4 . The square is the exact value ob- 

tained using exact diagonalization. 
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Figure 38. Energy as a function of the variance v  for 6 × 6. 
with the periodic boundary conditions. Solid circles and 
crosses are data obtained from the QMD method for two 
different initial configurations of the auxiliary fields. Gray 
open circles show results obtained from the N1 2 -renor- 

malization method with 300 basis wave functions. 
 

 

Figure 39. Momentum distribution function for the 14 × 14 
lattice. Parameters are U  4  and eN  146 . The boun- 

dary conditions are periodic in both directions. The 
results for the Gutzwiller function (open circle) are also 
provided. 
 
the 1D Hubbard model where 80N  . The 2 Fk  
singularity can be clearly identified where the dotted line 
is for 0U  . The spin correlation is enhanced and the 
charge correlation function is suppressed slightly because 
of the Coulomb interaction. 

The spin correlation function  S k  for the Hubbard 
ladder is presented in Figure 41, where 4U   and 

1dt  .  S k  is defined as 

       
,

1
e ,i jik

i i j j
i j

S n n n n
N

 
    


   R R

k  
   

 
 (94) 

where iR   denotes the site  ,i    1,2 . We use the 
convention that  , yk kk  where 0yk   and   in- 
dicate the lower band and upper band, respectively. 
There are four singularities at 12 Fk , 22 Fk , 1 2F Fk k , 
and 1 2F Fk k  for the Hubbard ladder, where 1Fk  and 

2Fk  are the Fermi wave numbers of the lower and upper 
band, respectively. 

 

Figure 40. Spin (solid circle) and charge (open circle) 
correlation functions obtained from the QMD method for 
the one-dimensional Hubbard model with 80 sites. The 
number of electrons is 66. We set U  4  and use the 
periodic boundary condition. 
 

 

Figure 41. Spin correlation function obtained from the 
QMD method for the ladder Hubbard model for 60 × 2 sites 
with periodic boundary condition. The number of electrons 
is 80 and U  4 . The upper line is for the upper band and 
the lower line is for the lower band. Singularities are at 

F Fk k1 2 , Fk 22 , F Fk k1 2  and Fk 12  from left. The dott- 

ed lines are for U  0 . 
 

It has been expected that the charge gap opens up as 
U  turns on at half-filling for the Hubbard ladder model. 
In Figure 42 the charge gap at half-filling is shown as a 
function of U . The charge gap is defined as 

     2 2 2 ,c e e eE N E N E N            (95) 

where  eE N  is the ground state energy for the eN  
electrons. The charge gap in Figure 42 was estimated 
using the extrapolation to the infinite system from the 
data for the 20 2 , 30 2 , and 40 2  systems. The 
data suggest the exponentially small charge gap for small 
U  or the existence of the critical value cU  in the range 
of 0 1.5cU  , below which the charge gap vanishes. 

4.2.4. Magnetization in 2D Hubbard Model 
The ground state of the 2D Hubbard model at half-filling 
is antiferromagnetic for 0U   because of the nesting 
due to the commensurate vector  ,Q    . The Gutz- 
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willer function predicts that the magnetization 

 1
e jiQ R

j j
j

m n n
N


             (96) 

increases rapidly as U  increases and approaches 1m   
for large U . In Figure 43, the QMD results are 
presented for m  as a function of U . The previous 
results obtained using the QMC method are plotted as 
open circles. The gray circles are for the  -function 
VMC method and squares are the Gutzwiller VMC data. 
Clearly, the magnetization is reduced considerably be- 
cause of the fluctuations, and is smaller than the 
Gutzwiller VMC method by about 50 percent. 

4.3. Pair Correlation Function 

The pair correlation function D  is defined by 
 

 

Figure 42. Charge gap as a function of U  for dt  1  

(circles). The DMRG results (squares) are provided for 
comparison [58]. 
 

 

Figure 43. Magnetization as a function of U  for the half- 
filled Hubbard model after extrapolation at the limit of 
large N. Solid circles are the QMD results, and open circles 
are results obtained from the QMC method [28]. The 
squares are the Gutzwiller-VMC results [43] and gray solid 

circles show the 3rd  -function   3
  VMC results car- 

ried out on the 8 × 8 lattice [95]. The diamond symbol is the 
value from the two-dimensional Heisenberg model where 
m  0.615  [179,180]. 

