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ABSTRACT 

Here we constructed a charged gravastar model formed by an interior de Sitter spacetime, a charged dynamical infi- 
nitely thin shell with an equation of state and an exterior de Sitter-Reissner-Nordström spacetime. We find that the 
presence of the charge is crucial to the stability of these structures. It can as much favor the stability of a bounded ex- 
cursion gravastar, and still converting it in a stable gravastar, as make disappear a stable gravastar, depending on the 
range of the charge considered. There is also formation of black holes and, above certain values, the presence of the 
charge allows the formation of naked singularity. This is an important example in which a naked singularity emerges as 
a consequence of unstabilities of a gravastar model, which reinforces that gravastar is not an alternative model to black 
hole. 
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1. Introduction 

Although we have strong theoretical and experimental 
evidences in favor of the existence of black holes, lots of 
paradoxical problems about them do exist [1]. Besides, it 
was shown recently that observational data could give 
strong arguments in the existence of event horizons, but 
we can not prove it directly [2]. 

We also have the fact that the picture of gravitational 
collapse provided by Einstein’s General Relativity can-
not be completely correct since in the final stages of col-
lapse quantum effects must be taken into account at high 
curvature values, or short distances, compared with the 
Planck length scale, as pointed out by Chapline [3] and 
other researchers. 

These facts frequently motivated authors to try to find 
new alternatives for the final state of a collapsing star 
without horizons. Among these models we can mention 
Bose superfluid [4], dark stars [5] and holostars [6-11]. 

There are many other additional models proposed as 
black holes mimickers, but among the alternative models 
to these compact objects, the gravitational vacuum stars 
(gravastars) [12] received special attention, partially due 
to the tight connection between the cosmological con-

stant and our accelerated expanding universe, although it 
is very difficult to distinguish these objects from black 
holes. 

In the original model of Mazur and Mottola (MM) [12], 
gravastars consist of five layers. To study the dynamical 
stability of such compact object, Visser and Wiltshire 
(VW) [13] argued that such five-layer models can be 
simplified to three-layer ones. They also pointed out that 
there are two different types of stable gravastars which 
are stable gravastars and “bounded excursion” gravastars. 
The first one represents a stable structure already formed, 
while the second one is a system with a shell which os-
cillates around a equilibrium position which can loose 
energy and stabilize at the end. 

Recently we have studied the stability of some three 
layer gravastar models [14-19]. The first model [14] con-
sisted of an internal de Sitter spacetime, a dynamical 
infinitely thin shell of stiff fluid, and an external 
Schwarzschild spacetime, as proposed by VW [13]. We 
have shown explicitly that the final output can be a black 
hole, a “bounded excursion” stable gravastar, a Min-
kowski, or a de Sitter spacetime, depending on the total 
mass  of the system, the cosmological constant m   
and the initial position  of the dynamical shell. We 0R

Copyright © 2013 SciRes.                                                                                 JMP 



C. F. C. BRANDT  ET  AL. 870 

have concluded that although it does exist a region of the 
space of the initial parameters where it is always formed 
stable gravastars, it still exists a large region of this space 
where we can find black hole formation. In the sequence, 
considering after an equation of state  1p     for 
the shell [15], instead of only using a stiff fluid  0  , 
we concluded that gravastar really is not an alternative 
model to black hole. 

We also have generalized the former one considering 
an interior constituted by an anisotropic dark energy fluid 
[16,19]. We have again confirmed the previous results, 
i.e., that both gravastars and black holes can be formed, 
depending on the initial parameters. It is remarkable that 
for this case we have an interior fulfilled by a physical 
matter, instead of a de Sitter vacuum. Thus, it is similar 
to dark energy star models. 

Recently, Carter [20] studied spherically symmetric 
gravastar solutions which possess an (anti) de Sitter inte-
rior and a (anti) de Sitter-Schwarzschild or Reissner- 
Nordström exterior, separately. He followed the same 
approach that Visser and Wiltshire took in their work [13] 
assuming a potential  and then founding the 
equation of state of the shell. He found a wide range of 
parameters which allow stable gravastar solutions, and 
presented the different qualitative behaviors of the equa-
tion of state for these parameters, for both cases, those are, 
a (anti) de Sitter-Schwarzschild or Reissner-Nordström 
exterior. 

