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ABSTRACT 

Knowledge of factors that are important in coral reef growth help us to understand how reef ecosystems react following 
major environmental disturbances due to climate change and other anthropogenic effects. This study shows that despite 
a range of anthropogenic stressors, corals on the fringing reefs south of Kingston harbour, as well as corals on fringing 
reefs on the north coast of Jamaica near Discovery Bay can survive and grow. Skewness values for Sidastrea siderea 
and Porites astreoides were positive (0.85 - 1.64) for all sites, implying more small colonies than large colonies. Coral 
growth rates are part of a demographic approach to monitoring coral reef health in times of climate change, and linear 
extension rates (mm·yr−1) of Acropora palmata branching corals at Dairy Bull, Rio Bueno, and Pear Tree Bottom on the 
north coast of Jamaica were c. 50 - 90 mm·year−1 from 2005-2012. The range of small-scale rugosities at the Port Royal 
cay sites studied was lower than that at the Discovery Bay sites; for example Rio Bueno was 1.05 ± 0.15 and Dairy Bull 
the most rugose at 2.3 ± 0.16. Diary Bull reef has for several years been the fringing reef with the most coral cover, with 
a benthic community similar to that of the 1970s. We discuss whether Jamaica can learn from methods used in other 
Caribbean countries to better protect its coral reefs against climate change. Establishing and maintaining fully-protected 
marine parks in Jamaica and elsewhere in the Caribbean is one tool to help the future of the fishing industry in devel-
oping countries. Developing MPAs as part of an overall climate change policy for a country may be the best way of 
integrating climate change into MPA planning, management, and evaluation. 
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1. Introduction 

Coral reefs throughout the world are under severe chal- 
lenges from environmental factors including overfishing, 
destructive fishing practices, coral bleaching, ocean 
acidification, sea-level rise, algal blooms, agricultural 
run-off, coastal and resort development, marine pollution, 
increasing coral diseases, invasive species, ocean acidi- 
fication, rising sea level, changing circulation patterns, 
increasing severity of storms, changing freshwater in- 
fluxes and hurricane/cyclone damage (e.g. [1-4]). The 
fringing reefs around Jamaica constitute one of the best 
documented areas of reef decline in the Caribbean, where 
significant loss of corals and macroalgal domination has 
been due to hurricanes [5-7], overfishing [8,9], die-off of 
the long-spined sea urchin Diadema antillarum in 1983- 
1984 [10], and coral disease [11]. Nutrient enrichment 
does not appear to have been a causal factor in the de-  

velopment of these reef macroalgal communities [12].  
Warming ocean (sea surface) temperatures due to cli- 

mate change are considered to be an important cause of 
the degradation of the world’s coral reefs. Marine pro- 
tected areas (MPAs) have been proposed as one tool to 
increase coral reef ecosystem resistance and resilience 
(i.e. recovery) to the negative effects of climate change. 
However, few studies have evaluated their efficacy in 
achieving these goals.  

While healthy reefs usually have high numbers of 
coral recruits and juvenile corals, degraded systems typi- 
cally have limited numbers of young colonies [13,14]. To 
manage coral reefs it is important to have an understand- 
ing of coral population demography-structure and dy- 
namics. Ideally, this involves the quantification of num- 
bers of individual colonies of different size classes-the 
population structure-through time, in addition to quanti- 
fying coral growth rates, recruitment and survival.  
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Knowledge of coral population structure helps in under- 
standing how reefs react following disturbance, and pro- 
vides us with an early warning system for predicting fu- 
ture reef health. 

Here we studied recent non-branching coral population 
structure at sites near Discovery Bay on the north coast 
of Jamaica, and at sites near Kingston Harbour, on the 
south coast of Jamaica.  

Kingston harbour is a major trans-shipment post for 
the Caribbean, and in 2002 a major ship channel (East 
Channel) was constructed by Rackham’s Cay, near Port 
Royal to accommodate vessels with draft of up to 14.5 
metres and beams of 42 metres [15]. In addition, the 
harbour is highly polluted, mostly due to an excessive 
input of sewage [16-19]. This study shows that despite 
these and other environmental stressors, corals can sur- 
vive on the fringing reefs south of the harbour.  