     † ,D i i                (97) 

where  i , ,x y  , denote the annihilation oper- 
ators of the singlet electron pairs for the nearest- 
neighbor sites: 

  ˆ ˆ .i i i ii c c c c                     (98) 

Here ̂  is a unit vector in the  ,x y  -direction. 
We consider the correlation function of d-wave pairing: 

     †
,d d dP i i               (99) 

where 

         .d x x y yi i i i i              (100) 

i  and i    denote sites on the lattice. 
We show how the pair correlation function is 

evaluated in quantum Monte Carlo methods. We show 
the pair correlation functions yyD  and yxD  on the 
lattice 4 3  in Figures 44 and 45. The boundary 
condition is open in the 4-site direction and is periodic in 
the other direction. An extrapolation is performed as a 
function of 1 M  in the QMC method with Metropolis 
algorithm and as a function of the energy variance v  in 
the QMD method with diagonalization. We keep   a 
small  constant  0.02 0.05   and and increase 

M    , where M  is the division number. In the 
Metropolis QMC method, we calculated averages over 

55 10  Monte Carlo steps. The exact values were 
obtained by using the exact diagonalization method. Two 
methods give consistent results as shown in figures. All  
 

 

Figure 44. Pair correlation function  yyD   and 

 yxD   for 4 × 3, U  4  and eN  10  obtained by 

the diagonalization quantum Monte Carlo method. 
The square are the exact results obtained by the exact 
diagonalization method. The data fit using a straight 
line using the least-square method as the variance is 
reduced. We started with statesN  100  (first solid 

circles) and then increase up to 2000. 



T. YANAGISAWA  ET  AL. 

Copyright © 2013 SciRes.                                                                                 JMP 

56 

 

Figure 45. Pair correlation function  yyD   and  yxD   

for 4 × 3, U  4  and eN  10  obtained by the Metropolis 

quantum Monte Carlo method. The square are the exact 
results obtained by the exact diagonalization method. An 
extrapolation is performed as a function of M1 . 

 
the  yyD   and  yxD   are suppressed on 4 3  as 
U  is increased. In general, the pair correlation functions 
are suppressed in small systems. In Figures 46 and 47, 
we show the inter-chain pair correlation function for the 
ladder model 30 2 . We use the open boundary con- 
dition. The number of electrons is 48eN  , and the 
strength of the Coulomb interaction is 4U  .  y i  
indicates the electron pair along the rung, and  yyD   is 
the expectation value of the parallel movement of the 
pair along the ladder. The results obtained by two 
methods are in good agreement except  1,0  (near- 
est-neighbor correlation). 

We first consider the half-filled case with 0t  ; in 
this case the antiferromagnetic correlation is dominant 
over the superconductive pairing correlation and thus the 
pairing correlation function is suppressed as the Coulomb 
repulsion U  is increased. The Figure 48 exhibits the 
d-wave pairing correlation function dP  on 8 8  lattice 
as a function of the distance. The dP  is suppressed due 
to the on-site Coulomb interaction, as expected. Its re- 
duction is, however, not so considerably large compared 
to previous QMC studies [39] where the pairing cor- 
relation is almost annihilated for 4U  . We then turn to 
the case of less than half-filling. We show the results on 
8 8  with electron number 54eN  . We show dP  as 
a function of the distance in Figure 49  54eN  . In the 
scale of this figure, dP  for 0U   is almost the same as 
that of the non-interacting case, and is enhanced slightly 
for large U . Our results indicate that the pairing 
correlation is not suppressed and is indeed enhanced by 
the Coulomb interaction U , and its enhancement is very 
small. 

The Figure 50 shows dP  on 10 10  lattice. This 
also indicates that the pairing correlation function is 

 

Figure 46. Pair correlation function  yyD   as a function 

of the energy variance v  for 30 × 2, U  4  and eN  48  

obtained by the diagonalization quantum Monte Carlo 
method. 
 

 

Figure 47. Pair correlation function  yyD   as a function 

of M1  for 30 × 2, U  4  and eN  48  obtained by the 

Metropolis quantum Monte Carlo method. 
 
enhanced for 0U  . There is a tendency that dP  is 
easily suppressed as the system size becomes small. We 
estimated the enhancement ratio compared to the  

non-interacting case    
0d dU U

P P


   at 2L    

for 0.8en   as shown in Figure 51. This ratio 
increases as the system size is increased. To compute the 
enhancement, we picked the sites, for example on 8 8  
lattice,  3,2 , (4,0), (4,1), (3,3), (4,2), (4,3), (5,0), 
(5,1) with 4 5   and evaluate the mean value. In 
our computations, the ratio increases almost linearly 
indicating a possibility of superconductivity. This  
indicates      d d dP LP P      for L .  