 V R

Differently from Carter’s work [20], we consider here 
a different approach, as in the previous works. In a first 
step, we generalized our second work on gravastars [15], 
introducing an external de Sitter-Schwarzschild space-
time [17]. The aim was to study how the cosmological 
constant affects the gravastar formation, and we found 
that the exterior cosmological constant imposes a limit 
on the gravastar formation since the dark energy density 
inside the gravastar has to be greater than the surround-
ing spacetime. Now we are interested in the influence of 
the charge, combined with the influence of an exterior 
cosmological constant, considering a de Sitter-Reissner- 
Nordström exterior spacetime. For this configuration we 
showed that the presence of the charge can change con-
siderably the stability conditions of these structures. It 
can as much favor the stability of a bounded excursion 
gravastar, converting it in a stable gravastar, as make dis- 
appear a stable gravastar or even to allow a naked singu-
larity formation. 

In a previous work [18] we have already considered 
the exterior of the gravastar is a Reissner-Nordström 
spacetime, but with zero total mass and, depending on 
the parameter 1  

i

 of the equation of state of the 
shell, and the charge, a gravastar structure can be formed. 
We have found that the presence of the charge contrib-
utes to the stability of the gravastar, if the charge is 

greater than a critical value. 
The paper is organized as follows: In Section 2 we 

present the metrics of the interior and exterior spacetimes, 
with their extrinsic curvatures, the equation of motion of 
the shell and the potential of the system. In Section 3 we 
analyze the influence of the presence of the charge in the 
gravastar model confirming the existence of naked sin-
gularity formation and we investigate the formation of 
gravastar from numerical analysis of the general potential. 
Finally, in Section 4 we present our conclusions. 

2. Formation of Gravastars in a De  
Sitter-Reissner-Nordström Spacetime 

This gravastar model is described by an interior space-
time with a cosmological constant , given by the de 
Sitter metric, 

12 2
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where, 3Li i  2 2 2 2sin d and d d     . 
Differently from the previous models, here we con-

sider a charged shell and a cosmological constant e  
generating a vacuum exterior spacetime described by the 
de Sitter-Schwarzschild-Reissner-Nordström metric, 
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where 3Le e .  
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The thin shell is characterized by the hypersurface 

  and given by the metric 

 2 2 2 2d d d ,s R                (3) 

  is the proper time. where 
In order to find the mass of the shell, and then its po-

tential, it is necessary to consider the junction conditions. 
The continuity of the first fundamental form imposes 

that 2 2 2d d di es s s  r R  r, then  and 
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where the dot represents the differentiation with respect 
to  . 

Thus, the interior and exterior normal vector are given 
by 

 , ,0,0 ,n R t   

 , ,0,0 .n R v   


 

2 4 2

4

i

i

i
              (6) 

and 
e
              (7) 

The interior and exterior extrinsic curvature are given 
by 
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                        (13) 

Following Lake [21], we have 

  ,e iK K K M                 (14) 

where M  is the mass of the shell. Thus 
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Then, substituting Equations (4) and (5) into (15) we 
get 
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Solving the Equation (16) for  we obtain the po-
tential  [15]. In order to keep the ideas 

of our work [15] as much as possible, we consider the 
thin shell as consisting of a fluid with a equation of state, 

,i eL L

 1p    , where   and  denote, respectively, 
the surface energy density and pressure of the shell and 

p

  is a constant. The equation of motion of the shell is 
given by [21] 
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where   is the four-velocity. Since the interior region 
is constituted by a fluid with cosmological constant and 
the exterior corresponds to a charged spacetime charac-
terized by the Reissner-Nordström with exterior cosmo-
logical constant, we get 

 8π 1 0,M RR                  (18) 
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Fwhere   is the Maxwell tensor. 
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 we can solve Equation (18) 
giving 

                 (20) 

where  is an integration constant. 
Substituting Equation (20) into , we 

obtain the general expression for the potential, 
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Redefining the Schwarzschild mass , the charge , 
the cosmological constants  and  and the radius 

 as 
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we get the potential 
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Therefore, for any given constants , , i , e  
and 

m
 , Equations (21) or (27) uniquely determines the 

collapse of the shell. Observe that the exponents of the 
charge, as well as those of i  and , are always even 
implying that its sign is irrelevant. 

