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ABSTRACT 

Microbiological experiments show that the colonies of the bacterium bacillus subtilis placed on a dish filled with an 
agar medium and nutrient form varied spatial patterns while the individual cells grow, reproduce and migrate on the 
dish in clumps. In this paper, we discuss a system of reaction-diffusion equations that can be used with a view to mod- 
elling this phenomenon and we solve it numerically by means of the method of lines. For the spatial discretization, we 
use the finite difference method and Galerkin finite element method. We present how the spatial patterns obtained de- 
pend on the spatial discretization employed and we measure the experimental order of convergence of the numerical 
schemes used. Further, we present the numerical results obtained by solving the model in a cubic domain. 
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1. Introduction 

According to microbiological experiments, the colonies 
of the bacterium bacillus subtilis placed on a dish filled 
with an agar medium and nutrient form varied—and sur- 
prisingly regular—patterns while the individual cells 
grow, reproduce and migrate on the dish in clumps (see, 
e.g., [1,2]). As bacterium is an extremely primitive or- 
ganism, the question arises whether the motion of the 
cells is governed by some simple underlying principles 
that can be described by mathematically. 

The general approach to the pattern formation in biol- 
ogy is based on continuous and discrete dynamical mod- 
els or neural models as described in [3]. In this case, the 
simple character of the motion of the bacteria resembles 
the Brownian motion and indicates the analogy with the 
diffusion limited aggregation (see [4]). Detailed analysis 
of the results of the experiments coupled the diffusion 
effects with the reactive behaviour of the species and led 
to the derivation of the model based on the reaction-dif- 
fusion system (see [5,6]) which was studied in [2,7]. In 
this article, we discuss it with respect to the accuracy and 
reliability of the numerical solution. 

The model is based on the assumption that the cells 
can be divided into two classes: the active and the inac- 
tive. The active cells, with concentration  at the 
point x and time t, grow, move, feed on the nutrient and 
reproduce; whereas the inactive ones, with concentration 

 ,u x t

 ,w x t

2n

, do not do anything. Finally, let  be the 
concentration of the nutrient. 

 ,v x t

n  
Then the time and space evolution of the concentra- 

tions within a bounded spatial domain , with 
  or 3n  , is governed by the system  

 d , ,
u

u uv a u v u
t


          (1)    



,
v

v uv
t


  


                   (2) 

 ,
w

a u v u
t





                  (3) 

for x  and , where d represents a diffusion 
coefficient, and the function  is of the form  

0t 
 ,a a u v 

  0

1 2

, ,

1 1

a
a u v

u v
a a


  




 

  
 

with positive constants 0 1 . The system (1)-(3) is 
subject to the initial conditions  

2, ,a a a

   
   
 

0

0

,0 ,

,0 ,

,0 0

u x u x

v x v x

w x







               (4) 

for x  where 0 00 ,u v M   are  C   functions 
(  represents the closure of ), and  M  is a positive 
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constant; and the boundary conditions  

0, 0,   , 0,
u v

x t
n n

 
   

 
 

where  denotes the boundary of , and  
u

n




 stands  

for the derivative of  in the direction of the unit out- 
ward normal. 

u

This problem can be written in the following weak 
formulation:  

     d
, d , , ,

d
u u uv a u v u

t
 ,           (5) 

    d
, ,

d
v v uv

t
,                (6) 

for all , 

 , 


 from the Sobolev space  in the 
sense of distributions on a time interval , 
where  stands for the inner product  

 1
2W 
 0,I T , 0T 

    , dx x x  

  , where ;   1W 2, 

 d
,

d
w a u v u

t
               (7) 

for all x  in the sense of distributions on I ; and  

     0 00 ,  0 ,  0u u v v w w   0 ,        (8) 

where  0 0 0 2, ,u v w L  . 
The existence and uniqueness of the weak solution are 

proved in [8]. The authors also proved that  

      lim , 0, , uniformly in ,
t

u t v t v
   

for a positive constant , and that there is a function 
 (a final colony pattern) such that  

v
w

   lim , , uniformly in .
t

w x t w x
   

Figure 1 shows the observed types of the spatial pat-  
 

 

Figure 1. Types of the spatial patterns in 2Ω �  pro-
duced by the model studied. The patterns D-H correspond 
to the results of microbiological experiments. The results 
A-C have not been found in literature. 

terns in 2   (the darker points correspond to the 
higher concentration of the cells) that have been found by 
the author by solving system (1)-(3). 

