
Journal of Modern Physics, 2013, 4, 10-13 
http://dx.doi.org/10.4236/jmp.2013.46A003 Published Online June 2013 (http://www.scirp.org/journal/jmp) 

A Reverse Approach to Superconductivity 

Shuiquan Deng1,2, Claudia Felser1, Jürgen Köhler2 
1Institute of Physics, Johannes Gutenberg Universität Mainz, Mainz, Germany 

2Max-Planck-Institutfor Solid State Research, Stuttgart, Germany 
Email: deng4th@yahoo.com 

 
Received March 19, 2013; revised April 19, 2013; accepted May 16, 2013 

 
Copyright © 2013 Shuiquan Deng et al. This is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ABSTRACT 

In contrast to the normal operator approach, our reverse approach starts from the state vector in the Hilbert space. In this 
work, we give a concise introduction to our recent work in this aspect. By postulating a superconducting state (SCS) to 
be a generalized coherent state (GCS) constructed by pure group theory, we show that some important properties such 
as the Cooper pairs of the SCS naturally appear in this new framework without resorting to the microscopic origin. This 
latter characteristic renders this theory a more universal feature in comparison with other theories developed by the op- 
erator approach. The studies on the residue of the pair-wise constraint due to the collapse of the GCS lead to a 
“flat/steep” band model for searching new superconductors. 
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1. Introduction 

The normal approach to understand a physical pheno- 
menon is to study the relevant Hamiltonian of a quantum 
system,     ,:H D H X  R H X  where D H  
and R(H) are the domain of definition and range of H, 
respectively, X is the complex Hilbert space, Н. This 
operator approach has its advantage in that the accuracy 
of the obtained energy by variational method is at least 
one order higher than its object, i.e. the trial state vector. 
Moreover if the proposed microscopic Hamiltonian H 
catches the essentials of the physics, the microscopic 
mechanism is revealed. However, when facing compli- 
cated problems such as superconductivity in high Tc cu- 
prates, iron pnictides, organics etc., the choices of H and 
D(H) become so controversial that no consensus can be 
reached until today. On the other hand, this approach 
provides little help in searching or improving new su- 
perconducting materials. Our approach, we call it a re- 
verse approach, starts from the state vector motivated by 
the coherent character of the superconducting state. This 
character has long been realized by earlier studies [1,2]. 
Furthermore, the connection between the Glauber coher- 
ent state [3] and the superfluidity as well as supercon- 
ductivity has also been studied in the framework of “off- 
diagonal long-range” order and Landau-Ginzburg model, 
respectively [4,5]. However, a basic problem remains be- 
cause the construction of Glauber coherent states is based 

on the boson operators instead of Fermion operators. 
Also are the Cooper pairs not well-defined bosons due to 
their very strong overlaps. This problem impeded further 
development along this line. In this work, we apply the 
generalized coherent state theory [6] to resolve this pro- 
blem. 

2. GCS for Fermions  

The dynamic group of a system consisting of Fermions is 
decided by the Lie algebra of operators contained in the 
Hamiltonian as well as the transition operators between 
different energy levels of the system. A generic Hamilto- 
nian for a many Fermion system can be written as fol- 
lows, 

,

1

2ij i j ijlm i j m l
i j ijlm

H H c c V c c c c             (1) 

where Hij=i|J|j, Vijlm=ij|v|lm and J is a single particle 
operator for kinetic energy, while Vijlm is the effective 
Coulomb interaction renormalized by other possible 
elementary excitations such as phonons etc. The effects 
of the external field of ionic cores can be included in Hij. 
The set of operators,   1 2 1 ,c c i j m    c ci j ij , i j

  , 
cicj  1 i j m    span a Lie algebra, ğ, with the Lie 
bracket defined as the multiplication operation between 
the elements of ğ: ğ × ğ → ğ. For example, 
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The dynamic Lie group Ğ, of the system described by 
Equation (1) can thus be constructed by the standard ex- 
ponentiation procedure of the elements of ğ, i.e. 

 for all g  ğ. However one 
should note that the multiplication rule in Ğ is as usual 
for operators, which is different from that in ğ. 

