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ABSTRACT 

In [1], the author introduced a wavelet multigrid method that used the wavelet transform to define the coarse grid, in-
terpolation, and restriction operators for the multigrid method. In this paper, we modify the method by using symmetric 
biorthogonal wavelet transforms to define the requisite operators. Numerical examples are presented to demonstrate the 
effectiveness of the modified wavelet multigrid method for diffusion problems with highly oscillatory coefficients, as 
well as for advection-diffusion equations in which the advection is moderately dominant. 
 
Keywords: Multigrid; Wavelets; Biorthogonal Wavelets 

1. Introduction 

It is well known that the multigrid method is very useful 
in increasing the efficiency of iterative methods used to 
solve systems of algebraic equations approximating par-
tial differential equations. However, when confronted by 
certain problems, for example diffusion problems with 
discontinuous or highly oscillatory coefficients, the stan-
dard multigrid procedure converges slowly, with a rate 
dependent on the initial mesh size, or may even break 
down. 

In [2], the wavelet transform, which uses both high- 
and low-pass filter operators, is used to derive a new ap-
proach for the two-level multigrid method, under the 
assumption that the matrix on the fine grid is symmetric. 
Some one-dimensional examples are also examined in 
that paper. In [1,3], the author extended the results of this 
approach to two dimensions and to multiple-level multi-
grid, dropping the assumption of a symmetric fine grid 
operator. This approach was considered for several rea-
sons. First, in [4], the authors investigate similarities be-
tween multiresolution analyses and multigrid methods, 
which similarities motivate investigation into wavelet- 
based multigrid methods. In addition, in [5], for example, 
it is shown that a wavelet coarse grid operator defined by 
a Schur complement provides a good approximation to 
the homogenized coarse grid operator, and, as stated in 
[1,3], homogenization has been used to improve conver-
gence of multigrid methods for diffusion problems with 

periodic coefficients (e.g., [6-9]) because the homoge- 
nized operator provides a very good approximation of the 
important properties (e.g., eigenvalues and eigenfunc- 
tions) of the original fine grid operator. Also a wavelet 
coarse grid operator defined by a Schur complement has 
a natural connection to the interpolation and restriction 
operators. Furthermore, wavelets can be applied to prob- 
lems with periodic as well as non-periodic coefficients. 
Finally, the application of wavelet operators to vectors 
and matrices maintains the properties of the original 
problem. 

Recently, symmetric biorthogonal wavelets have re-
ceived attention for use in image compression (see, e.g., 
[10,11]), based on the lifting scheme developed by 
Sweldens in [12]. In fact, symmetric biorthogonal wave-
lets are the basis for lossless compression in the JPEG 
2000 standard (see, e.g., [13]). In addition, using bior-
thogonal wavelets to define multigrid methods has been 
explored in other papers. For example, in [14], the au-
thors use biorthogonal wavelets adapted to a differential 
operator with constant coefficients, from which they de-
velop a system of linear equations, and then use a bior-
thogonal two-grid method to solve. In [15], the authors 
consider solving ill-conditioned symmetric Toeplitz sys-
tems by using a two-grid method in which the interpola-
tion and restriction operators are defined using the Cohen, 
Daubechies, and Feauveau (CDF) 9/7 symmetric bior-
thogonal wavelets. In [16], the authors use biorthogonal 
wavelets as preconditioners for an algebraic multigrid 
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method which they use to solve various partial differen-
tial equations. 

In this paper, the wavelet multigrid method introduced 
in [1] is modified by using symmetric biorthogonal 
wavelet transforms to define the requisite operators. The 
organization of this paper is as follows. In Section 2, 
some background on multigrid methods and wavelets is 
given. Section 3 discusses the wavelet multigrid method 
developed from the application of the biorthogonal 
wavelet transform to a general second order partial dif-
ferential equation in two dimensions. In Section 4, nu-
merical considerations are discussed. Section 5 presents 
some numerical results of applying the modified wavelet 
multigrid method using symmetric biorthogonal wavelets 
to two diffusion problems with highly oscillatory coeffi-
cients and to three advection-diffusion problems with 
moderately dominant advection. The rapid convergence, 
relatively independent of the initial mesh size, of the 
modified wavelet multigrid method using biorthogonal 
wavelets is demonstrated for these problems. For all nu-
merical results in this paper, the V-cycle multigrid 
method is used with one iteration of the smoother for the 
coarsening and the correcting phases. 

2. Background 

2.1. Multigrid Methods 

The problem we are concerned with solving is the system 
of linear equations  

,Au b                   (1) 

where A  and  arise from discretization of a (partial) 
differential equation on some grid , where  is the 
step size. 

b
h h

We briefly describe the V-cycle method used in this 
paper. Given some interpolation operator, 2 ,h

hI  where 
the superscript refers to the fine grid and the subscript 
refers to the coarse grid, and a restriction operator, 2 ,h

hI  
we can define a multigrid method recursively. For the 
two-level V-cycle method, we do the following.  

