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Abstract 
 
The solution of the real Ginzburg-Landau (GL) equation with a time-periodic coefficient is obtained in the 
form of a series, with assured convergence, using the computer-assisted ‘Homotopy Analysis Method’ 
(HAM) propounded by Liao [1]. The formulation has been kept quite general to keep open the possibility of 
obtaining the solution of the GL equation for different continua as limiting cases of the present study. New 
ideas have been added and clear explanations are provided in the paper to the existing concepts in HAM. The 
method can easily be extended to solve complex GL equation, system of GL equations or even the GL equa-
tions with a diffusion term, each having a time-periodic coefficient. The necessary code in Mathematica that 
implements the HAM for the current problem is appended to the paper for use by the readers. 
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1. Introduction 
 
GL equations arise as a solvability condition in a wide 
variety of problems in continuum mechanics while deal-
ing with a weakly nonlinear stability of systems, e.g., one 
comes across the GL equation with constant and real 
coefficients in the case of Rayleigh-Bénard convection in 
fluids wherein instability sets in as a direct mode (also 
called stationary mode). When the Hopf mode (also called 
oscillatory mode) is the preferred one, like in viscoelastic 
liquids or as in constrained systems, the GL equation has 
complex yet constant coefficients. In certain other prob-
lems one may also come across a system of GL equa-
tions with constant coefficients. There are inhomogene-
ous GL equations also. 

When one considers problems in which gravity expe-
rienced in a fluid-based system is perturbed by a 
time-periodic vibration of the system, then the GL equa-
tion turns out to be an equation like the one considered in 
the paper and the same has been solved here using the 
HAM, as propounded by Liao[1-5]. One may extend the 
solution procedure to other types of GL equations men-
tioned earlier. The great advantage in using the method is 
that it gives the solution of non-linear equations in the 
form of a series whose convergence is assured. The me- 
thod is illustrated here in unabridged form using the ex-
ample of the GL equation with a time-periodic coeffi-

cient. The readers may refer to Liao [1-5] and others 
[6-13] for many other versatile applications of the method. 

 
2. The GL Equation with a Time-Periodic 

Coefficient and its Solution by the HAM 
 
The GL equation with a time-periodic coefficient in the 
most general form is (see the appendix of the paper for 
the derivation of the equation in the context of a physical 
situation): 

  3
1 21 sin ,A Q A Q A              (2.1) 

where A is the amplitude of convection,   and  are 
the frequency and small amplitude of the gravitational 
vibration (also called gravity modulation), 1Q  and 2Q  
are constant coefficients (real) that are functions of the 
parameters of a given problem. We have used just   in 
place of 2  used in the appendix.  

The initial condition to solve Equation (2.1) is: 

  00 ,A a                 (2.2) 

where 0a  is a prescribed initial value of the amplitude. 

The quantities 1Q , 2Q ,   and 0a  in Equations (2.1) and 

(2.2) have deliberately been left unspecified to keep open 
the possibility of obtaining a general result from the 
study that is applicable to different continua. This is one 
of the salient features of the study. 
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It must be noted here that in the absence of gravity 
modulation, i.e.,  =0, Equation (2.1) is the exactly sol- 

vable Bernoulli equation, viz., 3
1 2A Q A Q A    and the 

unsteady solution of this GL equation, subject to condi-
tion (2.2), is given by: 

1

1

2
21 1

2
2 2 0

( ) 1 1 .QQ Q
A e

Q Q a




  
    

   
    (2.3) 

When the amplitude ( )A   is small, however, the 

Bernoulli equation reduces to 

1 ,A Q A                  (2.4) 

Whose solution, subject to Equation (2.2), is 

  1
0 .QA a e                 (2.5) 

Thus we see that the amplitude grows exponentially to 
begin with (see solution (2.5)) but the growth is damped 
by the 3A  term as shown by the solution (2.3). 

One can easily see that for the case  =0, Equation 
(2.1) has one steady solution ( ) 0,A   for all values of 

1Q and 2Q , and a second steady solution 1

2

( ) ,
Q

A
Q

  for 

1

2

0.
Q

Q
  The second steady state solution for  =0 and the 

initial condition (2.2) are vital information for our writ-
ing down an initial solution 0 ( )A  of the GL equation. 

The initial solution may be taken in the form: 

   0 1 0 1 ,A a a a e                (2.6) 

where 1
1

2

Q
a

Q
  and   is as yet unspecified. The de- 

termination of   can and will be dealt with at the time 
of seeking a series solution of the GL equation with a 
time-periodic coefficient. Quite obviously  0A   has been 
so chosen that it satisfies the conditions  A   1a  and 
 0A  0a . The choice of the form of 0 ( )A  is most im- 

portant in obtaining a convergent series solution by the 
HAM and this aspect will be discussed much later in the 
paper. 

