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ABSTRACT 

This article describes how to assess an approximation in a wavelet collocation method which minimizes the sum of 
squares of residuals. In a research project several different types of differential equations were approximated with this 
method. A lot of parameters must be adjusted in the discussed method here. For example one parameter is the number 
of collocation points. In this article we show how we can detect whether this parameter is too small and how we can 
assess the error sum of squares of an approximation. In an example we see a correlation between the error sum of 
squares and a criterion to assess the approximation.  
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1. Introduction 

In the wavelet theory a scaling function   is used, 
which has properties that are defined in the MSA (multi 
scale analysis). Through the MSA we know, we can con-
struct an orthonormal basis of a closed subspace jV , 
where jV  belongs to a sequence of subspaces with the 
following property:   

 2
1 0 1 ,V V V L R       

  ,j k k Z
t


 is an orthonormal basis of jV  with  

   2
, 2 2j j

j k t t   k

j k

. 

We use the following approximation function: 

   
max

min

,:
k

j k
k k

y t c t


  , with .  1C R 

mink


 and  depend on the approximation interval maxk
0 e,t t nd

Now we can approximate the solution of an initial 
value problem 

. 

 , y f y t   and 0 0y t y  by mini- 
mizing the following function (   is the Euklid norm)  

        
2 2

0 0
1

,
m

j i j i i j
i

Q c y t f y t t y t y


    .  (1) 

For max minm k k   we get an equivalent problem: 

    ,j i j iy t f y t t  i , with  and 1,2, ,i m 

 0 0jy t y . 

The advantage of calculating  by minimizing Q  is 
that we can choose more collocation points i  as shown 
in the following example. In that case we apply the least 
squares method to calculate . Many simulations had 
shown that if min  was very small then the approxima-
tion yj would be good. An even better criterion for a good 
approximation 

c
t

c
Q

jy  is a  (see (3)). Moreover, the 
equations have been ill-conditioned in several examples.  

Q

Analogously we could use boundary conditions in- 
stead of the initial conditions. This method can be even 
used analogously for PDEs, ODEs of higher order or 
DAEs, which have the form  

 , , 0.F y y t   

If  ,y f y t   is an ODE system, then we use the 
approximation function: 

 

     
max max max

min min min

T

,1 , ,2 , , ,, , ,
f

j

k k k

k j k k j k k n j k
k k k k k k

y t

c t c t c t  
  

 
  
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  

 

For the i-th component of the solution y, we use the 
notation jy  as usual. We use for the i-th component of 

jy  the notation  i
jy , in order not to lead to a confusion 
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with the approximation jy  out of jV , so it will be 
always distinguished whether the approximation jy

0

 or 
the i-th component of  is used.  y

We use the collocation points , with it it t i h    
and 

 end
max .k0t t

m


minkh m          (2) 

Simulations have shown that even with  

max minm k k   we get good approximations. 
For the assessment of the approximation we use the 

value , with aQ

      
2 2

0 0y
1

,
am

a j i i i j
i

Q y y t


  , jy f   (3) 

0i t i h a    , a  and  is an integer. For 
big  we should weight  with 

m a m
aQ

1a 
a 1 a . 

Remarks 1: 
1) We get 

  max 

0, , 

k
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,
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Analogously for smaller . min

2) The sums in (1) and (3) could start with i  , too. 
3)   2

0 0jy t y  in (1) could also be used as a con- 
straint if the initial value should be fulfilled. But in all 
good approximations,   2

0 0jy t y  was very small. 
In the examples we use the Shannon wavelet. Al- 

though it has no compact support and no high order, in 
many examples and simulations we got a much better  

approximation than using other wavelets (f.e. Daubechies 
wavelets of order 5 to 8), even with a small n. The Meyer 
wavelet yields good results, too.  

We even get a good extrapolation outside the interval 
 0 end,t t . 

Example 1: 
1) We use the following ODE 

 , 0 1y t y y .     