MPAs provide in-situ-based management of marine 
ecosystems through various degrees and methods of pro- 
tective actions. As impacts of climate change strengthen 
they may exacerbate effects of existing stressors and re- 
quire new or modified management approaches; for ex- 
ample MPA networks may be an improvement over indi- 
vidual MPAs in addressing multiple threats to the marine 
environment. We discuss whether Jamaica can learn 
from methods used in other Caribbean countries to better 
protect its coral reefs in times of climate change. 

2. Materials and Methods 

2.1. Reef Sites 

GPS coordinates were determined using a hand-held re- 
ceiver (Garmin Ltd.). 

In Discovery Bay, Jamaica, surface areas of non-bran- 
ching corals between 5 - 9 m depth, were measured using 
SCUBA at four sites [Rio Bueno (18˚28.805'N; 77˚21.625' 
W), M1 (18˚28.337'N; 77˚24.525'W), Dancing Ladies 
(18˚28.369'N; 77˚24.802'W), Dairy Bull (18˚28.083'N; 
77˚23.302'W) and Pear Tree Bottom (18˚27.829'N; 
77˚21.403'W)] along the fringing reefs surrounding Dis-
covery Bay, Jamaica. Overall, surface areas of 209 non- 
branching corals were measured in 2012 (Table 1(a)).  

This work was conducted at Discovery Bay during 
August 8-August 10 in 2012.  

For sites near Port Royal, Jamaica, surface areas of 
non-branching corals were measured using SCUBA at 
seven sites south of Port Royal. Six of these were fring-
ing reefs around the cays South of Port Royal: SE Barrier 
Cay (17˚53.714'N, 76˚48.226'W); Lime Cay (17˚54.948'N, 
76˚49.134'W); Gun Cay (17˚55.901'N, 76˚50.141'W); 
Drunkenman’s Cay (17˚54.128'N, 76˚50.736'W), the face 
of the ship channel made in 2002 along the reef of 
Rackham’s Cay (17˚55.571'N, 76˚50.307'W) and Maiden 
Cay (17˚54.506'N, 76˚48.728'W); a seventh site was the  

wreck of the ship Edina, south of the barrier reef 
(17˚49.525'N, 76˚50.723'W). Depth of samples at six of 
the sites was between 5 - 12 m, at the Edina wreck it was 
between 22 - 28 m.  

Overall, surface areas of 347 non-branching corals 
were measured in 2010 (Table 1(b)) and of 451 non- 
branching corals in 2012 (Table 1(c)).  

This work was conducted in April 14-16 in 2010 and 
July 30-August 2 in 2012. SE Barrier Cay was only 
studied in 2010, owing to time limitations caused by 
tropical storm Ernesto in 2012. 

2.2. Sampling 

Details of data sampling have been described for North 
Jamaica and South Jamaica [6,20]. In summary, corals 
2m either side of transect lines were photographed for 
archive information, and surface areas measured with 
flexible tape as described previously using SCUBA. For 
non-branching corals, this was done by measuring the 
widest diameter of the coral and the diameter at 90˚ to 
that. 

In all cases except that of the Edina wreck near Port 
Royal, which was 22 - 28 m, depth of samples was be- 
tween 5 - 12 m, to minimise variation in growth rates due 
to depth [21]. To increase accuracy, surface areas rather 
than diameters of live non-branching corals were meas- 
ured [6]. Sampling was over as wide a range of sizes as 
possible. Colonies that were close together (<50 mm) or 
touching were avoided to minimise age discontinuities 
through fission and altered growth rates [22,23]. In this 
study we ignored Montastrea annularis colonies, because 
their surface area does not reflect their age [22], and be- 
cause hurricanes can increase their asexual reproduction 
through physical damage [23].  

Computer digital image analysis for coral linear exten- 
sion rates was undertaken using the UTHSCSA (Univer- 
sity of Texas Health Science Center, San Antonio, Texas, 
USA) Image Tool software (see [6]). One-factor ANOVA 
was used; ±error values represent standard errors of the 
data. 

Skewness [24] (sk) was used to estimate the distribu- 
tion of small and large colonies in the coral populations. 
Negative skewness implies more large colonies than 
small colonies, while conversely positive skewness im- 
plies more small colonies than large colonies. 