Now we discuss the problem in the presence of mod-
ulation. One cannot in this case arrive at a useful analyt-
ical solution as above, independent of numerical integra-
tion, and resorting to numerical methods seems the only 
option. As a better option, alternately, we propose the 
HAM to obtain the series solution. To that end we define 
the following two notations: 

  ,L A A A                  (2.7) 

    3
1 21 sin ,N A A Q A Q A            (2.8) 

where   is the same as that used in Equation (2.6) and 
as said earlier it will be dealt with at the time of obtaining 
a series solution of the GL equation with a time-periodic 
coefficient. The particular choice of L in Equation (2.7) 
is suggested by the fact that the initial solution 0 ( )A   
go-es as e   . We throw more light on this in the next sec-
tion. 

The proceeding of the paper thus far does give a feel-
ing that many things are open ended but the reader we 
reassure that at the end of it all the inevitable postpone-
ment of certain discussions to the end of the paper be-
comes clear. Now we move on to the remaining part of 
the method involving construction of the solution of the 
given nonlinear equation by means of concepts borrowed 
from topology. 

In the HAM we obtain the solution of the equation 

 N A  0                 (2.9) 

By constructing a homotopy from 0 ( )A  to the re-
quired solution ( )NLA  of Equation (2.9) using the ser-
vices of what is called as an embedding parameter 

[0,1]p .As we see later p=0 and p=1 correspond to 

0 ( )A  and ( )NLA  respectively, where the subscript NL 
indicates that the solution is of the nonlinear problem. 
Henceforth, we use a suggestive notation  ; p  in 
place of  A   which indicates that the embedding pa-
rameter has been brought into picture. Now we use the 
Maclaurin series for  ; p  around p=0 and this gives 
us: 

     
1

; ;0 ,m
m

m

p A p    




          (2.10) 

where 

      
0

1
; 1,2,3, .

!

m

m m
p

A p m
m p

  


 
   

  (2.11) 

Observing Equation (2.10), together with Equation 
(2.11), we find that ( )NLA  can be determined provided 
various p-derivatives of  ; p  can be found at p=0. 
To obtain these derivatives we need a differential equa-
tion for  ; p  . The required equation for  ; p  can  

be constructed using  L A     and  N A    , and we 

also remind ourselves at this point that ( ; )p  varies from 
 0A   to  NLA  as p varies from 0 to 1. The required 

equation that fits this bill is: 

       01 ; ; ,p L p A p N p                (2.12) 

where   is an auxiliary parameter whose role in the 
control of convergence of the HAM-series solution will 
become apparent further on. In view of the above obser-
vation,   may also be called as the convergence-control 
parameter. 
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We are interested in    ;1 NLA    which is the 
solution of the given nonlinear Equation (2.1), now writ-
ten in the form (2.7). Substituting p=1 in Equation (2.10) 
and noting that    0;0 A   , we get 

     0
1

.NL m
m

A A A  




          (2.13) 

From Equation (2.13) it is clear that the solution 
 NLA  of the given nonlinear Equation (2.1), subject to 

the condition (2.2), will be obtained as a series. Liao [4] 
proved a convergence theorem that is applicable to the 
series (2.13). The convergence is certain by the HAM as 
a consequence of the convergence theorem (see p. 18 of 
Liao [4]) but how to have the best possible convergence, 
or rather fast convergence, is the question. This is a mat-
ter of discussion later on in the paper in the context of 
discussing the role of a certain to-be-introduced parame-
ter controlling convergence. 

The initial condition to solve Equation (2.12) can be 
obtained from Equation (2.2) as: 

0(0; ) .p a               (2.14) 

Equations (2.12) and (2.14) are called the zeroth-order 
deformation equations as per the notion of deformation, 
as used in topology. Deformation has been made possible 
to be used in the method due to the parameter p that al-
lows the varying of  ; p   from  0A  to  NLA  as it 

varies from 0 to 1.  
Now, in order to obtain the p-derivatives of  ; p  , 

we differentiate m-times the zeroth-order deformation 
equations with respect to p. To make use of the notation 

 mA  defined in Equation (2.11) we set p=0 in the re-

sulting equations and also divide by m!. The above pro-
cedure results in the following infinite system of linear 
equations: 

       1 1 , 1, 2,3,m m m m mL A A R A m       
   

(2.15) 
subject to the initial condition  

   0 0, 1, 2,3, .mA m           (2.16) 

In the Equation (2.15) we have used the following no-
tation: 

0 when 1,

1 when 1,m

m

m



  

          (2.17) 

          1 0 1 2 1, , , , , 1m mA A A A A m         

(2.18) 

and 

      
1

1 1

0

1
; , 1.

