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Abstract 
 
Analytical solutions for the rotating variable-thickness inhomogeneous, orthotropic, hollow cylinders under 
plane strain assumption are developed in Part I of this paper. The extensions of these solutions to the viscoe- 
lastic case are discussed here. The method of effective moduli and Illyushin's approximation method are used 
for this purpose. The rotating fiber-reinforced viscoelastic homogeneous isotropic hollow cylinders with uni- 
form thickness are obtained as special cases of the studied problem. Numerical application examples are 
given for the dimensionless displacement of and stresses in the different cylinders. The influences of time, 
constitutive parameter and elastic properties on the stresses and displacement are investigated. 
 
Keywords: Rotating, Viscoelastic Cylinder, Orthotropic, Variable Thickness and Density 

1. Introduction 
 
In recent years the subject of viscoelasticity has received 
considerable attention from analysts and experimentalists. 
The stress state of a viscoelastic hollow cylinder with the 
help of internal pressure and temperature field is analyzed 
in the literature [1,2]. A modified numerical method is 
introduced by Ting and Tuan [3] to study the effect of 
cyclic internal pressure on the stress and temperature 
distributions in a viscoelastic cylinder. Talybly [4] has 
investigated the state of stress and strain for a viscoelastic 
hollow cylinder fastened to an elastic shell under non- 
isothermal dynamic loading. Feng et al. [5] have obtained 
the solution for finite deformations of a viscoelastic solid 
cylinder subjected to extension and torsion. The thermo- 
mechanical behavior of a viscoelastic finite circular cylin- 
der under axial harmonic deformations is presented by 
Karnaukhov and Senchenkov [6]. 

The determination of stress and displacement fields is 
an important problem in design of engineering structures 
using fiber-reinforced composite materials. The analyti- 
cal solution for the rotating fiber-reinforced viscoelastic 
cylinders becomes very complex when the thickness along 
the radius of the cylinder is variable, even for simple 
cases. Methods for solving quasi-static viscoelastic pro- 
blems in composite structures have been developed by a 
number of authors [7-9]. Allam and Appleby [10] have 

used the realization method of elastic solutions to solve 
the problem of bending of a viscoelastic plate reinforced 
by unidirectionally elastic fibers. In other work [11], they 
have used the method of effective moduli to determine 
the stress concentrations around a circular hole or circu- 
lar inclusion in a fiber-reinforced viscoelastic plate under 
uniform shear. Allam and Zenkour [12] have used the 
small parameter method as well as the method of 
effective moduli for the bending response of a fiber- 
reinforced viscoelastic arched bridge model with quadra- 
tic thickness variation and subjected to uniform loading. 
In [13], they have also obtained the stresses around filled 
and unfilled circular holes in a fiber-reinforced visco- 
elastic plate under bending. The same author [14] have 
developed closed form solutions for the rotating fiber- 
reinforced viscoelastic solid and annular disks with 
variable thickness by applying the generalization of 
Illyushin's approximation method. In addition, Allam et 
al. [15] have determined the stress concentrations around 
a triangular hole in a fiber-reinforced viscoelastic com- 
posite plate under uniform tension or pure bending. Also, 
Zenkour et al. [16] have presented the elastic and visco- 
elastic solutions to rotating functionally graded hollow 
and solid cylinders.  

In the present paper, the rotating fiber-reinforced 
viscoelastic hollow cylinder is analytically studied. The 
thickness of the cylinder and the elastic properties are 
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taken to be functions in the radial coordinate. The gove- 
rning second-order differential equation is derived and 

solved with the aid of some hypergeometric functions. 
The displacement and stresses for rotating fiberrein- 
forced viscoelastic inhomogeneous orthotropic hollow 
cylinder with variable thickness and density subjected to 
various boundary conditions are obtained. Special cases 
of the studied problem are established and numerical 
results are presented in graphical forms. 

 
2. Rotation of Viscoelastic Cylinders 
 
According to the elastic solution given in part I, we can 
use the method of effective moduli and Illyushin's appro- 
ximation method to solve the rotation problem of vari- 
able thickness and density viscoelastic hollow cylinder 
reinforced with unidirectionally elastic fibers. 

For an orthotropic cylinder, the compliance parameters 

ij can be expressed in terms of the engineering cha- 
racteristics as [17]:  
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where iE  are Young's moduli and ij  are Poisson's 

rations which are related by the reciprocal relations:  
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Now, consider a hollow cylinder made of a composite 
material composed of two components. A viscoelastic 
material as a first component, reinforced by unidirec- 
tional elastic fibers as a second component. The first of 
these components plays the role of filler and may posses 
the properties of a linear viscoelastic material, and it is 
described by the modulus fE  and Poisson's ratio f . 
The other component will be serve as the reinforcement 
and is an elastic material with modulus of elasticity E  
and Poisson's ratio  . 