Because 3
0= ||1/|)(  UdP , we obtain  

    2
1d dP P      for L  . This indicates that 

the exponent of the power law is 2. When 2U  , the 
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Figure 48. Pair correlation function dP  as a function of the 

distance R    on 8 × 8 lattice for the half-filled case 

eN  64 . We set t  0.0  and U  0 , 3 and 4. To lift the 

degeneracy of electron configurations at the Fermi energy 
in the half-filled case, we included a small staggered 
magnetization 410  in the initial wave function 0 . 

 

 

Figure 49. Pair correlation function dP  as a function of the 

distance R    on 8 × 8 lattice for eN  54 . We set 

t  0.2  and U  0 , 4 and 6. 
 
enhancement is small and is almost independent of L . 
In the low density case, the enhancement is also 
suppressed being equal to 1. In Figure 52, the 
enhancement ratio is shown as a function of the electron 
density en  for 4U  . A dome structure emerges even 
in small systems. The square in Figure 52 indicates the 
result for the half-filled case with 0.2t    on 8 8  
lattice. This is the open shell case and causes a difficulty 
in computations as a result of the degeneracy due to 
partially occupied electrons. The inclusion of 0t   
enhances dP  compared to the case with 0t   on 
8 8  lattice. dP  is, however, not enhanced over the 
non-interacting case at half-filling. This also holds for 

 

Figure 50. Pair correlation function dP  as a function of the 

distance R    on 10 × 10 lattice for eN  82  and 

t  0.2 . The strength of the Coulomb interaction is 
U  0 , 3 and 5. 
 

 

Figure 51. Enhancement ratio of pair correlation function 

d dU U
P P

0
 as a function of the linear system size L for 

U  4  and U  2 . The electron density en  is about 0.8: 

en 0.8  for squares. The data for U  4  and en 0.18  

are also shown by circles. 
 
10 10  lattice where the enhancement ratio 1 . This 
indicates the absence of superconductivity at half-filling. 

4.4. Spin Susceptibility 

We propose a method to compute the magnetic suscepti- 
bility at absolute zero  0T   [178]. We add the source 
term 1H  to the Hamiltonian as follows 

 †
1 e h.c. h.c. ,jiq R

j j
j

H g c c g S
 

     q     (101) 

where g  is a small real number of the order 310  or 
410 . We calculate S g q  in the ground state, which 
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is, as shown by the linear response theory, the magnetic 
susceptibility 

   
0 0

d , , 0 ,ret T T
S g t G t  

 

 
   q q q (102) 

in the limit of small g , where retG  is the retarded 
Green function and  ,  q  is the dynamical sus- 
ceptibility, 

     
0

, d e , 0 .i ti t S t S 
  

    q qq      (103) 

Indeed, the above formula gives the correct spin 
susceptibility  , 0  q  on the finite lattice for the 
noninteracting case, which is given by 

      k q k k k qk
f f       with the Fermi 

distribution function  f  . We calculate S g q  by 
using the quantum Monte Carlo method to obtain 

 , 0  q . 
We examine the results obtained for the suscep- 

tibilities. Figure 53 shows the spin susceptibility 
   , 0Q Q     for  ,Q     on a 6 2  

lattice as a function of 1 m  or the energy variance v . 
The number of electrons is 10. The expectation values 
agree well with exact values given by the exact dia- 
gonalization method. 

We now compute the staggered susceptibility stag  
by adding the source term  

  †
1 1 h.c.x yj j

j jj
H g c c



     to the Hamiltonian,  

where  ,x yj j j . Here we set the periodic and 
antiperiodic boundary conditions in the x  and y  
directions, respectively, to avoid a numerical difficulty 
caused by the degeneracy between states k  and Qk  
 

 

Figure 52. Enhancement ratio of pair correlation function 

d dU U
P P

0
 as a function of the electron density en . We 

adopt t  0.2  and U  4 . For the half-filled case, the 
diamonds show that for t  0  on 8 × 8 lattice (solid 
diamond) and 6 × 6 lattice (open diamond). The square is 
for t  0.2  on 8 × 8 and 10 × 10 where there is no 
enhancement. 