L eL

The gravastar model constructed here shows 4 differ-
ent horizons, which are: 
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where 23e eL  , dsec  is the exterior cosmological 
horizon, rnoah  is the outer apparent horizon, rniah  is 
the inner apparent horizon, all of them for the de-Sitter- 
Reissner-Nordström exterior spacetime [23] and dsic  is 
the cosmological horizon for the interior de Sitter space-
time. Note that if  this gives us an imaginary angle 

R
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R
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 . In this case, the horizons ,  and  

are imaginary. Since any spacetime is defined only for 
real and non-negative radii, horizons obtained from 
Equations (28)-(31) can not be negative or imaginary. 
When this occurs it means that the spacetime is horizon- 
free. 
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any kind of horizons, cosmological or event, in general, 
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the black hole horizon and  denotes the cosmological 
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 is 
greater than 1, giving an imaginary angle . Thus, the 
horizons bh  and c  are imaginary and the spacetime 
becomes free of horizons. 

Since  
2 0P

, in order to avoid dark energy fluids, we 
must to have   for the shell and assuming that  

 1p    1.5 we must have  
0p

. On the other hand, 
in order to satisfy the condition   

2
, we get that 

  . The dominant energy condition is only satisfied 
for 0 2 

0p

. Although the phantom energy is usually 
considered as a kind of dark energy, in this paper we will 
use the expression dark energy for the case where the 
condition     is satisfied and phantom energy 
otherwise. Hereinafter, we will use only some particular 
values of the parameter   which are analyzed in this 
work. See Table 1. 

3. General Case 

In the following have done a graphical analysis of several 
special cases. The influence of the cosmological constant 
was deeply discussed in a previous work [17], where 
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, but , we showed that there 
is a limit on e  in order to form a gravastar, i.e., the 
formation of gravastars depends on the value of e  
( e e , with i ) in a such way that, instead 
of what occurs for i , as smaller is e  as bigger is the 
tendency to the collapse. Now, our main aim is to study 
the role of the charge in the dynamic of the gravastar. 
Our strategy is to start with values of ,  , i  and 

, for which we had a bounded excursion or a stable  
L

eL
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gravastar for chargeless configurations and, then, gradu-
ally introduce and increase the value of the charge. Thus, 
we can investigate if there is a range for the charge fa-
voring the formation any kind of structure. 

Copyrigh  © 201                                                                              

In order to analyze the effect of the charge we have 
started from the cases with q = 0, considered in the pre-
vious work [17], and we have used the critical mass, 
when a stable gravastar was formed, changing the value 
of the charge. Recalling that the critical mass is defined 
as the mass for which   0V R   and  d d 0V R R  , 
for a fixed value of the charge. The results are shown in 
the Tables 2-6, and the respective potential are in the 
Figure 1 and Figures 2-5. In particular, in the Figure 1, 
we have lost the stable configuration when we increase 
the value of the charge. In order to check if it is possible 

to have a charged stable gravastar we plotted the Figure 
6. In this figure we have fixed the value of the mass and 
we searched for the critical charge. The critical charge is 
defined as the charge for which V R  0  and 

 d d 0V R R  , for a fixed value of the mass. It is re-
markable the crucial role of the charge. Note that there is 
an approximated interval  in which we can 
always find bounded excursion or stable gravastar, where 
the value 

1 1.17q 

1.17q   corresponds to the stable gravastar. 
For the values outside of this interval, we always have 
the collapse of the shell. In the Figure 7 we show that a 
similar interval for the mass can be also found for a fixed 
value of charge  0.8795 1m  . Thus we can have 
stable or bounded excursion gravastar depending on the 
combination of charge and mass. 

 
Table 1. This table summarizes the matter classification based on the energy conditions of the shell, in terms of the parameter 
 . 

  Matter Condition 1 Condition 2   of this work 

Standard Energy 2 0p    0p  1.5   0, −1   

Dark Energy 2 0p    0p  1.5 2       1.7 

Phantom Energy 2 0p    0p  2   3   

 
qTable 2. This table shows the calculated horizons using the Equations (28)-(30). When  0 , we have used the Equations (37) 

and (38). Hereinafter, the symbol i 1 iL denotes the imaginary unit. 1.93284 , 1 . See Figure 1. 

q  m  
eL  rniahR  rnoahR dsec R  

    bhR  cR  

0.50559 0 468695.8789  1.01139 468695.3735 

0.50559 0.1 468695.8789 0.6377 -0.6377 468695.8789 

0.50559 0.2 468695.8789 0.6377 -0.6377 468695.8789 

0.50559 1.5 468695.8789 1.9134 1.9134 468693.9654 

0.50559 1.85323 468695.8789 1.9134 - 2.01697i 1.9134 + 2.016916i 468693.9654 + 0.00002i 