Step 1: Relax a few (usually one or two) steps on the 
fine grid  to get an initial guess . h hu

Step 2: Compute the residual  and 
restrict the residual to the coarse grid . 

h h hr b A u 
2 2 2,h h h

hr I 
2 2 2eh h h

h

hr
Step 3: Solve the error equation A r  on the 

coarse grid. 
Step 4: Set  and again relax a few 

(usually one or two) steps on the fine grid. 

2
2 eh h h

hu u I  h

Based on this two-level method, the V-cycle multigrid 
scheme is defined recursively. Some good references for 
multigrid methods are [17-19]. 

One type of multigrid scheme is algebraic multigrid, 
which only uses the structure of the matrix in the prob-
lem to determine the coarsening process (choice of coarse 

grid and definition of interpolation/restriction operators). 
This process is performed in order to ensure that the 
range of interpolation approximates the errors not suffi-
ciently reduced via relaxation. For a more detailed de-
scription of algebraic multigrid methods, see, e.g., [19- 
22]. Note that in [21] the relationship between algebraic 
multigrid and Schur complements is discussed. Algebraic 
multigrid methods are of particular interest, in that they 
are the nearest methods to the approach used for the 
wavelet multigrid method. 

It is expected that the multigrid method should con-
verge at a rate independent of the fine mesh size. How-
ever, for certain problems, including elliptic problems 
with highly oscillatory coefficients, such convergence 
does not occur for the standard multigrid method. One 
difficulty is that the small eigenvalues of A are not nec-
essarily associated with smooth eigenfunctions, a key 
assumption for the standard multigrid method. For such 
problems, it is not as simple to approximate the smooth 
eigenfunctions on the coarse grids. New methods for 
restriction and interpolation, or for treating the entire 
problem, must be found. One such approach is the wave-
let multigrid method discussed in [1,3] and the modified 
wavelet multigrid method discussed in this paper. 

2.2. Wavelets and Biorthogonal Wavelets 

For background, a brief description of wavelets, and then 
of biorthogonal wavelets, follows. For more details, the 
reader is referred to [10,23-25]. 

2.2.1. Wavelets 
Wavelets basically separate data (or functions or opera-
tors) into different frequency components and analyze 
them by scaling. The wavelets can be chosen to form a 
complete orthonormal basis of  2L  . Due to the scal-
ing of the wavelet functions, they have time- or space- 
widths that are related to their frequency: at high fre-
quencies, they are narrow, and at low frequencies, they 
are broader. Therefore, they provide good localization of 
functions in both the frequency domain and physical 
space, and representation by wavelets seems natural to 
apply to the analysis of fine and coarse scales. 

A multiresolution analysis (MRA) consists of a se- 
quence of closed subspaces 1j jV  of V   2L  , the 
scaling spaces, that satisfy certain conditions. For every 

,j  jW  is defined as the orthogonal complement of 

jV  in 1.jV   The jW  are called the wavelet spaces. 
Define jH  and jG  to be the operators that transform 
the basis of the space jV  to the bases of the spaces 1jV   
and 1jW  , respectively. The properties of jH  and jG  
(assuming jH  and jG  are real-valued) are 

(i) T T
j j j jH H G G I  . 

(ii) T T 0j j j jH G G H  . 
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(iii) T T
j j j jH H G G  I . 

jH  and jG  can be thought of in terms of filter 
theory, with jH  being a low-pass filter (i.e., allowing 
only low frequency values to pass) and jG  being a 
high-pass filter (i.e., allowing only high frequency values 
to pass). The wavelet transform, 1 1:j j jV V jW   , 
is defined by 

.j
j

j

H

G

 
  
 

  

Note that j  is orthogonal due to the properties of 

jH  and jG . 
In the discrete context, the wavelet operators are 

computationally efficient. With respect to the Haar mul-
tiresolution analysis, application of the low-frequency 
operator  jH  to a vector in  involves only  
operations. The same holds for the high-frequency op-
erator 

n 2n

 jG
4

. So, the application of the wavelet transform 
requires only  operations. In general, application of 
the wavelet transform requires  operations, as-
suming a finite number of coefficients for the low- and 
high-frequency operators. 

n
 n

In two dimensions, the tensor product of one-dimen- 
sional multiresolution analyses is used. So jV  is de-
fined by j jV V V j . These spaces jV  then form an 

MRA in . For each ,  2 2L  j jW  is defined as 

the orthogonal complement of jV  in  So, 1.jV

      
1 1 1

.

j j j

j j j j j j j j

j j

V V

V V W V V W W W

   

       
 

V

V W

  (2) 

Then, analogous to the one dimensional case, define 
the operators jH  and jG  so that 

y x
j j jH H H  

and 

.

y x
j j
y x

j j j
y x
j j

G H

G H G

G G

 
 

  
 
 

 

jH  and jG  have the same properties as their one- 
dimensional analogues. As in the one-dimensional case, 
the wavelet transform, 1: 1j j j j V V W  , is defined 
by 

.j
j

j

H

G

 
  
 

  

Again, due to the properties of jH  and jG , j  is 
orthogonal. 