2. Numerical Schemes 

The model under consideration was solved numerically 
by means of the method of lines; for the spatial discreti- 
zation, the finite difference method and Galerkin finite 
element method (the latter only in the case 2  ) 
were used. For the sake of simplicity, we use only square 
and cubic domains  , specifically  

   , ,L L L L       

and  

     , , , ,L L L L L L L 0        . 

2.1. Finite Difference Method 

In the two-dimensional case, the domain  is covered 
by a regular orthogonal mesh of  nodes 


 2

1N    ,i jx y ,  

with the step 
1

,h N
N

 � . Let us denote  

   ,, ,i j i ju x y t u t  (  ,i jv t  and  are defined 
similarly). The spatial derivatives in (1) and (2) are ap- 
proximated by the second order central difference, and 
the derivatives in the boundary conditions are approxi- 
mated by the first order backward difference. Therefore, 
we obtain the following system of ODE’s:  

 ,i jw t
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d
, ,
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t
  

where in the first two equations, ; 
and in the third equation,  Further, on 
the boundary we get  

, 1, 2,3, ,i j N 
,1, 2, , .N

1
, 0i j 
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, 1, , 1,

,0 ,1 ,0 ,1

, , 1 , , 1

,        ;

,   ;

,        ;

,   ;

j j j j

N j N j N j N j

j j j j

j N j N j N j N

u t u t v t v t

u t u t v t v t

u t u t v t v t
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for 1, 2,3, , 1j N  ;  
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This system is supplemented with the initial conditions  

       
   

, 0 , 0

, 0

0 , ,   0 ,

0 , ,

i j i j i j i j

i j i j

u u x y v v x y

w w x y

 


 

where . , 0,1,2, ,i j N 
In the case of the cubic domain , the spatial discre- 

tization is derived analogically. These two schemes will 
be called MOL. 



2.2. Galerkin Finite Element Method 

In this method, both the linear (triangular) and the bilin- 
ear (square) Lagrange elements (see [9]) are used. The  

basis  
1

hN

j j



 of the finite dimensional subspace   hS 

 1
2W   consists of the functions which are linear on 

each triangle (in the first case) or bilinear on each square 
(in the second case) and take the value 1 at one node of 
the spatial mesh and vanish at the other nodes. In the first 
case, two types of triangulations are used; they are de- 
picted in Figure 2. In the case of the square finite ele- 
ments, the same spatial mesh as in the method of lines is 
utilized. Further, the integrand in   , ,a u v u   in (5) is 
approximated by its interpolant (see [9]). Finally, the 
numerical scheme is simplified employing the method of 
lumped masses (see [10,11]).  

Hence, writing  

       
1 1

and ,
h hN N

j j j
j j

u t u t v t v t j 
 

        (9) 

where Nh is the number of the nodes of the spatial mesh, 
Equations (5)-(7) are transformed as follows:  
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        d
,

d k k k kw t a u t v t u t
t

         (12) 

for 1,2,3, , hk N  , where hI  stands for the interpo- 
lant. 

This system is supplemented with the initial conditions  

       
   

0 0

0

0 , ,0 ,   0 , ,0 ,

0 , ,0 ,

k k k k k k

k k k

u u x y v v x y

w w x y

 


 

where 1,2,3, , hk N  . 
The schemes corresponding to the cases depicted in 

Figure 2 will be denoted FEMHS, FEMRHS and FEMSS, 
respectively. 

The convergence of the numerical schemes derived 
can be proved as in [12-14]. The systems of ODE’s de- 
rived were solved by means of the Runge-Kutta-Merson 
method (see [12,15]) with the adaptive time step control. 