1 !

m

m m m

p

R A N p m
m p

  


 


            


 (2.19) 

On using the definition of  ;N p    , from Equa-

tion (2.8), we see that Equation (2.19) results in the fol-
lowing equation:  

       

       

1 1 1 1

1

2 1
0 0

1 sin

, 1, 2,3, .

m m m m

m k

m k k j j
k j

R A A Q A

Q A A A m

    

  

  



  
 

      

  

 


 

(2.20) 

We now make an analysis of both the equation and the 
possible nature of its solution. Firstly, the to-be-obtained 
series solution must encompass the solution of Equation 
(2.1) for the limiting case 0,   as well as a periodic 
solution of the Equation (2.1) for small amplitudes, viz., 

 1 1 sin .A Q A     . Let the solution of the above li- 

miting cases be denoted respectively by  EA  and  A  . 

These have the form: 

  12

0

mQ
E m

m

A b e 






            (2.21) 

 
0

sin cos ,n n
n

A n n     




         (2.22) 

where the coefficients mb , n  and n  are constants that 
may be functions of the parameters of the problem. The 
form of the solution (2.21) follows from the fact that 

 EA  is essentially the exact solution (2.3) in a bino-
mially expanded form. Secondly, after discussing about 
the solution of the limiting cases, we note that the solu-
tion  NLA   of the full Equation (2.1) must be such 
that it has an oscillatory and decaying nature as    . 
The solution  NLA   must, in addition, have the two 
limiting solutions as part of its series solution. Let us 
now make a passing remark in regard to the choice of  . 
The solution (2.21) does suggest that 1=2Q  but a dis-
cussion in favour of this choice by estimating an error is 
given just before the section on results and discussion.  

At this point let us pause a bit and recollect what we 
have done and what is it that resulted out of it. In seeking 
the solution of the nonlinear differential equation by 
HAM we constructed a homotopy using an embedding 
parameter. The construction of homotopy and the proce-
dure thereafter resulted in an infinite system of inhomo-
geneous linear equations with the nonlinear term being 
part of the inhomogeneity. 

We now move on to solve the system of linear inho-
mogeneous equations, as many as are required by a pre- 
determined convergence criterion. At this juncture while 
getting ready to solve the system of equations, we notice 
that   waits to be defined. We will deal with the matter 
of choice of an appropriate value for   in what follows. 
As a prologue to what is to follow we may, however, add 
here that a good choice of   serves the purpose of con- 
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centrating a major part of the sum of the series (2.12) in 
its first few terms and thereby rendering the remaining 
terms vanishingly small. This, in essence, speaks of the 
convergence of the series (2.12) and its control through 
 . We now move on to solve the system of linear Equa-
tion (2.15), with  1m mR A 

  given by Equation (2.20), 
and also discuss about the way an appropriate   can be 
chosen. 

On using the definition (2.7) and denoting 

   1m m mA A    by ( )B  , Equation (2.15) may now 

be written as: 

 1 .m m

dB
B R A

d


             (2.23) 

Equation (2.23) is an inhomogeneous linear differen-

tial equation that has an integrating factor e  . Multip-

lying Equation (2.23) by e  , the equation may be rear-
ranged into the following form: 

    1 .m m

d
e e R A

d
B   


          (2.24) 

Integrating the exact differential equation (2.24), we get 

     10
0 ,m m

tB B e e R A dt
   

         (2.25) 

where t  is a dummy variable of integration. Reverting 

back from  B   to the original functions, we get on re- 

arrangement the solution of the Equations (2.15) and 
(2.16) in the form: 

     1 0
.t

m m m m mA A e e R A t dt
     

         (2.26) 

By means of Mathematica, or such other packages, one 
may easily complete the integration in Equation (2.26). 
In fact, the solution (2.26) may be obtained using Ma-
thematica itself and how this is done is demonstrated in 
the code attached. Thus, we see that it is easy to get the 
series solution of Equations (2.1) and (2.2) provided we 
fix the issues relating to   and  , and also the choice of 

.L  

3. Choice of  ,   and L   

At various stages in the paper this issue had to be insuffi-
ciently addressed and discussions on them had to be post-
poned to the point at which one is better equipped to 
handle the matter. The time now is just about right to dis- 
cuss these matters and we move in that direction. We first 
take the issue of  . 