2.2.2. Biorthogonal Wavelets 
A biorthogonal multiresolution analysis consists of two 

dual multiresolution analyses. In other words, there are 
two dual sequences of closed subspaces of  2L  , 

1 1and ,j j j jV V V V     

both of which satisfy the conditions of a multiresolution 
analysis. For every j , 1jV   can be written as the 
direct sum of jV  and jW , and 1jV 

  can be written as 
the direct sum of jV  and 

jW . 
jW  and jW  are de-

fined so that their biorthogonal basis functions, the 
wavelets 



 j x  and  j x , respectively, satisfy cer-
tain conditions including forming a Riesz basis of 

 2L  . For symmetric biorthogonal multiresolution 
analyses, these wavelet bases (and the bases for the scal-
ing spaces) are symmetric. Define jH  and jG  to be 
the operators that transform the basis of the space jV  to 
the bases of the space 1s jV   an 1d jW  , respectively; 
and define jH  and jG  to be the operators that trans-
form the basis of the sp e ac jV  to the bases of the spaces 

1jV 
  1 and jW 

 , respectively. The prope s  rtie of jH , 

jG , jH  and jG  are as follows: 

(i) T T
j j j jH H G G I  . 

(ii) T T 0j j j jH G G H  . 

(iii) T T
j j j jH H G G I  . 

The wavelet transform, 1 1:j j j jV V W 

1 1

  and the 
dual transform :j j j jW    

 

V V

H

 are defined by 

and ,j j
j j

j j

H

G G

 
         


   

where we use   to denote the direct sum for ease of 
notation. Note that j  is orthogonal to j

  due to the 
properties of jH , jG , jH  and jG . Also, note that in 
terms of filter theory, jH  and jH  are low-pass filters, 
and jG  and jG  are high-pass filters. 

The discrete biorthogonal wavelet transforms are also 
computationally efficient, and application of these op-
erators requires  n  operations, assuming a finite 
number of coefficients for the low- and high-frequency 
operators. 

In two dimensions, we use the tensor product in a 
similar way as for the standard multiresolution analysis. 
So, jV  is defined by j jV Vj V  and jV  is defined 
by 



j jV V  . These spaces jV  and jV  then form dual 
MRAs in 



 2 2L  . jW  and jW  are defined so that 
their basis functions are the tensor products of the 
one-dimensional wavelets and scaling functions. For 
each 



j , 1jV  can be written as the direct sum of 

jV  and jW , and 1jV  can be written as the direct sum 
of jV  and jW . So, we have 

      
1 1 1

,

j j j

j j j j j j j j

j j

V V

V V W V V W W W

   

         
 

V

V W

 (3) 
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fine grid, apply the wavelet transform j
  to both sides 

of the equation and use the orthogonality of j
  with 

j  to obtain 

and similarly for 1jV , where we again use    to de-
note the direct sum for ease of notation. 

Then, analogous to the one-dimensional case, define 
the operators jH , jG , jH  and jG  so that:  

 

T

T ,

j j j j j

L L

LH LH
j j j

HL HL

HH HH

L u f

u f

u f
L

u f

u f



   
   
    
   
   
   

  



   

 
       (5) 

and ,y x y x
j j j j j jH H H H H H     

and 

and .

y x y x
j j j j
y x y x

j j j j j j
y x y x
j j j j

G H G H

G H G G H G

G G G G

  
  

    
  

   

 

 

 
 

where ,L Lu f jV  and  
, , andj j j jH G H G

1:

 have the same properties as their 
one-dimensional analogues. As in the one-dimensional 
case, the wavelet transform and the dual transform 

   T T
, , , , , .LH HL HH LH HL HH ju u u f f f W  

The main idea for the remainder of the method follows 
in a similar manner as the wavelet multigrid method 
using orthogonal wavelet transforms. First, T

j j jL 
ˆ

 is 
computed, and the resulting matrix, denoted by jL , is 
partitioned to obtain 

1j j j j V V W  1  and 1:j j j j V V W     , are 
defined by 

and .j j
j j

j j

H H

G G

  
         




   

T T
T

T T
ˆ

.

j j j j j j
j j j j

j j j j j j

j j

j j

H L H H L G
L L

G L H G L G

T B

C D

 
    

 
 

  
 

 


  

     (6) 

Again, due to the properties of jH , jG , jH  and 

jG , j  is orthogonal to j
 . 