3. Quantitative Studies 

In the two-dimensional case, the experimental order of 
convergence (EOC), see [16], was measured; only the 
error of the functions u and v was considered. As the 
model studied does not possess an analytical solution, 
Equations (1) and (2) were transformed into the form  

 d ,

,

u
u uv a u v u f

t
v

v uv g
t

,


    



   


       (13) 

where the additional terms  , , f f x y t  and  
 , ,g g x y t  assure that the system possesses the solu- 

tion  

       
       

, , sin sin sin ,

, , sin sin sin ,

u x y t t kx ly

v x y t t kx ly





 

 
 

where , , ,k l    are positive constants. 
Therefore, it turns out that  

 
        
          

2 2
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, , , , , , , , , , , ,

f x y t

kx ly t d t k l

u x y t v x y t a u x y t v x y t u x y t

    
 

 

          
   

2 2, , sin sin cos sin

, , , ,

g x y t kx ly t t k l

u x y t v x y t

    


 

 

 
(11) 

Figure 2. Meshes used for the Galerkin FEM. 

Copyright © 2013 SciRes.                                                                                AJCM 



O. PÁRTL 150 

and 
π

2
k l

L
   (from the boundary conditions). 

The modified system was solved analogically as the 
original one (the functions f and g were approximated in 
the same way as the functions u and v in (9)). The EOC 
coefficient   is defined by  

   
   

1

2

1

2

,
h

h

z t z t h

hz t z t

  
  

  
          (14) 

where , 
ih  represents the numerical solu- 

tion corresponding to the parameter i  which denotes 
the constant distance between two nodes on the bottom 
side (according to Figure 2) of the spatial mesh used 
(there are N nodes on this side), and 

 T
,z u v z

h

  denotes a suit- 
able norm. The following form of Equation (14) was 
used:  

 
    

 
    

1
1

2
1

1

2

max

,
max

T
i

T
i

h
i

h
i

z i z i
h

hz i z i






 

 





 

  
  

      (15) 

where  stands for a final time, and T   is a time step 
between the compared time levels of the solution. Two 
norms    hz t z t  were used:  

     

            
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2 2

1
2 2 2 ,

h L

h hL L

z t z t

u t u t v t v t



 



   
 

     

           
,

h L

h hL L

z t z t

u t u t v t v t


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
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with  

         

          
2

22
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max ,

i i
h hL

i

i i
h L i

u t u t h u t u t

u t u t u t u t






  

  



h

 

where  denote the nodal values of the pro- 
jections of  and  onto a regular orthogonal 
mesh with a spatial step . 

   ,i i
hu t u t
 u t  hu t

href

The parameters were chosen as follows: L = 1, 0 1a  ,  

1

1

2400
a  , 2

1

120
a  , , 0.1d  1   and 1  . Fur-  

ther,  (for the schemes FEMRHS, FEMHS and 
FEMSS) or  (for the scheme MOL), 

10T 
5T  1  ; and 

the mesh for the evaluation of the error had 4001 4001  
nodes   . ref

The results are summarized in Tables 1-4. The EOC 
coefficients in the i-th row are computed from the data in 
the i-th and -th row. The schemes FEMRHS, 
FEMHS and FEMSS exhibit the second order of conver- 
gence in h, and MOL exhibits the first order. Further,  

0h  .0005

 1i 

Table 1. Results of the EOC measurement for the scheme 
MOL. 

MOL 

N h error L error 2L  EOC L  EOC 2L

51 0.040000 0.529063 0.359874 - - 

101 0.020000 0.272997 0.178844 0.954555 1.008790

151 0.013333 0.184121 0.119209 0.971336 1.000361

201 0.010000 0.138648 0.089272 0.986087 1.005317

251 0.008000 0.111235 0.071390 0.987218 1.001756

301 0.006667 0.093114 0.059582 0.975576 0.991976

351 0.005714 0.079951 0.051065 0.988096 0.999921

401 0.005000 0.069768 0.044574 1.020631 1.018478

 
Table 2. Results of the EOC measurement for the scheme 
FEMSS. 