The exact solution is   21 2e ty t  . 
We approximated the solution on the interval  0,1  

and chose max mink k  , like in all examples.  
With a  we could see in all our simulations, if the 

approximation was good. We got a linear relationship 
between 

Q

 2Qln  and  ln sse . In Figure 1 we see the 
graph of a linear regression (with an R squared of 
0.991196) of  ln sse  against  with the points  2ln Q

    sse2ln Q , ln , which have been calculated with dif- 
ferent  2 ,  15,20, 25max mink k  max  and 0,1,j j k
 xmax  with the ODE and I of the 

example 1. 
max, 2k ma,3km m  k

sse  is the mean squared error 

    
100 2

0
i j i

i

sse y t y t


     with 100it i . 

Now we see a regression table (Table 1) of  ln sse  
on  2ln Q , which shows a linear dependency in our 
example and the graph of the linear regression function.  

Here is a graph of the regression function and the 
graphs of the functions yi and j  for j = 0, kmax = 15 
and 

y y
30m   on the approximation interval  0,1  (see 

Figures 2 and 3) and on the interval  1,2  (see Fig- 
ures 4 and 5). In Figures 4 and 5 we see that we get even 
a good extrapolation. 

 

 

Figure 1. Linear regression plot of  sseln  against  Q2ln . 
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Figure 2. Graph of y0 , kmax = 15, m = 30. 
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Figure 3. Graph of y y0 , kmax = 15, m = 30. 
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Figure 4. Graph of y0 , kmax = 15, m = 30. 
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Figure 5. Graph of y y0 , kmax = 15, m = 30. 

 
Table 1. Linear regression table of  sseln  on  Q2ln . 

 Estimate SE T Stat P Value 

Intercept −5.34843 0.882147 −6.06297 2.46251 × 10−6

Slope 0.962059 0.0181342 53.0523 3.2288 × 10−27

2. Error Estimation and Assessment of the 
Approximation 

In the example we used the Shannon wavelet. For this 
wavelet we have additional information about the error in 
the Fourier space from the Shannon theorem. For a good 
approximation with a small j the behavior of  Y   
with growing   is important, because (if yi is an or- 
thogonal projection from y on Vj and ) max mink k   
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With the Parseval theorem we get 
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2 π
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2 π
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j

j
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y y Y Y ,  
 


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so 

   
1

2
1

2 π 2 π
2 2

2 π 2 π

d d
j j

j j
j L

d Y Y  








     

With the Riemann-Lebesgue theorem we get: 

2lim 0j Lj
d


  
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For the approximation error the decay behaviour of the 
detail coefficients ,,j

k jd y  k  is important: 

2
2

,

2

s
j s k sL

s j s j k 2
k

L L

s
k

s j k

y y d d

d


  
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  



  

 
 

On the other side: we have got in many simulations 
with the Shannon wavelet better approximations (with 
the described collocation method) than with higher order 
wavelets. 

Remarks 2: 
1) For a theoretical multi resolution analysis we could 

consider  instead of , because when  is in 
 then 1I  is in 

1I y y y
 2L I y  R2L , if we need an ap- 

proximation on I . Here 1I  is the indicator function of 
the interval I . 

2) For interpolating wavelets there are a number of 
publications with error estimates and also for the ap- 
proximation of the solutions of initial value problems and 
boundary value problems (for ordinary and partial dif- 
ferential equations) see [1,2], as well as to the sinc col- 
location method (see [3-5]) with special collocation 
points (“sinc grid points”, see [5]). 

Theorem 1 (for the decay behaviour): 
The wavelet   has the order ,  

 with and  is Lipschitz continu- 
ous. Then exists a  independent from b  with 

 2,p y L R
 ry C R r p

0c 

 ry

  3 2
, .

r

yW a b c a
  

yW  is the wavelet transform of  with y
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, dy

t b
W a b a y t t

a







     
  .  

A proof is in [6]. So we get for the detail coefficients 
an appraisal because 
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2
,, 2 2

2 , 2

j j
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j j
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d y y t t k

W k

 
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and so 

   3 22 , 2 2 .j rj j j
k yd W k c        

Now we saw that the decay of the detail coefficients 
depends on the order of a wavelet. 