Under the above considerations and using the method 
of effective moduli [14,18], Young's moduli and 
Poisson's ratios, with 1= = = =r r rz z        and 

2= =zr z   , are given by [19]:  
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(4) 
where   is the volume fraction of fiber reinforcement. 
Thus, it is obvious that the reciprocal relations given in 
Equation (3) are fulfilled. 

Note that, the viscoelastic modulus fE  is given by:  
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where K  is the coefficient of volume compression (the 
bulk modulus) and it is assumed to be not relaxed, i.e. 

=K const., and is the dimensionless kernel of relaxa- 
tion function which is related to the corresponding Poi- 
sson's ratio by the formula:  
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Substituting from Equations (5) and (6) into Equation 
(4) yields  
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or in the simple form  
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where = /p K E  is the constitutive parameter. 
With the help of Equations (1) and (8), one can rewrite 

the solutions given in Part I of this paper; see Equations 
(20) and (23)-(25); in the form:  
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It is to be noted that, in elastic composites, the radial 
displacement and stresses are functions of   and r  
while in viscoelastic composites they are operator 
functions of the time t  and r . According to Illyushin's 
approximation method [11,19,20], the function u  can 
be represented in the form:  

   
5

=1

( , ) = ,i i
i

u r A r           (12) 

where ( )i   are some known kernels, constructed on 
the base of the kernel   and may be chosen in the 
form:  
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where , ( = 1, 2)

i
g i  are given in Equation (9). 

The coefficients ( )iA r  are determined from the 
system of algebraic equations  

 
5

=1

= , = 1, ,5 ,ij j i
j

L A B i            (14) 

where  

 1 1

0 0
= , = , .ij i j i iL d B u r d           (15) 

Now, let us consider the relaxation function in an 
exponential form  
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(18) 
Equation (12) for a viscoelastic composite may be re- 

corded to obtain explicit formula for the radial dis- 
placement as function of r  and time t  in the form: 
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Taking 2 2
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unit step function given by  
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Then, Equation (19) takes the form  
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where ( ), ( )t t   and ( )
i

g t  are given in Equations 
(16) and (18). Using the same technique once again to 
obtain the radial, circumferential and axial stresses for 
the rotating fiber-reinforced viscoelastic hollow cylinder 
with variable thickness and density by replacing only 

( , )u r t  with ( , )r t   and making the suitable changes 
in this case. 
 

3. Applications 
 
In this section, some numerical examples for the rotating 
fiber-reinforced viscoelastic inhomogeneous variable- 
thickness cylinder will be introduced. The results of the 
present problem will be given for three sets of geometric 
parameters k  and n  for the thickness profile. The nu- 
merical applications will be carried out for the radial 
displacement and stresses that being reported herein are 
in the following dimensionless forms:  
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The effect of the elastic properties of the cylinder, 
constitutive and time parameters on the dimensionless 
radial displacement and stresses will be shown. The cal- 
culations will be carried out for the following values of 

parameters: 1 2= 0.3, = = 0.1, = 0.9c c   and = 0.5 . 
In addition, other parameters are taken (except otherwise 
stated) as: = 0.2, = 2.5, = 0.8p k n and = 1m . Also, the 
coefficient   is still unknown and the time parameter 

( )t  is given in terms of it.  
The distributions of the dimensionless stresses and 

displacement through the radial direction of the rotating 
fiber-reinforced viscoelastic inhomogeneous variable- 
thickness cylinder are plotted in Figures 1-3 according 
to the FF, CC, FC and CF boundary conditions, 
respectively. For all hollow cylinders, the dimensionless 
radial displacement ru  is the largest in the same 
position for small k , i.e. = 0.6k . For FF and CF 
hollow cylinders, the dimensionless stresses are the 
largest for small n . The minimum values of the dimen- 
sionless radial stress r  at the outer surface of the CC 
and FC hollow cylinders are larger for = 0.6k . Also, 
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Figure 1. Dimensionless stresses and displacement for a variable-thickness viscoelastic hollow cylinder subjected to various 
boundary conditions (k = 0.6, n = 0.8, m = 0.5). 
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Figure 2. Dimensionless stresses and displacement for a variable-thickness viscoelastic hollow cylinder subjected to various 
boundary conditions (k = 2.5, n = 0.8, m = 0.5). 
 

    
 

    
Figure 3. Dimensionless stresses and displacement for a variable-thickness viscoelastic hollow cylinder subjected to various 
boundary conditions (k = 2.5, n = 0.4, m = 0.5). 
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the dimensionless circumferential   and axial z  
stresses are smaller through the radial direction of the CC 
hollow cylinders when = 0.6k . The maximum value of 

  at the inner surface for FC hollow cylinder are the 
smallest when k = 2.5 and n = 0.8. In addition, the di- 

 
 

 
 

 
Figure 4. Distribution of dimensionless stresses and dis-
placement through the radial direction of a FF variable- 
thickness viscoelastic hollow cylinder. 

mensionless axial stresses are monotone decreasing in 
r  and it is smaller for n = 0.4 than for n = 0.8. 