Ğ  

With the knowledge of Ğ, the second step to construct 
a GCS is to choose a fixed vector, 0 , in the Hilbert 
space, Н. Actually, in the pure group theory approach of 
Perelomov [6], the choice of 0  is arbitrary. However, 
as an initial condition this will decides the structure of 
both GCS and the phase space of the dynamic system. A 
natural choice for a system with even Fermion modes is 
to let 0 , i.e. the vacuum state for Equation (1). 
Now we consider a subgroup, Њ, of Ğ which acts on 

0 
0  

as a gauge transformation as follows, 

 
0

i hh 0e , h Њ   .           (3) 

When Њ is maximal, it is called the isotropy subgroup 
for the vector 0 . It is obvious that all of the operators 
 1 2i j ijc c    in ğ span a subalgebra of ğ, and generate 
a subgroup of Ğ which satisfies Equation (3), because 

0 0i jc c   . According to group theory, 
each element g  Ğ can be uniquely factorized into the 
product of the element of Њ and the element of the quo- 
tient group Ğ/Њ: g = Qh, h  Њ, Q  Ğ/Њ. Thus the 
action of any element g  Ğ on 

 1 ,i j m 

0  is given by 

 
0 0 ei hQ :  g g .         (4) 

Equation (4) defines the GCS for an arbitrary Lie 
group for a dynamic system [6,7]. The essential part in 
the right side is 0Q  , which gives a homeomorphic 
map between the GCS and the manifold of the quotient 
group Ğ/Њ. Therefore the GCS preserve all of the to- 
pological properties of the quotient group Ğ/Њ mani- 
fold. 

The explicit form of a GCS, |g, can be calculated by 
using a suitable basis for the Lie algebra ğ. For example, 
for a semisimple Lie algebra the Cartan basis provides a 
convenient representation for the operators. In the pre- 
sent case, |g can be represented as the following form 
in the standard Cartan basis, 

   exp . . 0ij i j
i j

c c H c   



 g 0T Q     (5) 

where ij are complex parameters and H.c. indicates 
Hermitian conjugate. It is obvious that the exponential 
part, T(Q), in Equation (5), is essentially a coset repre- 
sentation of Ğ/Њ. The further simplification of Equa- 
tion (5) can be realized by using the faithful matrix rep- 

resentation of Ğ/Њ [8,9]. By using the anti-commutation 
relation of Fermion operators and the Baker-Campbell- 
Hausdorff formula, we have shown [10] that the simpli- 
fied form of Equation (5) is equivalent to the following 
form, 

  0ij ij i j
i j

u v c c  



 g

1i i

i i

c
T T

c





 

   
   

   

.         (6) 

Equation (6) is formally the same as the BCS wave 
function [11], if a single particle state is indicated by 
(k,). Where k,  indicate the momentum quantum num- 
ber and spin index, respectively. However, it needs not 
be so because in our formalism, the sub-index i repre- 
sents a set of quantum numbers which defines a single 
particle state. Therefore the GCS approach for the su- 
perconducting state is more general, which actually in- 
cludes both BCS and Bose-Einstein condensation ap- 
proach for high Tc [12] as a special case. For the latter 
case, a real space site coordinate should be associated to i, 
as did in Reference [13]. The pairing of quasi-particles as 
created by GCS is generally in a Fock space, which sets 
the necessary condition for superconductivity, while the 
Cooper pair in BCS theory provided just a sufficient 
condition. This new pairing is schematically illustrated in 
Figure 1 for the case of 6 Fermion states system. 

The transformation to single particle operators by T(Q) 
in Equation (5) is shown below, 

.             (7) 

Within framework of the GCS theory, it can also be 
shown that Equation (7) is a more general form of Bo- 
goliubov quasiparticle transformation. Therefore the most 
basic properties for a superconductor can be readily ob- 
tained in the framework of GCS theory. 

An interesting question is that when the GCS breaks as 
the system enters into the normal state, whether the pairs 
still leaves some residue in the electronic structure. This 
question has been studied in the last few years in the 
flat/steep band model [13-16]. 