2.3. Rugosity 

Rugosity (R) was determined according to the formula: 

R Sr Sg  

where Sr = real surface distance between two points, and 
Sg = straight line geometric distance between two points. 
This was calculated over a 20 m distance, performed in  
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Table 1. Coral species and numbers studied at sites around Port Royal in 2010 and 2012, and around Discovery Bay in 2012. 
(a) Corals at sites around Discovery Bay in 2012; (b) Corals at sites around Port Royal in 2010; (c) Corals at sites around 
Port Royal in 2012. 

(a) 

2012 

Species Dairy Bull M1 Pear Tree Rio Bueno Total 

ss 37 12 2 7 58 

pa 19 10 12 9 50 

mean mean 6 25 4 1 36 

dip strig 2   8 10 

ag ag 5  2 3 10 

mont cav 6   2 8 

dip laby 4 4 3  11 

eusmilia 2  1  3 

manicina     0 

muss ang     0 

mycetophyllia 10    10 

col natans 4 5 1 3 13 

Total 95 56 25 33 209 

      

      

(b) 

2010 

Species Rackhams Edina wreck Drunkenmans SE barrier Maiden Lime Gun Total 

ss 78 20 12 21 5 23 10 169 

pa 10 6 28 15  2 7 68 

mean mean 9 3 6 4 3 4 1 30 

dip streg 1 16 8 12  4  41 

ag ag  1      1 

mont cav  8 4 2  2 10 26 

dip laby   2 2 2 3 1 10 

eusmilia      1  1 

col natans       1 1 

Total 98 54 60 56 10 39 30 347 

(c) 

2012 

Species Rackhams Edina wreck Drunkenmans Maiden Lime Gun Total 

ss 35 17 22 42 43 33 192 

pa 6 9 10 27 20 9 81 

mean mean  1 8 1 7 5 22 

dip strig  5 8 1 4 4 22 

ag ag  8 1 8 7 1 25 

mont cav 1 8 11 10 7 8 45 

dip laby 1 2 1 3   7 

eusmilia    4 1  5 

manicina      3 3 

muss ang   1    1 

mycetophyllia 1 2 7 14 12  36 

col natans  1  1 6 4 12 

Total 44 53 69 111 107 67 451 

Legend. Coral species: ss, Sidastrea siderea (Ellis, 1786); pa, Porites astreoides (Lamarck, 1816); meanmean, Meandrina meandrites (Linnaeus, 1758); Dip 
strig, Diploria strigosa (Dana, 1848); agag, Agaricia agaricites (Linnaeus, 1758); mont cav, Montastrea cavernosa (Linnaeus, 1758); dip laby, Diploria laby-
rinthiformis (Linnaeus, 1758); eusmilia, Eusmilia fastigiata (Pallas, 1766); col natans, Colpophyllia natans (Houttuyn, 1772); manicina, Manicina areolata 
(Linnaeus, 1758); muss ang, Mussa angulosa (Pallas, 1766); mycetophyllia, Mycetophyllia lamarckiana (Milne Edwards 1848). GPS coordinates of all sites are 
given in the text. Gaps in the tables indicate 0. 
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triplicate, at each site, using photographic image analysis 
verified by the chain method, as described previously for 
Discovery Bay sites [25]. 

3. Results 

The reefs fringing the cays around Port Royal in Jamaica 
did not exhibit extensive three-dimensional complexity; 
this is exemplified by their rugosities: Rackhams cay, 
1.42 ± 0.15; Edina wreck, 1.37 ± 0.17; Drunkenman’s 
cay 1.41 ± 0.16; SE Barrier cay, 1.39 ± 0.15; Maiden cay, 
1.1 ± 0.1; Lime cay, 1.16 ± 0.12; and Gun cay, 1.17 ± 
0.2. 

Despite their low three-dimensional complexity, there 
was a high proportion of small size classes of non- 
branching corals that included new recruits and juveniles 
on these reefs. This is illustrated for both 2010 and 2012 
in Figures 1(a) and (b) for Sidastrea siderea and in Fig- 
ures 1(c) and (d) for Porites astreoides. These patterns 
are typical of other species of corals, where the numbers 
of corals are smaller. Skewness values for both species 
were positive (for example 1.36 for Sidastrea siderea at 
the Edina site in 2010, and 0.85 for Porites astreoides at 
Drunkenman’s Cay in 2012), implying more small colo-
nies than large colonies.  