From the Gilbert-Strang Theory (see [7]) we know ad- 
ditionally an upper bound of the approximation error in 
dependency of the order : if the wavelet is of order  
then the approximation error has the order 

p p
 2 j pO    if 

 
2

p

L
y    and (if jy  is an orthogonal projection 

from  on y jV  and )  max mink k   

 
2 2

2 pjp
j L L

y y C y
    . 

If a wavelet is of order  the scaling function p   
even has an interpolation property, because then we can 
construct the functions with  over a 
linear combination of 

rt 0,1, , 1r   p 
 kt   (see [7]). That’s also a 

property of the so called interpolating wavelets. For in- 
terpolating wavelets we find error estimations in [8] and 
[9].  

Remarks 3: 
1) Error estimations for the sinc collocation with a 

transformation can be found in [4] and [5]. 
2) Although the approximation error is depended on 

the order of a wavelet in many simulations the Shannon 
wavelet led to much better approximations than Daube- 
chies wavelets of higher order, if the approximation 
function jy  was calculated by minimizing the sum of 
squares of residuals Q. Even when comparing the ex- 
trapolations the Shannon wavelet was significantly bet- 
ter. 

The reason is, that we do not calculate an orthogonal 
projection on jV  like in the appraisal above and the 
function y is in general case not quadratic integrabel on R 
(we consider only a compact interval I). 

The following appraisal takes account of the fact that 
we calculate the approximation function by the minimi-
zation of Q. We first need a theorem, which follows from 
the Gronwall-Lemma. 

Theorem 2: 
Assumptions: we have a initial value problem  

 ,y f y t   with  0 0y t y  and  

   

    
0 0 ,

,

j

j j

y t y t

y t f y t t M

 

  
          (4) 

and 

         , ,

with 0.

j jf y t t f y t t L y t y t

L

   


   (5) 

Then we get for : 0t t

        0 0e eL t t L t t
jy t y t M L   1       

For a proof see [10]. 
Theorem 3: 
With the assumptions from Theorem 2 we get (if  
 0 0jy t y ): 

        0
22 2

1 1

e 1i

L

m m
L t t

j i i
i i

C

sse y t y t M L 

 



    
 

 






 

So we get the follow inequality for ln sse , which is 
used in the example 2: 
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       2 2ln ln ln ln Lsse M L C          (6) points (we get a approximation function jy ) we must 
not calculate a second minimization for the calculation of 

.  aQ 2ln M  depends on jy and  only 
on the initial value problem and the collocation points. 
We write 

   2ln lnLC  L

 2ln M  instead of  2ln M  because in 
example 2 we set  2ln M on the x-axes so we have a 
comparison with example 1 where we set  2ln Q  on 
the x-axes. 

    ,j i j i i  will be in general (for ) 
less than M, because we use the collocations points ti and 
so 

y t f y t t  0i 

    ,j i j i i

minQ
y t f y t t 



 is very small at these points 
(see the next graphic).  was in many good simula- 
tions less than 10−16. 

Remark 4: 
We get with  0 0jy t y  

     2
2

min
1

, .

In many simulation     ,j i j i i  is relative 
big between to collocation points (or at the edge of I if 
we start with i = 1 in the sum (1)).  

y t f y t t 

m

j i j i i
i

Q y t f y t t m M


     In Figure 6 we see the graph of 

       2
,j jd t y t f y t t   If additionally     ,j i j i iy t f y t t M  

m
 for one 

(or more)  we get: 1,2, ,i 
in example 1 for maxj 2, 10k   a  H

re
nd m ere a too 

small m  sults in a very bad approximation. 
4 .

minM Q m  M  

We see that minQ  could be very small with a too 
small m, but 2  is very big here. In the graph we see 
that d is very small at the collocation points 

Q
0.25it i  

but between them d is very big. That’s the reason be- 
cause we could identify with 2  a worse approximation 
in any our simulations. On the other hand a big  is 
an indicative of a too small j. 