To determine an appropriate  , we define a residual 
error in the form: 

   0 23
1 20

0

1
1 sinRE A Q A Q A d


   


        

(3.1) 

where 0  is long enough to capture the error in full. We 
have to choose an optimum value of  , denoted as opt , 
that yields the solution  NLA  , for a given accuracy, 
with minimum possible residual error. In other words, 

opt  is corresponding to an extrema of the curve 
 R RE E  . Thus opt  has to satisfy the following 

conditions: 
2

2
0 and 0.R RdE d E

d d
 

 
        (3.2) 

From the above discussion the rationale behind the in-
troduction of   becomes clear. The most important thing 
is that   is a helpful parameter that influences conver-
gence of the HAM series solution (2.13) but the conver-
gent solution (the sum of the series 2.13) is independent 
of the choice of  , as proved by Liao [4]. We now move 
on to the discussion on the choice of  . 

We know from the exact solution (2.3) for the limiting 
case 0  that the solution decays quicker than e    as 
   . By substituting the initial guess (2.6) into Equa-
tion (2.1) we can obtain a condition which on being sa-
tisfied ensures that the solution decays faster than e    
as    . The initial guess (2.6) cannot obviously sa-
tisfy the equation (2.1) exactly and its introduction in the 
latter equation results in an error   that is given by: 

    2

0 1 1 0 1 1 2
22 3a a Q e a a a Q e             

(3.3) 

The choice 
12Q   clearly allows   to decay faster 

than e   . In view of this we set 12Q   in the paper.  

The choice of an appropriate L  involves issues re-
lated to the decision of taking the initial solution in a 
particular fashion. The initial solution  0A  is chosen 
in such a way that its nature is akin to the nature of the 
HAM solution  NLA  . Thus the choice of L and the 
choice of  0A  are inter-related. Now we dwell on 
another important related issue involving the method. 

The most natural question that comes to the mind of a 
reader while going through the discussion on the chosen 
form of the deformation Equation (2.12) is the following: 

Why not have the following equation in place of the 
deformation Equation (2.12)?  

     1 ; ; ,p L p p N p                (3.4) 

where L can be taken to be the linear part of the given 
nonlinear equation. In the present problem L would in 
this case be  

1.L Q



 


              (3.5) 

The solution of   0L A     , subject to condition (2.2), 
would then be given by equation (2.5). Such a choice of 
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L with the deformation equation given by equation (3.4) 
would also mean    0 LA A  . Following the proce-
dure of the paper the reader may easily verify that such a 
choice of  0A  will lead to a divergent solution! Thus 
the choice of  0A  , as well as L , is very important in 
arriving at a series solution with assured convergence by 
the HAM. This does not, however, mean that this should 
not work for other problems. This is the rationale behind 
the particular choice of  0A   in the present problem 
and how that helps in homotopically arriving at the solu-
tion  NLA  . It is quite obvious from the above discus-
sion that Equation (2.12) is, in fact, the right zeroth-order 
deformation equation for the present problem. 
 
4. Results and Conclusion 
 
Before we venture into the results and discussions, we 
make a small observation on the given equation. By ap-
plying suitable scaling we now show that it is possible to 
group 1 2 0, andQ Q a as a coefficient of the cubic nonli-

nearity. Dividing Equation (2.1) throughout by 1Q  and de-

noting 1Q  by * , and also 
1Q


 by * , the equation re-

duces to 

 *
* * 32

1

1 sin
Q

A A A
Q

              (4.1) 

The condition for solving Equation (4.1) continues to 
be Equation (2.2). Now replacing A  by 0a A  in Equa-

tions (4.1) and (2.2), we get on simplification the fol-
lowing equation: 

 
2

* * 30 2
*

1

1 sin ,
a Q

A A
Q

A


          (4.2) 

Subject to  

 0 1.A                  (4.3) 

This illustrates the fact that Equation (2.1) can be scaled 
to obtain a particular GL-equation. So without loss of ge-
nerality, we consider the case of 1 2 01, 4and 1Q Q a    

in Equations (2.1) and (2.2) and illustrate the HAM for 
this case. With the above observation it goes without 
saying that the method applies to any real GL-equation 
with a time-periodic coefficient, the latter rendering the 
GL-equation non-autonomous. 