3. The Modified Wavelet Multigrid Method 
Using Biorthogonal Wavelets 

Then, the block UDL decomposition of ˆ
jL

1ˆ

, where U 
is block upper triangular with unit diagonal, D is block 
diagonal, and L is block lower triangular with unit 
diagonal, is computed and is used to find jL  as follows. 
The block UDL decomposition of ˆ

jL  is determined to 
be 

The two-dimensional wavelet multigrid method was in-
troduced in [3] and [1]. Both of these works assumed 
orthogonal wavelet operators. Here, we describe the 
modified wavelet multigrid method using biorthogonal 
wavelet transforms. For the work in this paper, the bior-
thogonal wavelet transform is formed using symmetric 
biorthogonal wavelets. 

11

1

00
.

00
j j j jj j

j
j jj

IT B D CI B D
L

D C IDI





    
         

  (7) Given the problem 

,jL u f                  (4) 

The inverse of this factorization of ˆ
jL  is then 

computed, which after multiplication of the factors gives 
where jL  represents the operator obtained by discretiz-
ing a two-dimensional partial differential equation on the  
 

   
   

1 11 1

1

1 11 1 1 1 1

ˆ ,
j j j j j j j j j j

j

j j j j j j j j j j j j j j j

T B D C T B D C B D
L

D C T B D C D C T B D C B D D

  


     

           

1

1




 

where we observe that 1
j j j jT B D C  is the Schur complement of jD  in ˆ

jL . Define 

.

L

L LH
j

H HL

HH

u

u u
v u

u u

u

 
            
 

  

Solving for  gives v

   
   

11 1

11 1 1 1
.

j j j j j j j j

j j j j j j j j j j j j

T B D C H B D G
v f

D C T B D C H B D G D G
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Since  T T T,  j j j jv u u v H G    v



. So, 

    1 11
T T 1 T

1

0
.

0

j j j jj j j j
j j j j j

jj

H B D GT B D C
u H G D C G f

GD

 




        



                   (8) 

 
Motivated by the work in [1], we denote 

 T T 1
2 2h

h j j j jI H G D C            (9) 

and 

2 2

2
h

h j j j 1
jI H B D G            (10) 

as the interpolation and restriction operators, respectively. 
Plugging the interpolation and restriction operators de-
fined in (9) and (10) into (8) gives, 

  11 2 T 1
2 .h h

h j j j j h j j ju I T B D C I f G D G f
        (11) 

In multigrid, the error correction on the coarse grid is 
sought, i.e., the equation being solved is (11) with u re-
placed by the error, e, and f replaced by the residual, r: 

  11 2 T 1
2 .h h

h j j j j h j j je I T B D C I r G D G r
      

Assuming that T 1
j j jG D G r   is small, i.e., r is almost in 

 the error can be approximated by  TRange ,jH

  11 2
2 ,h h

h j j j j he I T B D C I r
   

resulting in 

 1 2
2 .h

j j j j h h hT B D C e I r   

The above assumption is good for most of the classical 
iterative methods, like Jacobi and Gauss-Seidel. There-
fore, the coarse grid operator is defined by 

1
1 ,j j j j jL T B D C
              (12) 

which we again note is the Schur complement of jD  in 
ˆ .jL  

Note: This coarse grid operator is the same as the 
operator obtained by solving for Lu : 

   
   

1 11 1

11 1 .

1
L j j j j L j j j j j j

j j j j L j j H

u T B D C f T B D C B D f

T B D C f B D f

  

 

   

  

H


The main numerical issue is fill-in in the matrices as the 

 

The above procedure may be repeatedly applied until 
the desired coarseness is reached. Notice that this method 
is applicable to problems which are not symmetric. 
However, regardless of the discretization scheme used, 
the operator matrix must be a square matrix whose row 
size is a multiple of four. 

4. Numerical Considerations 

multigrid method involves increasing levels in the V- 
cycle. Thresholding is used to reduce fill-in in the com-
putation of 1, , ,  andj j j j jT B C D L  . Furthermore, al-
though jD  is is dense due to fill- 
in. How r, a significant amount of decay is observed, 
indicating that it is possible to increase the efficiency of 
the method in this area. 