For a profile with geometric parameters = 2.5k  and 
= 0.8n , the dimensionless displacement and stresses are 

plotted in Figures 4-7 for the rotating fiber-reinforced 

 
 

 
 

 

Figure 5. Distribution of dimensionless stresses and dis-
placement through the radial direction of a CC variable- 
thickness viscoelastic hollow cylinder. 
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Figure 6. Distribution of dimensionless stresses and dis-
placement through the radial direction of a FC variable- 
thickness viscoelastic hollow cylinder. 

viscoelastic inhomogeneous cylinder subjected to various 
boundary conditions with different values of the para- 
meter m . The stresses and displacement for = 1m  are 
the smallest when compared to the results for = 0m  

 
 

 
 

 
 

Figure 7. Distribution of dimensionless stresses and dis-
placement through the radial direction of a CF variable- 
thickness viscoelastic hollow cylinder. 

and 1 . For FF and FC hollow cylinders, the dimen- 
sionless radial displacement ru  has changed concavity. 
The dimensionless radial stress r  increases firstly to 
get its maximum value then it decreases again at the 
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external surface to get zero value for FF boundary 
condition while it tends to a constant value for FC boun- 
dary condition. In both cases, the dimensionless circum- 
ferential stress   has maximum value at the inner sur- 
face. Also, the dimensionless radial displacement ru  
increases directly as the dimensionless radius r  incr- 
eases for CF hollow cylinders while the highest values of 
it occur near the external surfaces of the CC hollow 
cylinders. The dimensionless radial stress r  is mono- 
tone decreasing in r  for CC and CF hollow cylinders. 
In all figures, the dimensionless axial stress z  decr- 
eases from the inner to the outer surface. Also, the di- 
mensionless radial displacement for a profile = 0.6,k  

= 0.8n  and = 1m is plotted in Figure 8 with various 
values of the constitutive parameter p . For CF and FF 
hollow cylinders, the dimensionless radial displacement 

ru  and the concavity changed of it for FC hollow cy- 
linder increase with the decreasing of the constitutive 
parameter p. In addition, the maximum values of ru  
decrease with the increase of p  for CC hollow cylinder. 
Note that, the maximum values of ru  occur at the same 
 

position, = 0.72r  for different values of p . 
Finally, the influence of time parameter   on the 

dimensionless displacement and stresses for variable 
thickness viscoelastic hollow cylinder subjected to FF, 
CC, FC and CF boundary conditions is plotted in Figure 
9. This influence is studied at the position = 0.5r  with 
geometric parameters = 0.6, = 0.8k n  and = 1m . For 
all hollow cylinders, the dimensionless radial displace- 
ment ru  increases rapidly with increasing the time pa- 
rameter   to get a constant value for 55  . Also for 
FF hollow cylinders, the dimensionless radial r  and 
circumferential   stresses may be unchanged with 
time parameter 2.5   while the dimensionless axial 
stress z  increases rapidly to still unchanged for 8  . 
For CC and FC hollow cylinders, the highest values of 

,r    and z  occur at 3,2.5   and 5, respectively, 
then they are decreasing in the intervals 3 < < 14,  
2.5 < < 16 and 5 < < 17 to still unchanged for 

14, 16   and 17, respectively. Also for CF hollow cy- 
linder, the minimum value of the dimensionless radial 
stress happens at 2   then it is increasing slowly to app- 

   
 

   

Figure 8. The effect of the constitutive parameter p on ru of a variable-thickness viscoelastic hollow cylinder. 
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Figure 9. The effect of time parameter   on (a) ru , (b) r , (c)   and (d) z  of a variable-thickness viscoelastic hollow 

cylinder at r = 0.5. 
 
roach a constant value for 13  . However, the dimen- 
sional circumferential and axial stresses increase to get 
their maximums at 3.5   and 7.5 , respectively, then 
decrease to still unchanged for 15   and 17.5 , 
respectively. 

4. Conclusions 

The rotation problem of a fiber-reinforced viscoelastic 
inhomogeneous variable-thickness hollow cylinder has 
been studied. The elastic problem is solved analytically 
by using the hypergeometric functions. The viscoelastic 
problem is solved using both the method of effective 
moduli and Illyushin's approximation method. Analytical 
solution for rotating fiber-reinforced viscoelastic inho- 
mogeneous anisotropic hollow cylinder of variable thi- 
ckness and density subjected to different boundary con- 
ditions are derived. The displacement and stresses for 
rotating fiber-reinforced viscoelastic homogeneous isotr- 
opic hollow cylinder with uniform thickness and density 
are obtained as special cases of the investigated problem. 
The effects due to many parameters on the radial dis- 

placement and stresses are investigated. 
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