We now introduce the following terminologies before 
going ahead with the discussion of the results in Figures 1-4: 

Zeroeth-order HAM solution 

   (0)
0NLA A   

First-order HAM solution 

       1
0 1NLA A A     

Second-order HAM solution 

         2
0 1 2NLA A A A       

And so on. 
The solution of the given equation has been obtained 

in the following form by the HAM: 

 , ,
0 0

( ) ,i n i n m
NL m n m n

m n

A c e c e e   
 

   

 

    (4.4) 
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Figure 1. Curve of residual error RE  versus   for 

1 2 0Q =1, Q =4, 1, 0a   . Broken line:    1
NLA   Dash-dotted 

line:    3
NLA   Solid line:    5

NLA  . 
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Figure 2. Comparison of the exact solution (2.3) with    3
NLA   

using 1 / 2   for 1 2 0Q =1, Q =4, 1, 0a   . Solid line: ex-

act solution (2.3) Symbols :    3
NLA  . 
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Figure 3. The HAM results using 1 / 2   for 

1 2 0Q =1, Q =4, 1, 1 5, 10a     . Solid line    3
NLA  ; 

Symbols    10
NLA  . 
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Figure 4. The HAM results ( )A   using 1 / 2   for 

1 2 0Q =1, Q =4, 1, 1 5a   . Line in blue: 10  ; Line in red: 

50  . 

where 1i   . In order that the 0 ( )A  expressions in equa-

tions (2.6) and (4.4) match, 0,0c  and 1,0c  must take the 

value 1a  and  0 1a a  respectively. Also, we confirm 

that the obtained solution has the two solutions  EA   

and  A   as limiting cases. We now move on to the 

discussion of the results, firstly we discuss the unmodu-
lated case and secondly the modulated case. 

Figure 1 is a plot of the residual error  RE   versus 

the auxillary parameter  for 0   (unmodulated 
case). In the discussion that follows the superscript ‘n’ in 
the residual error indicates that the nth-order HAM solu-
tion has been used in calculating the error. We need to 
observe the following from the figure and the same is 
computationally important in the HAM: 
 When 1  , increasing the order results in 

increasing the residual error, thus the series is divergent. 
Besides, choosing any a value of   in the region 

1 0.8     results in divergent series. However, choos-
ing any a value of   in the region 0.6 0    results 
in convergent series. Obviously, there exists such a re-
gion 0B    , where B  is a constant, that choosing 

any a value of   in this region results in convergent 
HAM series. It is unnecessary to determine the exact 
value B  of the boundary. For example, from Figure 1 it 
is obvious that the HAM series converge by choosing 
any a value of   in the region 0.6 0   . Besides, 
as proved by Liao [4], all of these convergent HAM se-
ries converge to the same result for given physical para-
meters, although the convergence rate is dependent upon 
the choosing value of  . 

opt , the value of   that gives the minimum residual 

error, depends on the order of the solution, the minimum 
residual error itself being different in each order. The 
Table 1 illustrates this point. 

We observe from the above table that increasing the 
order and choosing opt  in each case results in decreas-

ing the minimum error. This means that the series solu-
tion by HAM, to a desired accuracy, depends on not only 
the order but also on  . This subtle point in the method 
is important for the computation. From the above table 
one might guess 1 / 2opt    for high-order approxi-

mations. 
Computationally speaking, any value of   around its 

optimum value (such as 1/ 2  ) gives us a conver-
gent series solution with a fast convergence rate but after 
many more terms than that of the case of .opt   It is 

on this reason that   in this paper has also been termed 
as the convergence-control parameter. The series of func-
tions (4.4) has its terms that are continuous and differen-
tiable and hence converges uniformly to the sum of the 
series and the control of its rate of convergence (a new 
feature of the method) is taken care of by  . Figure 2 is 
also for the unmodulated case using 1/ 2  . This 

Table 1. The value of opt  for three different values of HAM. 

Order of the HAM (n) Minimum Error    
R

n
optE   opt  

1 2.84 310  -0.59 

3 5.72 510  -0.55 

5 2.02 610  -0.54 
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shows the matching of the third-order HAM solution 
with the exact solution (2.3). 

In the modulated case ( 0  ), we use the same pro-
cedure for finding opt  as that in the unmodulated case. 
Figure 3 shows the matching of the results of the 
third-order and tenth-order HAM solutions using 1/ 2  , 
thereby implying that the third-order solution is good 
enough for the modulated case also. With an improper 
choice of   (including the value -1) this would not 
have been the situation. We would, in that case, have 
slowing down of convergence or even divergence as the 
case may be. Figure 4 shows the convergent solution 
(using 1/ 2  ) of the tenth-order HAM solution for 
two values of  . Clearly the effect of increasing   is 
to decrease the amplitude. 

We observe in Figures 1-4 that the obtained ampli-

tudes ( ) ( )k
NLA  are quite small. This can be offered an 

explanation as given in what follows. For large  , one 
can get the asymptotic expression 

 0 1 0 1 1 1( ) cos sinA a a a e              

From Equation (2.23). Substituting this into Equation (2.1), 
and neglecting the high-order terms, one gets the error E 
in the form: 

   1 1 2 1 1 1 23 sin 3 cos .E Q Q Q               

Setting 1 1 2 1 1 1 23 0 and 3 0Q Q Q          , 

the amplitude of the harmonic terms turns out to be 
2 2

1 2 2 2
1/ 9Q

  
 

.Since   ranges from 0.01 to 

0.2 and 10  , the amplitude is rather small, as shown in 
the four figures.   

