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ABSTRACT

In recent years, the derivation of Runge-Kutta methods with higher derivatives has been on the increase. In this paper,
we present a new class of three stage Runge-Kutta method with first and second derivatives. The consistency and stabil-
ity of the method is analyzed. Numerical examples with excellent results are shown to verify the accuracy of the pro-

posed method compared with some existing methods.
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1. Introduction

The derivation of Runge-Kutta schemes involving higher
derivatives is now on the increase. Traditionally, given
an initial value problem (IVP), classical explicit Runge-
Kutta methods are derived with the intention of perform-
ing multiple evaluations of f (y) in each internal stage
for a given accuracy. Recently, Akanbi [1,2] derived
multi-derivative explicit Runge-Kutta method involving
up to second derivative. Goeken and Johnson [3] also
derived explicit Runge-Kutta schemes of stages up to
four with the first derivative of f(y). However, the
new scheme is derived with the notion of incorporating
higher order derivatives of f (y) up to the second de-
rivative. The cost of internal stage evaluations is reduced
greatly and there is an appreciable improvement on the
attainable order of accuracy of the method.

2. Derivation of the Proposed Scheme

The general form of a single step method for solving the
Initial Value Problem (IVP)

y' (x)=f(xy).y(X)=Y (1)
is defined as
yn+1 = yn + th)T (Xna ynah) (2)

where @7 (X,,Y,;h) is obtained using the Taylor’s se-
ries expansion of an arbitrary function:
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R e LA KICRI NG

Sl oy

and for the autonomous case of (1), in which y'= f (),
@ (X,,Y,;h) becomes

@, (yn;h)=ih—r[f3j fy) @

= (r+1)0 oy
The proposed scheme of this paper is of the form
Your = Yo T NP5k (Xn’ Yns h) (&)
where

@ sMERK(Xn»yn;h):(dlkl+d2k2+d3k3) (6)

3
ki =f(y,)

k2=f(

-
+%c32h3(f2fw+ffy2)j

o +hby K, +C,, T2, +%c22h3 (21, + ffj)]

f| y, +hbyk, +hbyk, +c,, f*f,

Expanding k, and k; in Taylor’s series and substi-
tuting the result into (5), the coefficients of the powers of
h are then compared with that of (3) to obtain the fol-
lowing system of equations:

d +d,+d; =1
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1

b21d2 +b31d3 +b32d3 = 5
1
C21dz +(b21b32 +C5, )d3 :g

1 1 2 1
Ebzzldz +5(b31 + b32) d3 =

6
c,,d c 1
%4{@2%1 +%jd3 :a
b, 6, d, + 2
1., Cy, 1
+ 5b21b32 + b21b32 (b31 +b32)+b31C31 +b3zC31 +7 d3 :g

1 1 3 1
gb231d2 +g(b31 +b32) d3 =5

24
1 1
—-b,c,d,=—
32%2243 120
1, 1 1.5,
Ec2ld2 +Eb21022d2 + Eb21b32 + b21b32021 + bsz(b31 +b32)C21
b,,c ¢l 1 11
+-322 +b21b32C31 +%+E(b31 +b32)c32jd3 :E

2,0+ 3030, (b, 0 ) 3 (b, by ) 0, =
Solving the above system of equations, we have the set
of solutions in Table 1.

The above solution set gives rise to a family of 3-stage
multi-derivative explicit Runge-Kutta schemes. The pro-
posed scheme denoted by 3sMERK above is thus given
by

h
yn+1:yn+g(k1+k2+4k3)
ko= fly +hk + 2R+ R (F2F, + ff2
, = yn+ 1+§ V+E ( yy+ y)
~ 3 1 1., 1 s/.s ,
k3_f(yn+§hkl+ghk2+5h ff,—2g" (f2f,+ ff; )j

3. Convergence and Stability of the Method
3.1. Existence and Uniqueness of Solution

The properties of the incremental function
@y eri (%00 Yash) of the newly derived scheme are in
general, very crucial to its stability and convergence
characteristics [1,4-8].

Theorem 3.1.

Let f(x,y),where f:0x0"—0", be defined and
continuous for all (x,y) in the region D defined by
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D= {as Xx<b;—0<y< oo} , where a, b are finite, and
let there exist a constant L such that

[ (xy)-f(x9)|<L]y-9] @

holds every (x,y),(x,9)eD, then for any &el",
there exist a unique solution y(x) of the problem (1),
where y(x) is continuous and differentiable for all
(x,y)eD.

The requirement (7) is known as the Lipschitz’s condi-
tion, and the constant L is a Lipschitz’s constants [6,
7,9-11]. We shall assume that the hypothesis of this theo-
rem is satisfied by the IVP (1). The following lemma will
be useful for establishing the aforementioned characteris-
tics.

Lemma 3.2.