FEMSS 

N h error L error 2L  EOC L  EOC 2L

51 0.040000 0.077088 0.050120 - - 

101 0.020000 0.018893 0.012299 2.028651 2.026828

151 0.013333 0.008375 0.005448 2.006352 2.008133

201 0.010000 0.004706 0.003061 2.003423 2.004120

251 0.008000 0.003002 0.001958 2.015349 2.002681

301 0.006667 0.002084 0.001359 2.002393 2.002250

351 0.005714 0.001613 0.000999 1.659161 1.998986

401 0.005000 0.001173 0.000764 2.385993 2.002004

 
Table 3. Results of the EOC measurement for the scheme 
FEMHS. 

FEMHS 

N h error L error 2L  EOC L  EOC 2L

51 0.040000 0.158644 0.105160 - - 

101 0.020000 0.037661 0.025031 2.074658 2.070788

151 0.013333 0.016615 0.011027 2.018022 2.021731

201 0.010000 0.009307 0.006184 2.014809 2.010393

251 0.008000 0.005990 0.003953 1.974826 2.006225

301 0.006667 0.004136 0.002743 2.031748 2.005075

351 0.005714 0.003031 0.002014 2.014271 2.001729

401 0.005000 0.002330 0.001542 1.972873 2.002282


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Table 4. Results of the EOC measurement for the scheme 
FEMRHS. 

FEMRHS 

N h error L  error 2L  EOC L  EOC 2L

51 0.040000 0.083246 0.054366 - - 

101 0.020000 0.019875 0.013025 2.066438 2.061396

151 0.013333 0.008724 0.005726 2.030527 2.026983

201 0.010000 0.004880 0.003206 2.019736 2.015895

251 0.008000 0.003113 0.002047 2.014464 2.010246

301 0.006667 0.002157 0.001420 2.011809 2.007288

351 0.005714 0.001583 0.001043 2.007380 2.002991

401 0.005000 0.001226 0.000803 1.911572 1.957965

 
FEMSS appears to be the most accurate of all. 

4. Computational Studies of Pattern 
Formation 

This section provides the comparison of final spatial pat- 
terns obtained by the four schemes under consideration 
in a square domain. All the results were computed for  

0 1

1
500,  1,  

2400
L a a    and 2

1

120
a   (similarly as  

in the articles [2] or [7]); and the initial conditions were 
of the form  

    
 

5 4 4
0

0

, 0.4 exp 10

, 0.

u x y x y

w x y

    



,
 

The function 0  was chosen constant. Therefore, the 
pattern types vary depending on the values of the pa- 
rameters  and . 

v

d0

The results presented (Figures 3-11) have the form of 
coloured pictures with a final shape of the function w, 
computed by one of the schemes, in shades of grey; each 
of the coloured lines in these pictures traces the spatial 
shape of the function w computed by one of the schemes 
for one value of N. Further, in Tables 5-7 there are dif- 
ferences between these shapes expressed by means of the 

- and -norm (plus one another table for the com- 
bination 0 , ). The value of the 2 - 
norm is divided by the area of . The time evolution of 
the patterns is shown in [17]. 

v

L 2L
v  0.25 0.25d  L



Note that, in general, it cannot be stated that one 
scheme is more or less accurate than the other schemes 
because, typically, each of them produces another shape. 
In author’s opinion, the most significant difference be- 
tween the schemes consists in the symmetry of the results 
obtained by the scheme FEMHS. 

 

Figure 3. Comparison of the schemes for v0 = 0.1, d = 0.05 
and N = 1601. 
 

 

Figure 4. Comparison of the schemes for v0 = 0.071, d = 0.12 
and N = 1601. 
 

 

Figure 5. Comparison of the schemes for v0 = 0.087, d = 0.05 
and N = 1601. 
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Figure 6. Comparison of the schemes for v0 = 0.09, d = 0.1 
and N = 1601. 
 

 

Figure 7. Comparison of the schemes for v0 = 0.055, d = 0.1 
and N = 1601. 
 

 

Figure 8. Comparison of the schemes for v0 = 0.06, d = 0.1 
and N = 1601. 

 

Figure 9. Comparison of the schemes for v0 = 0.065, d = 0.1 
and N = 1601. 
 

 

Figure 10. Comparison of the patterns computed by the sc- 
heme MOL for v0 = 0.065, d = 0.1 and different values of N. 
 