There was also a high proportion of small size classes 
of non-branching corals on the fringing reefs around 
Discovery Bay on the Jamaican north coast in 2012. This 
is illustrated for Sidastrea siderea and Porites astreoides 
in Figures 2(a) and (b). Once again, this pattern was 
typical of other coral species. Skewness values for both 
species were positive, with Dairy Bull having the highest 
values (for example 1.64 for Sidastrea siderea and 1.12 
for Porites astreoides in 2012 at Dairy Bull), implying 
more small colonies than large colonies. 

Coral growth rates are part of a demographic approach 
to monitoring coral reef health in times of climate change, 
and Figure 3 presents linear extension rates (mm·yr−1) of 
Acropora palmata branching corals (n = 4) at Dairy Bull,  
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1. Size classes of non-branching corals on the fring-
ing reefs on the Port Royal Cays. (a) Sidastrea siderea in 
2010; (b) Sidastrea siderea in 2012; (c) Porites astreoides in 
2010; (d) Porites astreoides in 2012. 
 
Rio Bueno, and Pear Tree Bottom on the north coast of 
Jamaica from 2005-2008, and from 2009-2012. Growth 
rates are similar to those reported previously [21]. There 
were no significant differences between the sites, or 
across the time periods of the study. Where growth rates  
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(a) 

 
(b) 

Figure 2. Size classes of non-branching corals on the fring-
ing reefs near Discovery Bay, Jamaica. (a) Sidastrea siderea 
in 2012; (b) Porites astreoides in 2012. 
 

 

Figure 3. Linear extension rates of Acropora palmata at sites 
near Discovery Bay, Jamaica, from 2005-2008 and 2009- 
2012. Error bars represent standard errors of the data (n = 
4). 
 
were higher, they tended to be higher at Dairy Bull reef. 
With the increase of Diadema antillarum at Rio Bueno in 
recent years, clearing the macroalgae, many healthy A.  

palmata colonies have appeared at the Rio Bueno site 
from 2006.  

4. Discussion 

Mesoscale rugosity (larger scale) has been found impor- 
tant for predicting intra-habitat variation in coral reef fish 
assemblages, and explicitly in predicting the impacts of 
coral mortality on ecosystem process and services. This 
particularly relates to large, tall (>50 cm) corals [26]. 
Loss of architectural complexity in Caribbean reefs due 
to climate change appears to be linked to physical im- 
pacts, such as hurricanes and bio-erosion [3].  

The range of small-scale rugosities at the Port Royal 
cay sites studied was lower than that at the Discovery 
Bay sites [25]; for example Rio Bueno was 1.05 ± 0.15 
and Dairy Bull the most rugose at 2.3 ± 0.16. Diary Bull 
reef has for several years been the fringing reef with the 
most coral cover, with a benthic community similar to 
that of the 1970s [21], and it was the subject of the study 
which suggested a rapid phase-shift reversal [27].  

In addition to climate change, Jamaican reefs are sub- 
ject to a number of acute and chronic stressors, the last 
including overfishing and continuing coastal develop- 
ment, including the much-publicised development on 
land adjacent to Pear Tree Bottom reef and the resurface- 
ing of the North Jamaican coastal highway [28]. Faster 
rates of macroalgal growth, higher rates of algal recruit- 
ment iron enrichment from Aeolian dust, lack of acro- 
porid corals, lower herbivore biomass and missing 
groups of herbivores all predispose the Caribbean to low 
resilience, relative to the Indo-Pacific region [29].  

The Kingston harbour area has been impacted for 
many decades [16,19] and there have been efforts at miti- 
gation, particularly in association with the ship channel 
[30]. In addition, some coral communities may adapt to 
chronic stressors, for example sedimentation, over long 
periods of time [31].  

After the 2005 bleaching event there was a major loss 
of live coral cover [32,33], and it is encouraging that the 
population size studies show that there are numbers of 
both small and large colonies at both Discovery Bay and 
Port Royal sites. Also, the linear extension rates of A. 
palmata branching corals at Dairy Bull, Rio Bueno, and 
Pear Tree Bottom on the north coast of Jamaica were 
maintained from 2005-2012. 

The influence of M. annularis colonies on the reef, 
acting as structural refugia [27], with maintenance of the 
biological legacies, may have facilitated this recovery. In 
addition, there have been no major hurricanes or bleach-
ing events due to climate change since 2005 until this 
study which have impacted Jamaican fringing reefs. 