One step towards ach

 not dense, its inverse 
eve

ieving this goal is to compute an 
approximate inverse using a factorized sparse approxi-
mate inverse. In this work, we use the approach sug-
gested by Salkuyeh in [26]. Salkuyeh’s approach is based 
on Kolotilina and Yeremin’s factorized sparse approxi-
mate inverse algorithm, FSAI [27,28]. The goal is to de-
termine a factorization of the form 1 1

U LA G D G  , 
where UG  is upper triangular, LG  is lower , 
and D iagonal. This approxim ion is determined by 
computing sparse approximate solutions to the systems 
of equations 

triangular
is d at

 TT T 0,0, ,1 , 1, 2, , ,i iA g i    n      (13) 

 T0,0, ,1 , 1, 2, , ,i iA h i    n       (14) 

where iA  denotes the ith principal submatrix of A , 
 L ijG g , and  U ijG h . In Salkuyeh’s paper, these 

self-preconditioned minimum 
residual (MR) algorithm with dropping in the search di-
rection (similar to that proposed by Chow and Saad in 
[29]), starting with an initial sparse guess for the solution 
and iterating while the solution has fewer than the speci-
fied number of nonzeros, denoted by the value lfil. In our 
work, lfil iterations of the MR algorithm are performed in 
order to avoid potential infinite loops. Then, structural 
requirements are enforced; namely, the inverse is re-
quired to have the same structure as the matrix 

systems are solved using a 

jD . In 
addition, thresholding is used to further reduce the l-in 
in the inverse. 

 fil

4.1. Cost of Computing the Approximate Inverse 

ompute sparse ap-
pr

The bulk of the cost of the self-preconditioned MR algo-
rithm with dropping in the search direction can be meas-
ured in terms of the sparse matrix-sparse vector products 
and the sparse vector-sparse vector products. One sparse 
matrix-sparse vector product is required to compute the 
initial residual, and each iteration of the algorithm re-
quires one sparse matrix-sparse vector product and two 
sparse vector-sparse vector products. 

The MR algorithm is used to c
oximate solutions to the system in (13)-(14). For each i, 
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these systems have coefficient matrices that are i i , 
where i ranges from 1 to n , with n  the size of the -
trix whose inverse is bein compu . Thus, the MR al-
gorithm is run 2n  times. 

The final m r contribu

ma
g ted

ajo tions to the cost of the ap-
proximate inverse are the computation of (1) 1D , 
which requires n  scalar inverses, and (2) UG D , 
which requires n z  scalar products, where nnz  
number of nonz  elements in UG , follow y one 
sparse matrix-sparse matrix produc

1G

 is the
L

4.2. Computational Complexity of the 

The s the actual computational 

n
ero ed b

t. 

Approximate Inverse 

following briefly examine
complexity of the approximate inverse for the wavelet 
multigrid method. The value of lfil used to construct the 
approximate inverse of jD  depends on the type of 
problem, the type of wavelet used, the fine grid size, and 
the level in the multigrid method. For all problems and 
wavelets, post-processing is done to ensure that 1

jD  
has the same structure as jD , and thresholding is use  
on all matrices (except for 1

d
 jD  for diffusion problems 

using Haar wavelets). Note this is an improvement 
on the work in [1]. 

Thresholding values 

that 

for the two diffusion examples in 
Section 5.1 are given in Tables 1 and 2. Note that the 
thresholding values for 1

jD  and 1jL   for the 9/7 
symmetric biorthogonal wa s depe n the fine grid 
size and the level of the multigrid method. Similarly, the 
thresholding values for 1

velet nd o

jD  for Daubechies 4 wavelets 
depend on the fine grid s nd the level of the multigrid 
method. 

In term

ize a

s of the lfil chosen for FSAI, for the diffusion 
problem with oscillations in the x-direction, for the 
modified wavelet multigrid method using 9/7 symmetric 
biorthogonal wavelets lfil ranges from 3 to 6, and using 
the 10/6 symmetric biorthogonal wavelets lfil ranges 
from 4 to 10. For that same problem, for the wavelet 
multigrid method using Haar wavelets lfil ranges from 9 
to 11, and using Daubechies 4 wavelets lfil ranges from 3 
to 10. For the diffusion problem with oscillation along 
diagonals, for the 9/7 symmetric biorthogonal wavelets 
lfil ranges from 1 to 6, and for the 10/6 symmetric bior-
thogonal wavelets lfil ranges from 1 to 9. For that same 

problem, using Haar wavelets lfil ranges from 4 to 11, 
and using Daubechies 4 wavelets lfil ranges from 3 to 10. 