Let {é‘i,i = O(l)n} be a set of real numbers. If there
exist finite constants I and IT such that

S| <T|&|+TLi=0(1)n-1, ®)
then
i —_— .
|5i|sr o |6,|. T =1. )
-1
Proof. Wheni=0, (9) is satisfied identically as
|6,]< 5] - o
Suppose (9) holds whenever i=j so that
ri-1 ;
|5, < g (10)
Then, from (8) i=j implies that
|6, <)o+ 1. (11)

On substituting (10) into (11), we have

1—~j+1_1 .
B s (12)
Hence, (9) holds for all i>0. (]

3.2. Accuracy and Stability

Usually, during the implementation of a computational
scheme, errors are generated. The magnitude of the error
determines how accurate and stable a scheme is. For
instance, if the magnitude of the error is sufficiently
small, the computational results would be accurate.
However, if the magnitude of the error becomes so large,
it can make the method unstable. The sources of error for
these schemes and their principal error functions are
discussed in Butcher [5,6], Fatunla [7] and Lambert [9,
10]. The following theorem guarantees the stability of the
3sMERK methods.

Theorem 3.3.

Suppose the IVP (1) satisfies the hypotheses of Theorem
3.1, then the new 3sMERK algorithm is stable.
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Table 1. Examples of three-stage MERK methods.

Parameter Method, Method, Method; 3sMERK
d 169 1 1 !
: 816 6 9 9
5488 1 1 1
d 202 —(16++/6 —(16-+/6 =
: 7089 36( J”/—) 36( J—) 6
125 1 1 2
d = —(16-+/6 —(16++/6 =
: 6672 36( \/—) 36( J”/—) 3
17 1 1
b, % E(6—\/3) E(6+\/€) 1
b 91976 3(74027197\/8) 3(7402+197\/€) 3
) 10625 1250 1250 8
108976 2 2 1
b —=(489+179/6 = (489-1796 =
2 10625 625( \/—) 625( \/—) 8
289 3 3 2
c, = —(7-2V6 —(7+246 z
. 1568 100( \/—) 100( \/—) 5
17 1 1 1
C,) — —(54-196 —(54+196 =
2 196 500( \/—) 500( \/_) 5
. 3092 3(73217106\/3) 3(7321+106\/€) i
) 625 2500 2500 40
. 1823 —342-376 -342+37V6 e
= 625 2500 2500 40

Proof. Let y, and z, be two sets of solutions [7,9,10] and that of Goeken and Johnson [3] stated in (16)
generated recursively by the 3sMERK method with the and (17) respectively.
initial condition y(X,)=X,,2(X,) = Zy,|Yy — 2| = 5, , and

4.1, Heun’s Scheme

§n=|yn_zn|9n20 (13)
h
Yo = Ya +hq)3sMERK(Xn’yn;h) (14) Yo = yn+Z(K1+3K3)
Zoo =2, + DDy e (X1, 2,50) (15) K= 1Y),
It implies that K, = f (yn +2K1), (16)
Yoo ~ Zna oh
=Y, tZ,+ h(q)3sMERK (Xn’ yn;h)_cD3sMERK (Xnﬂzn;h)) Ky=f [y” +?K2j'
Applying triangle inequality and (13), we have
16| < (1+hL)[5,],n >0 4.2. Goeken’s Scheme
If we assume I'=1+hl, and TT=0, then Lemma h
’ ’ =y, +—(K,+K, +4K,),
3.2 implies that |6,|<K|d,|, where K=e""?<a. Yo =Y 6( e )
This implies the stability of the 3sMERK scheme. [ K =f (yn ),
. . . 17
4. Numerical Experiments K, = f(yn +hK, +%h2fy(yn)Klj, (1n
The proposed 3sMERK scheme (6) is applied to the two h
IVPs below and the results obtained are compared with K,=f (yn +§(3 K, +K, )j

the standard 3-stage methods of Runge-Kutta (Heun’s)

Copyright © 2013 SciRes. AJCM
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Table 2. The absolute values of error of y(x) in Problem 1 using the proposed scheme and other methods, h = 0.001; 0.005;

0.025; 0.125.

h X Heun’s Method Goeken’s Method Proposed 3sMERK
1.00E-01 4.5286E-05 6.6613E-16 1.1102E-16
2.00E-01 8.1951E-05 2.2204E-15 9.9920E-16
3.00E-01 1.1123E-04 2.7756E-15 8.8818E-16
4.00E-01 1.3418E-04 3.3307E-15 9.9920E-16
5.00E-01 1.5177E-04 3.5527E-15 7.7716E-16