Figure 5 is a plot of the Nusselt number ( )Nu  , de-
fined in Equation (A25) of the appendix, versus slow 
time   for two different values of  . Clearly the ef-
fect of increasing frequency is to decrease the magnitude 
of the Nusselt number, thereby also meaning that heat 
transfer in a Rayleigh-Bénard convective system can be 
regulated using vibration of the system in the vertical 
direction, viz, gravity modulation. A physical problem 
involving a nonlinear differential equation with a time- 
periodic coefficient has been solved in series-form using 
the HAM and it is possible to do the same with other 
types of GL-equations as discussed in the introduction to 
the paper. The Mathematica program that implements the 
HAM in this paper is recorded in appendix B. 

 
5. Conclusions 
 

The series solution by HAM is a good alternative to 
the numerical solution of the Ginzburg-Landau equation  



N
u(
)

0 1 2 3
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Figure 5. The HAM results ( )Nu   using 1 / 2   for 

1 2 0Q =1, Q =4, 1, 1 5a   . Line in blue: 10  ; Line in 

red: 50  . 

 
with a time-periodic coefficient, as so it is for many other 
non-linear differential equations—both ordinary and par-
tial (see [2-11]).  
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APPENDIX A 

 
Derivation of the Time-Periodic 
Ginzburg-Landau Equation 

 
Consider the classical Rayleigh-Bénard problem with 

gravity modulation (or g-jitter as it is called). The con-
servation of mass, linear momentum and energy in the 
problem are respectively governed by: 

                 . 0q 


                            (A1) 

 0 2
ˆ.( )

q
q q p g g k q

t
            

   
 (A2)  

  2.T
q T T

t


  


            (A3) 

where q


 is the velocity, 0 is the density at the refer-

ence temperature 0T  (temperature of the upper plate), p 

is the pressure,   is the density, g is the acceleration 

due to gravity, g   is the time-dependent gravity mod-

ulation due to the vibration of the Rayleigh-Bénard setup, 
 is the dynamic coefficient of viscosity, T is the tem-

perature and   is the thermal diffusivity of the liquid. 

The equation of state is given by 

  0 01 T T                 (A4) 

where   is the coefficient of thermal expansion. 
Let us consider the two-dimensional convection in the 

x-y plane with velocity components in the x and y direc-
tions denoted by u and v respectively. Now eliminating 
the pressure p between the x- and y-components of the 
linear momentum equation, introducing the stream func-
tion   and using the equation (A4) in the resulting 

equation, we get 

     
 

2

2 4
0

,
1

0 ,

g tT
g g

t x g x y

 
     

   
      

   
  

(A5) 

Introducing   into the equation (A3), we get  

2 ψ T ψ T
- χ T + - = 0,
τ x y y x

           
       (A6) 

The equations (A5) and (A6) are rendered dimension-
less using the following scaling: 

Space coordinates           d 

Time                    
2d
χ   

Temperature              T   
where d is the vertical distance between the parallel low-
er and upper bounding plates of infinite horizontal extent 

and T is the temperature difference between the lower 
hot plate and the upper cold plate. Using the above scal-
ing, equations (A5) and (A6) turn out to be: 

   
 
 

2

2 4
,1 1

1
,

T
gm R

Pr t x Pr x y

 
 

  
     

  
 

 (A7) 
2 ψ T ψ T

- T = - + ,
t x y y x

           
        (A8) 

where  

 
.

g t
gm

g


                 (A9) 

The boundary condition to solve equations (A7)-(A8) 
in dimensionless form is: 

2

2

0 and 1 on 0

0 and 0 on 1

ψ = ψ =  T = y = ,

ψ = ψ =  T = y = .




  (A10)  

The conduction profile is  

ψ = 0,  and T = 1- y              (A11) 

Now we impose finite-amplitude perturbations on the 
basic quiescent state (A11) as 

ψ =Ψ(x, y,t), T = 1- y+Θ(x, y,t).        (A12) 

     

 

2 2 21

41

Ψ Ψ
Ψ + Ψ - Ψ

Pr t x y y x

θ
= R + gm + Ψ

x

 
 
 

∂ ∂ ∂ ∂ ∂∇ ∇ ∇
∂ ∂ ∂ ∂ ∂

∂ ∇
∂

 (A13) 

Θ Ψ Θ Ψ Θ Ψ
+ - - = Θ

t x y y x x
     


     

      (A14) 

where Pr and R are respectively the Prandtl and Rayleigh 
numbers. 