Q

minQ

This is analogously right for  instead if  
with 

aQ minQ

     2

1

,
am

a j i j i i
i

Q y f y  


   

and 0 ,i at i h a m a m       and an integer . Qa 
is an upper bound for min min

1a 
: aQ Q Q . With a  we could 

assess in all simulations the quality of an approximation 
and in linear regressions from 

Q

ln
So we can approximate M here with the maximum of 
    ,j i j i isse  on  2Qln  we 

got in almost all simulations a  (R squared) greater 
than 0.99 (see next example). Only if all approximations 
have been bad, then  was less than 0.99 (but we still 
have a dependency). If 

2R

2R

jy  is the exact solution, then 
. Because we get not only a approximation with  0aQ 

y f y     at the points 0i t i h a     
with 2a   like we do it in the next example.  

Now we want to apply the result from theorem 2. Fur- 
thermore we will see a correlation between an approxi- 
mation of  2ln M  and ln sse

 2ln Q
 in this example like 

we saw it before between and  ln sse . 
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Figure 6. Graph of d. 
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Example 2: 

nitial value problem and the approxima- 
tio

 in Figure 8. In most simulations
We use the i
ns with the different parameters j , maxk  and m of 

example 1. If 0   than follows from rem 2 (un- 
der the assumptions rom this theorem):  

theo
f

       
 

0 0
2

1

:

ln ln e e 1i i
m 

L t t L t t

i

O M

sse M L



  





     
 
  



 

Here we get (see (6)): 

   ln    2 2
0 ln ln LO M M L C   

We now apply a linear regression of  ln sse  on 
 2ˆln M  with the approximation 

     2
2ˆ max , ,j i j i iM y f y     

from M2 with 0 2, 0,1,2, ,200i t i h i       (the points 
ning with from 2Q  begin 0i  ). sse and O  have 

been ulated with the p  calc oints 100it i  d the 
summation indices 0,1,2, ,100i   ). 

Here is the regr

(an

ession table (Table 2) (with a R 
sq

 a graph from (in red), the 
gr

uared of 0.986877). 
In Figure 7 we see  0O  

) aaph of the regression function (in blue nd the regres-  

sion points     2ˆln , lnM sse .    0 0jy t y t  was not  

considered (this means we set 0  ) because

he graphs of 

 it was 
very small. 

Here are t O

and 0     was 

an use  
less than 10−16. 

Generally we c

     2
2ˆ max ,a j i j iM y f y   i ,  

0i t i h a     and m 0,1, ,i a 
ation of 2

 (with an integer 
 for an ap1a  ) proxim M . Here we know the 

wing relation: follo
2ˆ
a aM Q  

3. Conclusions 

le with which you can evaluate We defined a variab aQ  
anyan approximation. In m  simulations and in the exam- 

ples of this article we saw that we get good results with 
2a  . A linear relationship between  2ln Q  and 

 ln sse  was shown in example 1. It is also  that  shown
the approximation can be used to extrapolate outside the 
approximation interval. 

Using Theorem 2 we derive an estimate (see theorem 
3). Then it is shown how to detect a too great step size 
using 2Q . In example 2 we show that the deduced esti- 
mate represents a straight line (in the coordinate system 
with  2ln M  on the x-axes and  ln sse  on the y- 
axes), uns approximately parallel to the regres-  which r
sion line (it is approximately parallel because the regres- 
sion function is an estimation, theoretically it must be 
parallel because it cannot cross the upper bound line). In 
a research project we got analogous results in many  with 1010  , 1510     

 

Table 2. Regression table of  on  M̂ 2ln .  sseln

 Estimate SE T Stat P Value 

Intercept − 08064 − 00005.27413 1. 4.88058 0. 507742 

Slope 0.952356 0. 4.0219645 43.3589 75173 × 10−25 

 

 

 against  M̂ 2ln . sselnFigure 7. Linear regression plot of  
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O  with 1010  , 1510   and 0  . Figure 8. Graphs of 

 
mulations, even with systemsi s and higher order odes. 
It is shown that 2M  (the size of the estimate) can be 

ap 2ˆproximated via M , and this approximation has 2Q  
as upper bound. The r gression of the points  e

    2ln , lnQ sse  returns a slightly larger 2R  than  the  

regression with the points     2ˆln , ln M sse As a con-  . 

sequence, Q2 is well suited to assess, especially as you 
can estimate the approximation of 2M  with Q2 and in 
Q2 more information is included. Moreover we can com- 
pare Q2 with minQ  to assess the approximation (see Fig- 
ure 6). 
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