0.001
6.00E-01 1.6478E—-04 4.4409E-15 1.3323E-15
7.00E-01 1.7395E-04 4.8295E-15 1.4433E-15
8.00E-01 1.7988E-04 4.4964E-15 1.1102E-15
9.00E-01 1.8310E-04 4.3854E-15 9.9920E-16
1.00E+00 1.8408E-04 4.2188E-15 8.3267E-16
1.00E-01 2.2732E-04 4.7329E-13 5.5511E-16
2.00E-01 4.1132E-04 8.5643E-13 8.8818E-16
3.00E-01 5.5819E-04 1.1623E-12 6.6613E-16
4.00E-01 6.7335E-04 1.4025E-12 6.6613E-16
5.00E-01 7.6149E-04 1.5862E—-12 8.8818E-16
0.005
6.00E-01 8.2673E-04 1.7224E-12 9.9920E-16
7.00E-01 8.7262E-04 1.8180E—12 1.2212E-15
8.00E-01 9.0226E-04 1.8802E-12 1.3323E-15
9.00E-01 9.1834E-04 1.9141E-12 1.2212E-15
1.00E+00 9.2316E-04 1.9243E-12 1.3878E-15
1.00E-01 1.1592E-03 3.0075E-10 1.2540E—-12
2.00E-01 2.0964E-03 5.4425E-10 2.2693E-12
3.00E-01 2.8435E-03 7.3869E-10 3.0799E-12
4.00E-01 3.4284E-03 8.9119E-10 3.7157E-12
5.00E-01 3.8752E-03 1.0080E—09 4.2024E-12
0.025
6.00E-01 4.2050E-03 1.0945E-09 4.5631E-12
7.00E-01 4.4361E-03 1.1554E-09 4.8169E-12
8.00E-01 4.5845E-03 1.1948E-09 4.9812E-12
9.00E-01 4.6637E-03 1.2162E-09 5.0706E—12
1.00E+00 4.6858E-03 1.2227E-09 5.0978E—-12
5.00E-01 2.1221E-02 6.8484E-07 1.4309E-08
0.125
1.00E+00 2.5292E-02 8.3075E-07 1.7358E-08
Copyright © 2013 SciRes. AJCM
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Table 3. The absolute values of error of y(x) in Problem 2 using the proposed scheme and other methods, h = 0.001; 0.005;

0.025; 0.125.

h X Heun’s Method Goeken’s Method Proposed 3sMERK
1.00E-01 6.0487E-07 8.8818E~16 8.8818E-16
2.00E-01 1.2336E-06 2.2204E-16 2.2204E-16
3.00E-01 1.8867E-06 4.4409E-16 4.4409E-16
4.00E-01 2.5647E-06 8.8818E-16 8.8818E-16
5.00E-01 3.2680E-06 1.3323E-15 1.3323E-15

0.001
6.00E-01 3.9972E-06 1.5543E-15 1.3323E-15
7.00E-01 4.7527E-06 1.5543E-15 1.3323E-15
8.00E-01 5.5351E-06 2.4425E-15 2.2204E-15
9.00E-01 6.3447E-06 1.5543E-15 1.3323E-15
1.00E+00 7.1821E-06 2.4425E-15 2.2204E-15
1.00E-01 3.0216E-06 4.4409E-16 0.0000E+00
2.00E-01 6.1625E-06 8.8818E-16 2.2204E-16
3.00E-01 9.4251E-06 1.5543E-15 4.4409E-16
4.00E-01 1.2812E-05 1.9984E-15 6.6613E-16
5.00E-01 1.6325E-05 2.2204E-15 8.8818E-16
0.005
6.00E-01 1.9968E-05 2.4425E-15 8.8818E-16
7.00E-01 2.3743E-05 2.6645E-15 6.6613E-16
8.00E-01 2.7651E-05 2.8866E—15 4.4409E-16
9.00E-01 3.1696E-05 3.1086E-15 2.2204E-16
1.00E+00 3.5879E-05 3.5527E-15 2.2204E-16
1.00E-01 1.5040E-05 1.9607E-13 0.0000E+00
2.00E-01 3.0674E-05 3.9857E-13 2.2204E-16
3.00E-01 4.6914E-05 6.0796E-13 4.4409E-16
4.00E-01 6.3773E-05 8.2401E-13 4.4409E-16
5.00E-01 8.1263E-05 1.0476E-12 4.4409E-16
0.025
6.00E-01 9.9397E-05 1.2779E-12 6.6613E-16
7.00E-01 1.1819E-04 1.5152E-12 6.6613E-16
8.00E-01 1.3764E-04 1.7601E-12 1.1102E-15
9.00E-01 1.5778E-04 2.0122E-12 1.1102E-15
1.00E+00 1.7860E-04 2.2717E-12 1.3323E-15
5.00E-01 3.9725E-04 6.4241E-10 1.4915E-12
0.125
1.00E+00 8.7330E-04 1.3932E-09 3.0043E-12
Copyright © 2013 SciRes. AJCM
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4.3. Problem 1
Consider the IVP
y'=-y,y(0)=1 (18)

with the theoretical solution y=¢™.

4.4. Problem 2
Consider the IVP

Ly Y
y 4 8o’y()

with the theoretical solution
20

(19)

y= X
1+19e ¢

5. Conclusions

The results generated by the proposed scheme in this
paper when applied to the problems above, evidently
proved the extent of accuracy of the scheme. Tables 2
and 3 above show the absolute error associated with the
schemes for the test problems with the variation of the
step length. The computations above clearly show the
accuracy of the method. The standard Heun’s (third order)
method grows faster in error than the method of Goeken
and the newly derived scheme. However, 3sMERK per-
formed best among the three methods.

Based on the two problems solved above, it follows
that the scheme is quite efficient. We therefore conclude
that the 3sMERK method proposed is reliable, stable and
with high accuracy.
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