0.50559 10 468695.8789 0.0166 - 9.89753i 0.0166 + 9.86441i 468695.8626 + 0.01655i 

 
qTable 3. This table shows the calculated horizons using the Equations (28)-(30). When  0

iL  2.87433  0

, we have used the Equations (37) 

and (38). ,  . See Figure 2. 

m q
e

  L  rniahR  rR noah dsec R  

    bhR  cR  

0.51706 0 133843.0443  1.03420 133842.5272 

0.51706 0.1 133843.0443 0.03125 1.06157 133842.4978 

0.51706 0.2 133843.0443 0.06453 1.02829 133842.4979 

0.51706 0.61090 133843.0443 0.77273 - 0.5759i 0.77275 + 0.5759i 133842.2716 + 0.000005i 

0.51706 4 133843.0443 1.09282 - 3.94867i 1.09282 + 3.9486i 133841.9516 + 0.000028i 

0.51706 5 133843.0443 1.09282 - 4.95470i 1.09282 + 4.95463 i 133841.9516 + 0.000035 i 

0.51706 10 133843.0443 1.22180 - 9.97613i 1.22182 + 9.97600i 133841.8230 + 0.00006i 

0.51706 20 133843.0443 0.01260 - 20.00625i 0.01258 + 19.98107i 133843.0333 + 0.01258i 
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qTable 4. This table shows the calculated horizons using the Equations (28-(30). When  0


, we have used the Equations (37) 

and (38). , iL 60645762.41 1.7 . See Figure 3. 

m q  
eL  rniahR  rnoahR dsec R  

    bhR  cR  

1.04324 0 10000  2.08648 9998.95659 

1.04324 0.5 10000 0.12762 1.95883 9998.95661 

1.04324 0.8 10000 0.37337 1.71308 9998.95664 

1.04324 1.0 10000 0.74584 1.33902 9998.95745 

1.04324 1.04385 10000 1.04403 - 0.04303i 1.04403 + 0.04303i 9998.95586 + 0.2440 × 10–7i 

1.04324 2.0 10000 1.04243 - 1.70619i 1.04243 + 1.70619i 9998.95760 + 0.9702 × 10–6i 

1.04324 10 10000 1.04083 - 9.94541i 1.04083 + 9.94540i 164285.2671 + 0.00008i 

1.04324 20 10000 1.04801 - 19.97270i 1.048013 + 19.97267i 164286.4156 + 0.01393i 

 
Table 5. This table shows the calculated horizons using the Equations (28)-(30). When q  0

 410.51705

, we have used the Equations (37) 

and (38). , iL 10 3 . See Figure 4. 

m  q  
eL  rniahR  rnoahR dsec R  

    bhR  cR  

0.51208 0 549993006  1.06648 54993005.47 

0.51208 100 549993006 0.51353 - 99.99419i 0.51353 + 99.99395i 10410.48370 + 0.00011i 

0.51208 1000 549993006 0.50823 - 995.46055i 0.50823 + 995.45813i 10457.4936 + 0.00121i 

0.51208 2049.7030 549993006 2245.2 - 2366.8273i 2245.4 + 2366.7587i 0.5499 × 10–9 + 0.03432i 

0.51208 5000 549993006 0.38728 - 4577.13222i 11371.90700 - 0.00795i 0.38728 + 4577.14813i 

0.51208 10000 549993006 0.25613 - 7948.23843i 13097.59644 - 0.02406i 0.25613 + 7948.28656i 

 
qTable 6. This table shows the calculated horizons using the Equations (28)-(30). When  0

865

, we have used the Equations (37) 

and (38). , iL  2.8743397   . See Figure 5. 

q  
eL  m  

rniahR  rnoahR dsec R  

    bhR  cR  

0.51706 0 10  1.04554 9.43614 

0.51706 0.22303013 10 0.05056 0.99390 9.43929 

0.51706 0.4 10 0.18939 0.85268 9.44625 

0.51706 1.5 10 0.49983 - 1.40462i 0.49983 + 1.40462i 9.573556+ 0.14 × 10–8i 

0.51706 2.5 10 0.77273 - 0.57597i 0.77275 + 0.57596i 133842.2716 + 0.59067 ×10–5i 

 
We call attention that in all the cases studied here, the 

formation of the apparent horizon can be avoided in-
creasing the value of the charge, indicating that the shell 
can collapse to form naked singularity. 