 

Figure 11. Comparison of the patterns computed by the sc- 
heme FEMHS for v0 = 0.1, d = 0.05 and different values of N. 
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Table 5. Comparison of the final shapes of the function w. 
The shapes compared are depicted in Figures 3-6. In the 
case v0 = 0.25, d = 0.25, the results are too similar to be com-
pared graphically. 

0 0.1,  0.05,  1601v d N    

schemes difference L  difference 2L  

MOL:FEMSS 11.9667 10  54.6688 10  

MOL:FEMHS 12.4377 10  54.3610 10  

MOL:FEMRHS 11.9978 10  53.2744 10  

FEMSS:FEMHS 11.9668 10  52.5633 10  

FEMSS:FEMRHS 11.3298 10  52.0264 10  

FEMHS:FEMRHS 12.0281 10  52.5920 10  

0 0.071,  0.12,  1601v d N    

schemes difference L  difference 2L  

MOL:FEMSS 11.2000 10  52.5271 10  

MOL:FEMHS 11.1659 10  53.0695 10  

MOL:FEMRHS 11.0848 10  51.4082 10  

FEMSS:FEMHS 11.3434 10  52.8857 10  

FEMSS:FEMRHS 11.2010 10  51.6973 10  

FEMHS:FEMRHS 11.2617 10  52.9721 10  

0 0.087,  0.05,  1601v d N    

schemes difference L  difference 2L  

MOL:FEMSS 18.0538 10  41.0412 10  

MOL:FEMHS 17.5287 10  41.2401 10  

MOL:FEMRHS 17.8884 10  41.1858 10  

FEMSS:FEMHS 18.0536 10  41.2202 10  

FEMSS:FEMRHS 18.0510 10  41.0690 10  

FEMHS:FEMRHS 17.8884 10  41.0980 10  

0 0.09,  0.1,  1601v d N    

schemes difference L  difference 2L  

MOL:FEMSS 26.2300 10  65.3668 10  

MOL:FEMHS 28.4376 10  67.6022 10  

MOL:FEMRHS 25.0979 10  64.4019 10  

FEMSS:FEMHS 27.7855 10  67.2132 10  

FEMSS:FEMRHS 21.9048 10  61.3308 10  

FEMHS:FEMRHS 27.5321 10  67.2604 10  

0 0.25,  0.25,  1601v d N    

schemes difference L  difference 2L  

MOL:FEMSS 33.1984 10  72.8760 10  

MOL:FEMHS 33.1058 10  72.7736 10  

MOL:FEMRHS 32.9924 10  72.2338 10  

FEMSS:FEMHS 31.0946 10  71.0970 10  

FEMSS:FEMRHS 46.5345 10  87.6301 10  

FEMHS:FEMRHS 47.8323 10  71.0060 10  

Table 6. Comparison of the final shapes of the function w. 
The shapes compared are depicted in Figures 7-9. 

0 0.55,  0.1,  1601v d N    

schemes difference L  difference 2L  

MOL:FEMSS 13.4125 10  69.0358 10  

MOL:FEMHS 16.4508 10  51.3066 10  

MOL:FEMRHS 12.9847 10  67.8921 10  

FEMSS:FEMHS 13.1521 10  68.2631 10  

FEMSS:FEMRHS 24.3125 10  61.3477 10  

FEMHS:FEMRHS 13.5638 10  68.5530 10  

0 0.06,  0.1,  1601v d N    

schemes difference L  difference 2L  

MOL:FEMSS 1.4660 56.0531 10  

MOL:FEMHS 1.4187 55.8731 10  

MOL:FEMRHS 1.4181 55.8869 10  

FEMSS:FEMHS 14.4940 10  51.7464 10  

FEMSS:FEMRHS 25.0207 10  62.0685 10  

FEMHS:FEMRHS 14.2681 10  51.7111 10  

0 0.065,  0.1,  1601v d N    

schemes difference L  difference 2L  

MOL:FEMSS 1.4219 41.1143 10  

MOL:FEMHS 1.3156 57.0282 10  

MOL:FEMRHS 1.3946 59.4370 10  

FEMSS:FEMHS 1.1538 41.0058 10  

FEMSS:FEMRHS 19.5829 10  57.4929 10  

FEMHS:FEMRHS 1.0295 57.0227 10  

 
Table 7. Comparison of the final shapes of the function w 
computed by one scheme with different values of N. The 
shapes compared are depicted in Figures 10 and 11. 