Unlike other areas in the Caribbean, Jamaica has few 
Marine Protected Areas (MPAs) or Marine Reserves.  
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MPAs have been suggested as means for enhancing local 
resilience and population growth of marine species [e.g. 
34,35]. However, some studies have highlighted contin- 
ued climatic and other impacts in regions of MPAs 
[36-38].  

Belize has the highest annual capture production-the 
annual volume of aquatic species caught by country for 
all commercial, industrial, recreational and subsistence 
purposes, in 2010, for countries in the Caribbean for 
which data is available [39]. The Belize continental shelf 
also includes the MesoAmerican Barrier reef; this World 
Heritage Site has levered the adoption of Marine Pro- 
tected Areas (MPAs) for Belize. In 2010, Belize had 
11.86% of its territorial waters as MPAs. This compares 
with Jamaica, 4.2%; Trinidad and Tobago, 2.8%; Barba- 
dos, 0.1%; St. Kitts and Nevis, 0.5%; St. Lucia, 0.1%; St. 
Vincent and the Grenadines, 0.6%. Figure 4 shows the 
relationship between percentage of a country’s territo- 
rial waters as MPAs with volume of catch (r2 = 0.88); 
there is a similar correlation (r2 = 0.66) with fisheries as a 
percentage of GDP [40] for the country concerned. Catch 
is a function of effort, and capture production may reflect 
this in addition to the influence of MPAs. 

Recognition of the importance of fisheries in a coun- 
try’s GDP may be a factor in empowering conservation 
policy as well as local stakeholder action to conserve 
coral reefs. Having a large percentage of its territorial 
waters as MPAs, and in a coordinated network of MPAs, 
may reflect in the value of a country’s fishing industry. 

The 2012 IUCN report [41] on Caribbean coral reefs 
points to the decline of Caribbean reefs from c. 50% 
cover in the 1970 to just 8% today. They call for strictly 
enforced local action to improve the health of corals, 
including limiting fishing through catch quotas, an ex- 
tension of MPAs, a halt to nutrient run-off from the land, 
and a reduction on the global resilience on fossil fuels. 
 

 

Figure 4. Relationship between the percentage of a coun-
try’s territorial waters as Marine Protected Areas (MPAs) 
with volume of catch (r2 = 0.88). 

Through the IUCN-coordinated Global Coral Reef Moni- 
toring Network (e.g. [42]) there are moves to strengthen 
the data available at a worldwide level. 

Protection using fully protected MPAs is one of the 
few management tools that governments and local com- 
munities can use to combat large scale environmental 
impacts. In Bajja California, such an MPA provided pro- 
tection to marine populations both within and outside the 
protected area [43]. The degree of protection is critical 
[44]. At Glover’s Reef Marine Reserve, a no-take policy 
has not resulted in increases in grazing fish abundance, 
although commercially important fish, such as black 
grouper (Mycteroperca bonaci) and lane snapper (Lut- 
janus synagris) and invertebrates have increased [45]. 
This could be for many reasons, not least if they are 
poorly managed and maintained over long periods, par- 
ticularly when there are stressful environmental events 
such as hurricanes of high sea surface temperatures 
(SSTs). 

In an environment where carbon dioxide concentra- 
tions predicted to occur at the end of this century would 
significantly reduce coral settlement and crustose coral- 
line algae cover, and would so reduce successful coral 
recruitment and larval settlement [46,47], establishing 
and maintaining fully-protected marine parks in Jamaica 
and elsewhere in the Caribbean is one tool to help the 
future of the fishing industry in developing countries. 

Where protection in MPAs was not found to reduce 
the effect of warm temperature anomalies on coral cover 
declines [48], then shortcomings in MPA design, includ- 
ing size and placement, may have contributed to the lack 
of an MPA effect. It may be that the benefits from single 
MPAs may not be great enough to offset the magnitude 
of losses from acute thermal stress events. Although 
MPAs are important conservation tools, their limitations 
in mitigating coral loss from acute thermal stress events 
suggest that they need to be complemented with policies 
aimed at reducing the activities responsible for climate 
change. One way forward is to have networks of MPAs 
[49], and they could be more effective in conjunction 
with other management strategies, such as fisheries 
regulations and reductions of nutrients and other forms of 
land-based pollution. Developing MPAs as part of an 
overall climate change policy for a country [50] may be 
the best way of integrating climate change into MPA 
planning, management, and evaluation. 
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