The boundary condition (A10) for the perturbations 
reads as: 

0 and 1 0

0 and 0 1

2

2

Ψ = = Ψ  Θ=  on y = ,

Ψ = = Ψ  Θ=  on y = .,

∇

∇
   (A15) 

We now use the following asymptotic expansion in 
equations (A13) to (A15): 

2
0 2

2 3
1 2 3

2 3
1 2 3

R R R

   

  

  
      
        







       (A16) 

where 0R  is the critical value of the Rayleigh number at 

which convection sets in when gravity modulation is 
absent. 

We use the time variations only at the slow time scale 
2τ = ε t  and ( )gm   is taken to be: 

   2
2 sin .gm = ε            (A17) 
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At the lowest order, we have 

4
10

2
1

0

0

R
x

x

                         

       (A18) 

The solution of the lowest order system is  
 

 

1

1 2

Ψ = A sink x sinπy
c

k
cΘ = A cosk x sinπy

cδ











       (A19)  

The system (A18) gives us the critical value of the 
Rayleigh number and the wave number for stationary 
onset and their expressions are given below: 

427
.

0 2
R = ,      k

c4

 
          (A20)  

 
Amplitude Equation (Ginzburg-Landau equation) and 
Heat Transport for Stationary Instability 
 

At the second order, we have 

4
2 210

2
2 22

ΨR
x

Θ
x

                         

       (A21) 

where 
21

1 1 1 1
22

0

,

x y y x

  


           

       (A22) 

The second order solution can be obtained as:  

2

2 2

2 2

A

8πδ
c

Ψ = 0,

.k
Θ = - sin2πy,







        (A23) 

The horizontally-averaged Nusselt number, Nu , for 
the stationary mode of convection(the preferred mode in 
this problem) is given by 

 

2

2 /
(1 )

2 0 0
2 /

(1 )
2 0 0

C
c

c
c

kk
y dx

y
x y

Nu
kk

y dx
y

y








 

 
  
   


 
 
   

  (A24) 

Substituting equation (A23) in equation (A24) and 
completing the integration, we get 

 
  22

2
.

δ
ck A

Nu = 1+
4




              (A25) 

 
 
 

At the third order, we have 

4
3 310

2
3 32

,
R

x

x

                            

        (A26) 

where 

 
 2

12 1
31 0 2

0

1
sin

Pr

R Θ
R

R x
 



    
        

  (A27) 

1 2
32

Ψ Θ
-

τ x y

  
  

               (A28) 

Substituting  , 1Ψ  and 2Θ  from equations(A19) 

and (A23)  into equations (A27) and (A28), we get 

 
2

2
02

0

2

sin sin sin
31

sin sin

c
c

k A R
R k x y

R

A k x y
cPr

  


 

 
     

 



 (A29) 

 

32

3 3

2 2
cos sin 3 sin cos sin

4
c c

c c

k A k
k x y y A k x y  

 

 

  
 

(A30) 
The solvability condition for the existence of the third 

order solution is: 

31 0 32

21
ˆ ˆ 0,

0 0

ck
R dx dy

y x


         

 
  (A31) 

where  

2

ˆ ( )sin sin ,

ˆ ( ) cos sin .

c
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k
Θ A k x y

 

 

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


 


        (A32) 

From equation (A31), on substituting equations (A29), 
(A30) and (A32) into the equation and completing the 
integration, we get the Ginzburg-Landau equation for 
stationary instability with a time-periodic coefficient in 
the form: 

  32
1 2 2

0

sin ,
RdA

Q A Q A
d R

 


 
    

 
    (A33) 

where 

   
2 2

0
1 24

Pr
and .

4 1Pr 1
c ck PrR k

Q Q
Pr

 


       (A34) 

The main paper deals with the solution of equation 
(A33) using the HAM, subject to the initial condition 
  00 ,A a where 0a  is a chosen initial amplitude of 

convection. In calculations we may assume 2 0R R  to 
keep the parameters to the minimum. 
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APPENDIX B 
 

Mathematica Program for the Problem 
 
(**********************************************************************************) 
(                       *Computer-Assisted HAM Series Solution of                     *) 
(*                      Ginzburg-Landau equation (2.1) (with g-jitter)                     *) 
(*                        subject to initial condition (2.2)                               *) 
(**********************************************************************************) 
(*                                                                                           *) 
(*                  A'-Q1*[1+delta*sin(omega*tau)]*A+Q2*A^3 = 0, A(0)=a0             *) 
(*                                                                                              *)  
(*                               November 16, 2009                                 *) 
(**********************************************************************************) 
(**********************************************************************************) 
(*                         Define GetR[k] using equation (2.20)                          *) 
(**********************************************************************************) 
GetR[k_]:=Module[{temp,j,n,sint}, 
sint = (Exp[omega*t*I]-Exp[-omega*t*I])/2/I;  
temp[1] = Sum[a[n]*aa[k-1-n],{n,0,k-1}]; 
temp[2] = at[k-1]-Q1*(1+delta*sint)*a[k-1]+Q2*temp[1]; 
R[k] = Expand[temp[2]]; 
]; 
 