 

Figure 53. Spin susceptibility  Q  as a function of M1  

or the variance v  for a 6 × 2 lattice with the periodic 
boundary condition. The number of electrons is 10. We set 
  0.01 . The solid circles and open circles are obtained 
by using the QMC method and the QMD method, res- 
pectively. The squares indicate exact values. The variance 
v  is multiplied by a numerical constant. We set U  2 , 3, 
and 4 in units of t. 
 
where  ,Q    . It has been shown that a long-range 
spin correlation exists in the ground state of the 
half-filled Hubbard model with 0t   for 0U   [40, 
41,179,180]. In the case 0U  , stag  exhibits a double 
logarithmic behavior   2

log L . stag  is shown as a 
function of L  in Figure 54 for 2U  , 3, and 4. The 
obtained values are well fitted by 4L  and stag  
diverges in the limit of a large system size L : 

4.stag L                  (104) 

This result is consistent with the existence of the 
long-range spin correlation for 0U   [179,180]. The 
degree of divergence of stag  is beyond the criterion of 
the Kosterlitz-Thouless transition, and thus the 
long-range order represented by stag  belongs to a 
different category. The 4L  behavior of stag  is 
consistent with the predictions of perturbation theory in 
the 2D non-linear sigma model at low temperatures 
[181]. 

4.5. Pair Susceptibility 

In this section we consider a method to evaluate the pair 
susceptibility pair  at 0T  . In order to compute the 
pair susceptibility, we use an electron-hole transfor- 
mation for the down spin, †

iic d  , whereas the up-spin 
electrons are unaltered, iic c  . For the on-site s-wave 
pairing, the source term is given by the following 
expression 

 †
1 . . .s

i i
i

H g c d h c             (105) 
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Figure 54. Staggered spin susceptibility stag
  as a function 

of L4  at half-filling with t  0  for U  2 , 3, and 4. We 
use the periodic and antiperiodic boundary conditions in 
the x and y directions, respectively. The lowest line is for 
U  0 , which is fitted by a logarithmic curve. The open 
circles show the results for the Gutzwiller function with 
U  4 , which exhibits a logarithmic dependence. 
 

For the anisotropic d-wave pairing, we add 

 
 

 
 

† †
1

, ,

†

, ,

h.c.

h.c. ,

d
i i

i x y

i i
i x y

H g a c c

g a c d

 


 


  
 


 

 

 




      (106) 

where 1xa   and 1ya   . The s-wave and d-wave 
pair susceptibility are respectively: 

 †1 1
. . ,s

pair i i
i

c d h c
g N

     

 
 

†

, ,

1 1
h.c. .d

pair i i
i x y

a c d
g N  


 

 

        (107) 

Using the Fourier transformation, the source term for 
the pair potential is written as follows 

 † †
1 h.c.a

k k kk
H g z c c     for a s  or d  with the 
k -dependence factor kz . If we define k k k

c c    , 
then for a small value of g , we have the following 

 d ; , ,k k ret
k

g z t G t t k k


 


               (108) 

where 

       †; , , ,ret k kG t t k k i t t b t b t             (109) 

for k k kb c c    and   e eiHt iHt
k kb t b  . On the basis of 

analytic continuation, using the thermal Green function, 

k  is written as 

   †

0 0
d e 0 .n

n

i
k k k i

k

g T b b
  

 
   

       (110) 

In the noninteracting system, this formula exhibits 
logarithmic divergence on the finite lattice L L : 

 2
logpair kA z cL   with constants A  and c , 

which can be confirmed by numerical estimations on 
finite systems. 

In the Kosterlitz-Thouless theory, the susceptibility is 
scaled as follows [182,183]: 2    , where   is the 
coherence length.   is of order L  on a lattice L L  
if long-range coherence exists. The exponent   is 
expected to be 0 at absolute zero. Thus   scales as 

2L   in the ground state if the Kosterlitz-Thouless 
transition occurs at some temperature. 