Thresholding values for the three advection-diffusion 
examples in Section 5.2 are given in Tables 3-5. Note 
that the thresholding values for 1

jD  (and 1jL   in the 
case of parabolic flow (9/7) and recirculant flow (10/6)) 
for the 9/7 and 10/6 symmetric biorthogonal wavelets 
depend on the fine grid size and the level of the multigrid 
method. Similarly, the thresholding values for 1

jD  (and 

1jL   in the case of recirculant flow) for Daubechies 4 
wavelets depend on the fine grid size and the level of the 
multigrid method.  

For the advection-diffusion problems with moderately 
dominant advection, for parabolic flow, for the modified 
wavelet multigrid method using 9/7 symmetric bior-
thogonal wavelets lfil ranges from 2 to 6, depending on 
the fine grid size and on the level of the multigrid, and 
using 10/6 symmetric biorthogonal wavelets, lfil ranges 
from 2 to 7. Using the wavelet multigrid method with 
Haar wavelets, lfil ranges from 2 to 12 and using it with 
Daubechies 4 wavelets, lfil ranges from 3 to 6. For recir-
culant flow, lfil ranges from 2 to 5 for 9/7 symmetric 
biorthogonal wavelets and from 2 to 4 for 10/6 symmet-
ric biorthogonal wavelets, again depending on the fine 
grid size and on the level. For Haar wavelets, lfil ranges 
from 3 to 8, and for Daubechies 4 wavelets, it ranges 
from 2 to 10. For the problem with skewed vorticity, lfil 
ranges from 4 to 7 for 9/7 symmetric biorthogonal wave-
lets and from 2 to 6 for 10/6 symmetric biorthogonal 
wavelets. Using Haar wavelets, lfil ranges from 2 to 10, 
and using Daubechies 4 wavelets, it ranges from 4 to 9. 

4.3. Storage and Other Computational Issues 

The bulk of the remaining computational work occurs in 
the construction of the intergrid transfer and coarse grid 
operators. The construction of the intergrid transfer and 
coarse grid operators each requires two sparse matrix- 
sparse matrix products and one sparse matrix-sparse ma-
trix difference. 

The storage requirements of the coarse grid and inter-
grid transfer operators are minimized by using sparse 
matrix storage techniques, resulting in storage require-
ments of the order of the number of nonzero elements in 
each matrix. 

 
Table 1. Thresholding values for horizontal diffusion example in Section 5.1. 

Wavelet jT  jB  jC  jD  1

jD  1jL   

sy /7 10 10mmetric 9 0 0 10 0 10 0 10−5 or 10−6 100 or 10−1  

symmetric 10/6 100 100 100 100 10−5 100 

Haar 10−1 100 100

Daubechies 4 

 10−1 N/A 10−1 

100 100 100 100 10− −6  5 or 10 100 
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Table 2. Thresholding values for diagonal diffusion example in 

Wavelet 

Section 5.1. 

jT  jB  jC  jD  1

jD  1jL   

sy /7 10 10mmetric 9 0 0 10 0 10 0 10−5 or 10−6 100 or 10−1  

symmetric 10/6 100 100 100 100 10−6 100

Daubechies 4 10− −6 

 

Haar 10−1 10−1 10−1 10−1 N/A 10−1 

10−1 10−1 10−1 10−1 5 or 10 100 

 
Table 3. Thresholding values for parabolic advection-diffusion example in Section 5.2. 

Wavelet jT  jB  jC  jD  1

jD  1jL   

symmetric 9/7 10−  10−  10−1 10−2 10−4 
10−1 (except for 

second level, 2 1

32 × 32 grid) 

symmetric 10/6 10  10  10  10  10−  or 10−5 −2 −1 −1 −2 4 10−1 

Haar 10−2 100 100

Daubechies 4 

 10−2 10−4 10−2 

10−2 100 100 10− −5  10−2 4 or 10 10−2 

 
Table 4. Thresholding values for advection-diffusion example with recirculant flow in Section 5.2. 

Wavelet jT  jB  jC  jD  1

jD  1jL   

sy /7 10− − 10− 10− −4 or 10−5 10−mmetric 9 2 10 1 1 2 10 1 

symmetric 10/6 10−2 10−1 10−1 10−2 10−4 10− −2 

Daubechies 4 10− −5 10− −2 

1 or 10

Haar 10−2 10−1 10−1 10−2 10−4 10−2 

10−2 10−1 10−1 10−2 4 or 10 1 or 10

 
Table 5. Thresholding values for advection-diffusion example with skewed recirculant flow in Section 5.2. 