3. Normal State Characteristics 

In the GCS approach, the physical origin for forming the 
GCS is not explored. However, this question is very im- 
portant in both basic studies and application aspects. To 
explore the origin, we need to reverse to Equation (1), the 
 

 

Figure 1. Three terms contained in a GCS of a 6 Fermion 
states system, the vacuum term and the other terms are 
omitted. 
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starting Hamiltonian, to study the characteristics of pa- 
rameters, Hij and Vijlm, for superconducting systems. As 
required by the GCS condition, it can be expected that 
for a superconductor, the pairwise constraint for charge 
carriers should be stronger than that for non-supercon- 
ductors even in normal state. This signifies smaller group 
velocities of the charge carriers in the single particle rep- 
resentation for superconductors. This consideration mo- 
tivates the following Hamiltonian for normal state su- 
perconductors [16,17], 

s f
k k k k k

k k
e kH s s f f    .         (8) 

where s and f refer to steep and flat band, respectively, 
and the summation index k includes the spin coordinates. 
This Hamiltonian describes the normal state character of 
quasi-particles around the Fermi level for superconduc- 
tors. Two important implications of Equation (8) can be 
deduced. The first one is the inhomogeneous character of 
charge carriers in k space. If the electron-phonon cou- 
pling dominates the low energy renormalization proc- 
esses, Equation (8) entails the distinct coupling of steep 
and flat band electrons with different phonon modes. 
This manifests itself as a pronounced peak-like structure 
of electron-phonon(e-p) coupling in electron and phonon 
phase spaces, a character theoretically predicted before 
the discovery of MgB2 (see Reference [13] for a review). 
In Figure 2, we show our results for Hg and MgB2 calcu- 
lated by linear response theory and first-principle method. 

The second implication is a two gap structure, an in- 
trinsic property for any two-band model [18]. However, 
we emphasize that only when the weights of steep and 
flat band electrons are comparable and there exist no 
other smearing processes can the two-gap structure be 
observed, a fact also confirmed in MgB2. 

It should be pointed out that the flatness of a band may 
be due to other factors such as symmetry, low-dimen- 
sionality, and other single particle renormalization of Cou- 
lombic or magnetic character. Only pairwise constraints 
are relevant to superconductivity. 
 
 

(a)  (b)

Figure 2. Peak-like structures of e-p coupling projected on- 
to the phonon first Brillouin zones. The largest balls cor- 
respond to the (q) values of 12.3 in (a) for Hg and 25.2 in 
(b) for MgB2, respectively. 

By using an interaction-bipolaron model [16], we have 
shown that the electronic structures of a large class of 
metallic material obtained through internal/external dop- 
ing for the parent covalent insulators. Obviously, the 
charge carriers in such systems still subject to the pair- 
wise constraint inherited from the parent system, regard- 
less of their phononic or magnetic origin. High-Tc cu- 
prates and Fe-based superconductors are typical such 
examples. Due to the consideration of pairwise constraint, 
we attribute the same origin for general pairwise con- 
straint in superconductors and covalency at low energy 
scale. They divide at higher energy scale, because large 
covalency occurs for Heitler-London bipolaron, which 
always leads to localization in a chemical bond. On the 
other hand, superconductivity can only occur for mobile 
charge carriers, which sets an upper bound to the pair- 
wise constraint. This unified picture for covalence and 
pairing of mobile charge carries leads to a prediction 
initially for diamond [19] and later for all insulators [10]. 
Namely, “Any covalent insulator when doped into metals 
by what ever means becomes a superconductor at low 
temperature”. 

4. Conclusion 

By applying the GCS theory to study the superconduc- 
tivity, we have shown that the most important features of 
superconductors can be easily obtained through pure group 
theory approach, and the results are more general. As 
GCS theory is a powerful tool, it can be expected that 
more interesting results can be obtained with the further 
studies. The flat/steep band model as motivated by the 
general pairwise constraint of charge carriers has pre- 
dicted 1) an inhomogeneous behavior of charge carriers 
in the momentum space, the origin of pronounced peak- 
like structure for conventional superconductors; 2) an 
intrinsic two gap structure; 3) a clue to search new su- 
perconductors. Our researches indicate that the flat/steep 
band condition is fulfilled by the known superconductor 
from low to High Tc superconductors. 
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