First, we investigate s
pair  for the attractive Coulomb 

interaction 0U  . For this model, the existence of a 
Kosterlitz-Thouless transition has been predicted on the 
basis of quantum Monte Carlo methods [34,183]. The 
results in Figure 55 show that the size dependence for 

0t   and 0.8en   is 
2 ,s

pair L                  (111) 

which is consistent with previous studies, and shows the 
existence of a Kosterlitz-Thouless transition for the 
attractive interaction. At near half-filling, s

pair  is more 
enhanced than that at 0.8en  . Second, let us 
investigate the d-wave pair susceptibility d

pair  for the 
repulsive Coulomb interaction. Pair susceptibilities are 
 

 

Figure 55. Isotropic s -wave susceptibility s
pair  as a 

function of L2  for the negative-U Hubbard model with 
U  2 , -3, and -4, and t  0 . The circles indicate the 
results for en 0.8 , where we use the periodic boundary 

condition in both the x and y directions, and the chemical 
potential is set at the center of the level spacing between 
adjacent energy levels. The lowest dotted line is for U  0  

 en 0.75 , which is fitted by a logarithmic curve, that is, 

 s
pair Llog  . We show s

pair  for en 0.9  and U  4  

by squares, where the boundary condition is antiperiodic in 
one direction and periodic in the other direction. 
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sensitively dependent on the band structure, particularly 
the energy of the van Hove singularity, as a characteristic 
of two-dimensional systems. We compute d

pair  at an 
electron density 0.87en  , a value near that of 
optimally doped high-temperature cuprates. We set 

0.2t   . Figure 56 shows d
pair  as a function of 2L  

for 2U  , 3, 4, and 5 with 0.2t    and 0.87en  . 
This shows that 

2 ,d
pair L                 (112) 

if U  is moderately large. This result shows that a 
d-wave superconducting Kosterlitz-Thouless transition 
may exist for the repulsive interaction if we adjust the 
band parameters in the region of optimal doping. 

5. Summary 

We have investigated the superconductivity of electronic 
origin on the basis of the (single-band and three-band) 
two-dimensional Hubbard model. First, we employ the 
variational Monte Carlo method to clarify the phase 
diagram of the ground state of the Hubbard model. The 
superconducting condensation energy per site obtained 
by the Gutzwiller ansatz is reasonably close to 
experimental value 0.17 0.26 meV site . We have 
examined the stability of striped and checkerboard states 
in the under-doped region. The relation of the incom- 
mensurability and hole density, x  , is satisfied in the 
 

 

Figure 56. The d-wave susceptibility s
pair  as a function of 

L2  for the repulsive-U Hubbard model with U  2 , 3, 4, 
and 5. We use the periodic boundary condition in both the x 
and y directions. The solid circles present the results with 
t  0.2  and en 0.87  for U  2 , 3, 4 and 5. For the 

solid squares the parameters are t  0.1  and en 0.82  

with U  4 . The open squares are for t  0.2 , en 1  

(near half-filling) and U  4 . The open circles indicate the 
results for t  0 , en 0.85  and U  4 . The lowest line 

for U  0  is fitted by a logarithmic curve:  d
pair Llog  . 

lower doped region. We have found that the 4 4  
period checkerboard spin modulation is stabilized in the 
two-dimensional Hubbard model with the Bi-2212 type 
band structure. 

We have further performed investigation by using the 
quantum Monte Carlo method that is an exact unbiased 
method. We have presented an algorithm of the quantum 
Monte Carlo diagonalization to avoid the negative sign 
problem in quantum simulations of many-fermion 
systems. We have computed d-wave pair correlation 
functions. In the half-filled case dP  is suppressed for 
the repulsive 0U  , and when doped away from 
half-filling eN N , dP  is enhanced slightly for 0U  . 
It is noteworthy that the correlation function dP  is 
indeed enhanced and is increased as the system size 
increases in the 2D Hubbard model. The enhancement 
ratio increases almost linearly L  as the system size is 
increased, which is an indication of the existence of 
superconductivity. Our criterion is that when the en- 
hancement ratio as a function of the system size L  is 
proportional to a certain power of L , superconductivity 
will be developed. This ratio depends on U  and is 
reduced as U  is decreased. The dependence on the 
band filling shows a dome structure as a function of the 
electron density. In the 10 10  system, the ratio is 
greater than 1 in the range 0.3 0.9en  . Let us also 
mention on superconductivity at half-filling. Our results 
indicates the absence of superconductivity in the 
half-filling case because there is no enhancement of pair 
correlation functions 
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