Wavelet jT  jB  jC  jD  1

jD  1jL   

sy /7 10− − 10− 10− −4 or 10−5 10−mmetric 9 2 10 1 1 2 10 1 

symmetric 10/6 10−2 10−1 10−1 10−2 10−4 or 10−5 10−1 

Haar 10−2 10−1 10−1 10−2 
1 r 
128 × 128 grid) 

Daubechies 4 

0−4 (except fo
10−2 

10−2 10−1 10−1 10−2 10−3 or 10−4 10−1 

 
. Numerical Applications 

cal results of applying 

4096 matrix; and a 128 × 128 grid, leading to a 16384 × 5

This section describes the numeri
the modified wavelet multigrid method using symmetric 
biorthogonal wavelets to two diffusion problems with 
highly oscillatory coefficients and to three advection- 
diffusion problems with moderately dominant advection. 
We compare the convergence of the modified wavelet 
multigrid method using both 9/7 and 10/6 symmetric 
biorthogonal wavelets with the wavelet multigrid method 
using both Haar wavelets and Daubechies 4 wavelets. 
For all problems, numerical results are analyzed using, 
for the fine grid in the interior, a 32 × 32 grid, leading to 
a 1024 × 1024 matrix; a 64 × 64 grid, leading to a 4096 × 

16384 matrix. In all problems, the stopping criterion for 
all multigrid methods is 5

2
< 10kr

 , where kr  is the 
residual obtained from the kth iteration of the method. 

5.1. Diffusion Problems 

First, we look at the diffusion problem 

    , 1 inx y,a x y u             (15) 

 , 0 on ,u x y    

where   
 We

is the unit square centered at 
 will examine two cases where 

 0.5,0.5  and 
0.a   ,a x y  is a 
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highly oscillatory function:  
   , 1 0.8sin 10 2π ,a x y x   giving oscillation i  the 

x-direction, and  
n

 , 1 0.8sin 10 2πa x y   , giv- 
ing oscillation along diagonals. Results are examined 
using both 9/7 and 1

x y

0/6 symmetr
s-Seidel ite ethod is used as the

     (16) 

where is the unit square centere

ic biorthogonal wavelets. 
The standard Gaus rative m  
smoother. 

Tables 6 and 7 compare the average convergence fac-
tor per cycle of the modified wavelet multigrid method 
using symmetric biorthogonal wavelets with that of the 
wavelet multigrid method. These tables demonstrate re-
sults using a fixed coarsest grid size of 8 × 8 for each fine 
mesh size. 

For the diffusion problem with oscillation in x, as well 
as the diffusion problem with oscillation along diagonals, 
the convergence of the modified wavelet multigrid 
method using symmetric biorthogonal wavelets is rela-
tively independent of the fine grid size, as it is for the 
wavelet multigrid method using orthogonal wavelets. 
Convergence results for the method using both the 9/7 
symmetric biorthogonal wavelets and the 10/6 symmetric 
biorthogonal wavelets are comparable to the results using 
the orthogonal wavelets for both problems. 

5.2. The Advection-Diffusion Problem 

Here, we are investigating the problem 

0 inu b u             

  on ,u f x   

  d at  0.5,0.5  and 
0 

thods ar
b  . In this problem, difficulties with m

me e encountered due to the  of the 
nts haracteristics

. W

 

ultigrid 
fact that some

compone of the solution oscillate along c  
[30,31] e apply the wavelet multigrid method to these 
problems to overcome this difficulty, since application of 
the wavelet operator preserves the characteristics of the 

original problem. 
To discretize, we use the standard five-point centered 

discretization for the diffusion term and a first order up-
wind scheme for the advection part of the equation. Al-
though using first order upwind introduces artificial dif-
fusion into the solution of the order of the mesh size 
squared, it provides a convenient test of the effectiveness 
of the modified wavelet multigrid method. Symmetric 
Gauss-Seidel is used as the smoother in order to ensure 
that sweeps are performed in the direction of the charac-
teristics over the entire flow field. Results shown use 

210 .  
First, we have a comparison of the methods for (16), 

where      22 1 1 ,2 1b y x xy y     and  f x  is 
defined by 

 
1, if 0,

0, otherwise.

x
f x


 


            (17) 

Note that the discontinuous boundary condition will 
give rise to a boundary layer near the left-hand boundary. 
Also, the characteristics are parabolic, resulting in flow 
entering and exiting through the left-hand boundary. For 
both the modified wavelet multigrid method with sym-
metric biorthogonal wavelets and the wavelet multigrid 
method, convergence appears to be relatively independ-
ent of the fine mesh size, as can be seen in Table 8, 
which compares the average convergence factor per cy-
cle using a coarsest grid size of 8 × 8. 

In a second example,  

      4 1 1 2 , 4 1 1 2b x x y y y x      ,  

giving recirculant flow (i.e., closed characteristics), and 
 f x  is defined in (17). The modified wavelet multi-

grid method using symmetric biorthogonal wavelets and 
the wavelet multigrid method both have a convergence 
rate that is relatively independent of the fine grid size. 
For this problem, the modified wavelet multigrid method  

 
Table 6. Average convergence factor per cy

Fine grid size symm 9/7 symm

cle for diffusion problem with oscillation in x. 