4. Conclusions 

We constructed a gravastar model consisting by an inte-
rior de Sitter spacetime and an exterior spacetime with an 

external cosmological constant, described by a de Sit-
ter-Reissner-Nordström metric. The charge is localized 
on the shell. Restricting the range of the initial radius, we 
obtain as the final structure bounded excursions, stable 
gravastars and also naked singularities. 

We investigated the influence of the charge and we 
observed that increasing its value, and fixing a value for 
the mass, we can obtain a stable gravastar from a 
bounded excursion gravastar. For even higher values of     
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Figure 1. The potential  for V R  1 , , m  0.5055981490 iL  1.932841686 eL and  468659.8789

q  1.5

. The horizons are 

given in Table 1. The growth of the charge eliminates the stable structure. In addition, note that for , the shell 

collapses to a black hole, while for , we have the collapse of the shell in a naked singularity. q  10.0

 

 

Figure 2. The potential  for    0V R  , ,  and . The horizons are 

given in Table 2. For  a stable gravastar is formed if 

m  0.5170643255 iL 

R

2.8743397865 eL  133843.0443

q  0.0 0 1.5 , but for bigger charges, the shell collapses to a naked 

singularity. 
 

 

Figure 3. The potential  for V R  1.7 , , m  1.043246242 iL  60645762.41  and eL  10000 . The horizons are given 

in Table 3. Note that we have a bounded excursion gravastar for q  0.8  and q  1.0 , and a naked singularity for q 2.0 . 
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Figure 4. The potential  V R  for  3 , , m  0.5120894280 iL  10410.51705 eL and  549993006.6 . The horizons are 

given in Table 4. In this example, the shell is constituted by phantom energy and none stable structure is formed. 
 

 

Figure 5. The potential  V R  for   , , m  0.5170643255 iL  2.8743397865  and eL  10.0 . The horizons are given 

in Table 5. Note that we have a gravastar enclosing a naked singularity. 
 

 

Figure 6. The potential  V R  for  1 , , m  1.011196298 iL  1.932841686 eL and  468659.8789 . This figure shows 

the influence of the charge for the stability of the shell. As showed in the figure 1, the increase of the charge implies in the loss 
of the stability. 
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Figure 7. The potential  V R  for  1 , , q  1 iL  1.932841686 eL and  468659.8789

1

. This figure shows as the mass, 

for a given charge, contributes for the stability of the shell. 
 
the charge the apparent horizon can be avoided, which 
leads the formation of a naked singularity. 

In the case of a shell formed by standard energy, with 
  

q
 in its state equation (Figures 1, 6 and 7), for 

some fixed values of charge, above a lower limit   
dependent on the mass and on cosmological constants, 
and small initial values of radius, the shell can collapse 
and form a naked singularity. There is also a possibly 
formation of black holes for some values of the charge, 
below , for fixed values of the mass. Increasing the 
value of the charge, we verify that initially bounded ex-
cursion configurations become more stable and there is 
another limit for the charge, c , for which the structure 
becomes a stable gravastar. For charges upper than c  
the shell collapses. Moreover, fixing the mass and vary-
ing the charge, we have a similar behavior, that is, a 
bounded excursion becomes more stable increasing the 
charge until reaches a stable gravastar and for other val-
ues of the charge, we have black holes and naked singu-
larities. In the case of 

q

q
q

1.7 

3.0

 (Figure 3), the shell is 
constituted by dark energy and for small values of the 
initial radius there is also a naked singularity formation. 
The same is found for a phantom dark energy shell with 
 

0
 (Figure 4). Finally, for a stiff fluid shell with 

   (Figures 2 and 5), we have bounded excursion 
formation, stable gravastar, black hole and naked singu-
larity formation according to the values of the charge and 
for some values of initial radius. It is remarkable that the 
naked singularity formation appeared in this gravastar 
model is completely new. Then, beginning with a shell 
linking two spacetimes (de Sitter and de Sitter-Reissner- 
Nordström) in order to eliminate the horizons, as pro-
posed by the gravastar’s model, except for the cosmo-
logical horizon of the exterior spacetime, the shell can 
stay stable, forming a gravastar, or collapsing in a black 

hole or even a naked singularity, representing a new 
counterexample to the Cosmic Censorship. Then, this 
model definitively is not an alternative to the black hole, 
even naked singularities. 
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