(**********************************************************************************) 
(*                      Set initial guess A[0] using equation (2.6)                         *) 
(**********************************************************************************) 
a1 = Sqrt[Q1/Q2]; 
a[0] = a1 + (a0-a1)*Exp[-gamma*t]; 
A[0] = a[0]; 
At[0] = D[U[0],t]; 
 
(**********************************************************************************) 
(*                         Define the function chi_{k} using equation (2.17)               *) 
(**********************************************************************************) 
chi[k_]:=If[k<=1,0,1]; 
 
 
(**********************************************************************************) 
(*           Define derivatives of a(t) and an intermediate sum required in equation (2.20)       *) 
(**********************************************************************************) 
GetAll[k_]:=Module[{temp}, 
at[k] = D[a[k],t]//Expand; 
aa[k] = Sum[a[n]*a[k-n],{n,0,k}]//Expand; 
]; 
 
(**********************************************************************************) 
(*                                     Define L                                    *) 
(**********************************************************************************)  
L[f_]:= D[f,t] + gamma*f; 
 
(**********************************************************************************) 
(*                                MOST IMPORTANT!!                             *) 
(* The code works best if the solution of equation (2.15) is obtained by Mathematica! It saves on time *) 
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(* by doing this way and hence this procedure is adopted in the program in the following three *)  
(* segments of the code. On a similar reason we have not used the trigonometric sine function directly *)  
(*                                    in the code                                    *) 
(**********************************************************************************)  
(**********************************************************************************) 
(*                                Define the inverse of L                              *) 
(**********************************************************************************)  
Linv[f_]:=Block[{temp,g,G,s}, 
temp = DSolve[L[g[t]] == f,g[t],t]/.C[_]->0; 
G = g[t]/.temp; 
s = G[[1]]//Expand; 
Expand[s] 
]; 
 
(**********************************************************************************) 
(*             Define the linearity of inverse of L, i.e., Linv[f_+g_]  := Linv[f] + Linv[g];       *) 
(**********************************************************************************)  
Linv[p_Plus] := Map[Linv,p]; 
Linv[c_*f_] := c*Linv[f] /; FreeQ[c,t]; 
 
(**********************************************************************************) 
(*                        Define the residual error using equation (3.1)                     *) 
(**********************************************************************************) 
GetErr[k_,tmax_]:=Module[{temp,sint}, 
sint = (Exp[omega*t*I]-Exp[-omega*t*I])/2/I;  
error[k] = At[k] - Q1*(1+delta*sint)*A[k] + Q2*A[k]^3//Expand; 
err[k] = Integrate[error[k]^2,{t,0,tmax}]/tmax; 
]; 
 
(**********************************************************************************) 
(*                                     Main Code                                   *) 
(**********************************************************************************) 
ham[m0_,m1_]:=Module[{temp,k,n,C1}, 
For[k=Max[1,m0],k<=m1,k=k+1, 

Print[" k = ",k]; 
GetAll[k-1]; 

GetR[k]; 
RHS[k] = hbar*R[k]//Expand; 

Special = Linv[RHS[k]]; 
temp = Special + chi[k]*a[k-1]; 

C1 = -temp/.t->0; 
a[k] = temp + C1*Exp[-gamma*t]//Expand;  

A[k] = A[k-1] + a[k]//Expand; 
At[k] = D[A[k],t]; 
If[PRN == 1,  
GetErr[k,tmax]; 
Print[" error = ", err[k]//N];  
]; 
]; 
Print["Successful !"]; 
]; 
exact = 1/Sqrt[Q2/Q1-(Q2/Q1-1/a0^2)*Exp[-2*Q1*t]]; 
(* Input parameters  *) 
a0 = 1; 
Q1 = 1;  
Q2 = 4; 
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delta = 1/5; 
omega = 10; 
hbar = -1/2; 
gamma = 2*Q1; 
PRN = 0; 
tmax = 10; 
(* Print out the input parameters *) 
Print[" a0 = ",a0]; 
Print[" Q1 = ",Q1]; 
Print[" Q2 = ",Q2]; 
Print[" delta = ",delta]; 
Print[" omega = ",omega]; 
Print[" hbar = ",hbar]; 
(* get fifth-order approximation *) 
ham[1,5]; 
 
 