 10/6 Haar wavelet Daubechies 4 wavelet

32 × 32 (3 levels) 0.1217 0.1137 0.1167 0.1075 

64 × 64 (4 levels) 0.1118 0.1087 0.1039 0.1022 

128 × 128 (5 levels) 0.1052 0.1177 0.1050 0.1023 

 
ge conver ctor per cycle sion problem  diagonals. 

s  sy  Ha et Daubechies 4 wavelet

Table 7. Avera gence fa for diffu with oscillation along

Fine grid size ymm 9/7 mm 10/6 ar wavel

32 × 32 (3 levels) 0.1513 0.1466 0.1353 0.1450 

64 × 64 (4 levels) 0.1214 0.1182 0.1164 0.1153 

128 × 128 (5 levels) 0.1115 0.1113 0.1250 0.1083 
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Table 8. A nce factor le for the adve ffusion problem arabolic char cs and discon-
tinuous bounda  

Fine grid size symm 9/7 symm 10/6 Haar wavelet Daubechies 4 wavelet

verage converge
ry conditions. 

per cyc ction-di  with p acteristi

32 × 32 (3 levels) 0.0372 0.0372 0.0366 0.0337 

64 × 64 (4 levels) 0.0495 0.0587 0.0495 0.0440 

12 s) 8 × 128 (5 level 0.0631 0.0393 0.0583 0.0459 

 
Table 9. Ave ce factor cle for the adve lant flow ontinuous 
boundary c

s  s  Ha et Daubechies 4 wavelet

rage convergen  per cy ction-diffusion problem with recircu  and disc
onditions. 

Fine grid size ymm 9/7 ymm 10/6 ar wavel

32 × 32 (3 levels) 0.0488 0.0343 0.0386 0.0370 

64 × 64 (4 levels) 0.0525 0.0369 0.0518 0.0584 

12 s) 8 × 128 (5 level 0.0576 0.0363 0.0482 0.0576 

 
Table 10. Ave ence factor cle for the advec iffusion problem  skewed recircu w and discon-
tinuous bo s. 

s  s  Ha et Daubechies 4 wavelet

rage converg  per cy tion-d with lant flo
undary condition

Fine grid size ymm 9/7 ymm 10/6 ar wavel

32 × 32 (3 levels) 0.0417 0.0371 0.0384 0.0353 

64 × 64 (4 levels) 0.0480 0.0437 0.0403 0.0430 

12 s) 8 × 128 (5 level 0.0589 0.0567 0.0551 0.0581 

 
using 10/6 symmetric biorthogonal wavelets outperforms 
the wavel thod usin Haar wavelet
and Dau ts. The are shown in

able 9, which compares the average convergence factor 

 the modified wavelet multigrid method using 
symmetric biorthogonal wavelets and the wavelet multi-
grid method converge rapidly, with a conv rgence rate 
that is relatively independent of the fine grid size, as 
sh

e modificatio elet multig od to use 
mmetric bior al wavelets ha  shown to be 

effective and utile. The results for the modified wavelet 

elet multigrid 
ently applied in many cases through 

et multigrid me g both s 
bechies 4 wavele results  

Th
sy

T
per cycle using a coarsest grid size of 8 × 8. 

The final example uses the boundary conditions given 
by (17), but the advection component has both closed 
characteristics and a skewed flow, so that it does not line 
up with the grid. Here,  

       
       

1 1 2 2

1 1 2 2

sin π cos π sin π cos π ,

cos π sin π cos π sin π ,

b y x y x

y x y x

 

 
 

where 

 
 

22
1 2

22
1 2

0.5, 1 0.5,

0.5, 1 0.5.

x x x x

y y y y

    

    
 

Both

e

own in Table 10, which displays the average conver-
gence factor per cycle for the modified wavelet multigrid 
method using both 9/7 and 10/6 symmetric biorthogonal 
wavelets and for the wavelet multigrid method using 
both Haar wavelets and Daubechies 4 wavelets. Again, 
the coarsest grid size for all trials is 8 × 8. 

multigrid method using the 9/7 and 10/6 symmetric bior-
thogonal wavelets are comparable to those obtained by 
using the wavelet multigrid method with Haar and 
Daubechies 4 wavelets. The properties of biorthogonal 
wavelets should permit the modified wav

6. Conclusion 

n of the wav
thogon

rid meth
s been

method to be effici
the use of compression. The results shown in this paper 
have demonstrated that it was worthwhile to further ex-
plore applying biorthogonal wavelets to the wavelet mul-
tigrid method. 
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