0 0.065,  0.1v d   

N  difference L  difference 2L  

501:1001 18.1949 10  53.4029 10  

501:1601 19.2009 10  53.8776 10  

1001:1601 11.9787 10  68.1497 10  

0 0.1,  0.05v d   

N  difference L  difference 2L  

501:1001 11.9079 10  55.7197 10  

501:1601 11.8888 10  56.5279 10  

1001:1601 11.7536 10  54.8792 10  
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5. Three-Dimensional Pattern Formation 

This section provides examples of the spatial patterns 
that arise if we consider the cubic domain with 200L   
or . Similar types of the initial conditions and 
values of the parameters as in the two-dimensional case  

300L 

were used, i.e., , 0 1a  1

1

2400
a   and 2

1

120
a  ;  

    
 
 

5 4 4 4
0

0

0

, , 0.4 exp 10 ,

, , 0,

, , const.

u x y z x y z

w x y z

v x y z

     





 

(  denotes the third spatial coordinate). The values of 

0  and d  represented variable parameters of the 
model. 

z
L N, ,v

The results are presented in Figures 12-25. They have 
the form of coloured isolines of the functions u, v or 

. The time evolution is shown only for one combi- 
nation of parameters; in the other cases, the solution 
evolves analogically. 

u w

6. Conclusions 

It follows from the numerical results that the shape of the 
numerical solution strongly depends on the spatial dis- 
cretization employed. The pattern type, nevertheless, 
seems to be stable, if the spatial mesh is not too coarse. 
In author’s opinion, therefore, the numerical methods 
under consideration can be used for the investigation of 
the pattern growth described by the system of the reac- 
tion-diffusion equations discussed. 

As for the measurement of the experimental order of 
convergence, it is remarkable that the method of lumped 
masses does not seem to decrease it. Finally, the three- 
dimensional model exhibits very complex behaviour as 
well. 
 

 

Figure 12. Isolines of u for L = 200, N = 201, v0 = 0.06 and d 
= 0.1 at t = 2500. 

 

Figure 13. Isolines of u for L = 200, N = 201, v0 = 0.06 and d 
= 0.1 at t = 3500. 
 

 

Figure 14. Isolines of u for L = 200, N = 201, v0 = 0.06 and d 
= 0.1 at t = 6500. 
 

 

Figure 15. Isolines of v for L = 200, N = 201, v0 = 0.06 and d 
= 0.1 at t = 6500. 
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Figure 16. Isolines of u for L = 200, N = 201, v0 = 0.06 and d 
= 0.1 at t = 8000. 
 

 

Figure 17. Isolines of u + w for L = 200, N = 201, v0 = 0.06 
and d = 0.1 at t = 8000. 
 

 

Figure 18. Isolines of u + w for L = 200, N = 201, v0 = 0.055, 
d = 0.1 and t = 13,000. 

 

Figure 19. Isolines of u + w for L = 200, N = 201, v0 = 0.065, 
d = 0.1 and t = 9000. 
 

 

Figure 20. Isolines of u + w for L = 200, N = 201, v0 = 0.07, d 
= 0.1 and t = 6000. 
 

 

Figure 21. Isolines of u + w for L = 300, N = 301, v0 = 0.1, d = 
0.05 and t = 6000. 
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Figure 22. Isolines of u + w for L = 300, N = 301, v0 = 0.071, 
d = 0.12 and t = 6000. 
 

 

Figure 23. Isolines of u + w for L = 300, N = 301, v0 = 0.087, 
d = 0.05 and t = 12,000. 
 

 

Figure 24. Isolines of u + w for L = 300, N = 301, v0 = 0.09, d 
= 0.1 and t = 6000. 

 

Figure 25. Isolines of u + w for L = 300, N = 301, v0 = 0.25, d 
= 0.25 and t = 800. 
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