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ABSTRACT 

We introduce a new approach in dealing with pattern recognition issue. Recognizing a pattern is definitely not the ex- 
ploration of a new discovery but rather the search for already known patterns. In reading for example the same text 
written in a hand writing, letters can appear in different shapes. Still, the text decoding corresponds with interpreting the 
large variety of hand writings shapes with fonts. Quantum mechanics also offer a kind of interpretation tool. Although, 
with the superposition principle it is possible to compose an infinite number of states, yet, an observer by conducting a 
measurement reduces the number of observed states into the predetermined basis states. Not only that any state col- 
lapses into one of the basis states, quantum mechanics also possesses a kind of correction mechanism in a sense that if 
the measured state is “close enough” to one of the basis states, it will collapse with high probability into this predeter- 
mined state. Thus, we can consider the collapse mechanism as a reliable way for the observer to interpret reality into his 
frame of concepts. Both interpretation ideas, pattern recognition and quantum measurement are integrated in this paper 
to formulate a quantum pattern recognition measuring procedure. 
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1. Introduction 

Image recognition is one of the basic problems in artifi- 
cial intelligence [1]. A short glance at an ordinary object, 
which usually suffices for the human brain to recognize 
and interpret as a known image, is not a trivial task for a 
computer to accomplish. The computer takes a quick 
glance but needs a much more time consuming analysis 
to arrive at the same conclusions. This is particularly the 
case if the image does not have an accurate shape. Con- 
sider a handwritten template: What seems to be relatively 
easy for the human brain to interpret can pose numerous 
difficulties in computer image recognition. 

In order to overcome this difficulty, it was shown that 
the task of finding and identifying certain patterns in an 
otherwise unstructured picture can be accomplished effi- 
ciently by a quantum computer [2]. In addition, a sug- 
gested manner of handling compatibility between an im- 
age and a set of templates (like adjusting a template to a 
known face, for example) was shown with a set of spe-
cial classifiers, such as a Fourier analysis, or neural net-
works (see for example ref. [1]). Another approach of 
addressing the recognition problem is presented in ref. [3] 
and in ref. [4] where it is shown that a fully quantum 
matching procedure exists that is strictly superior to the 
straightforward semi-classical extension of the conven-

tional matching strategy based on learning process. 
Quantum coherence is a basic concept in quantum 

computer science research [5]. The relation between co- 
herence and image recognition was presented in ref. [6]. 
It proposes a probabilistic quantum algorithm that de- 
cides whether a monochrome image matches a given 
template. 

Quantum coherence, together with the superposition 
principle, gives rise to the parallelism concept for which 
processing a single state is like acting simultaneously on 
all states that participate in the superposition [6,7]. It is 
also known that a key role in speeding up quantum algo-
rithms is played by multi-particle entanglement [8]. These 
entanglement and parallelism concepts enable quantum 
algorithms such as Shor’s factoring, which provides op- 
tions for very fast computers [9]. 

In addition, quantum superposition of coherence qubits 
has the advantage of maintaining enormous databases by 
a single state. It was shown that this superposition of 
qubits can be applied to an efficient database-finding 
algorithm [10-12], and the advantage of using quantum 
memory was shown in refs. [13-15]. 

However, despite of all these advantages, implement-
ing the enormous database state is always restricted by 
the need for quantum measurement at the output stage. 
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Clearly, a state that is originally composed of many 
qubits randomly collapses into one of its components and 
the coherence between the qubits is violated. 

In this paper we demonstrate that what seems to be a 
collapse drawback may turn into an advantage if the col- 
lapse represents the observer interpretation. The tradi- 
tional approach for figuring paints is by dividing them 
into pixels and using sophisticated algorithms to process 
in order to figure the paints significance. This corre- 
sponds to a situation with multi-pixel states. In our ap- 
proach we propose that the observer defines a quantum 
basis of states (which are defined as a superposition of 
the pixel states) rather than using the pixel basis. In 
quantum mechanics any quantum basis of states can be 
associated with a measuring device. Thus, the observer 
possesses the ability of building a device that measures 
directly the desired figure. Selecting the figure basis de- 
pends on the observer determination. Consequently, the 
collapse can be regarded as the observer interpretation of 
the original paint. Thus, working within the figure basis 
allows us to measure and interpret the paint’s multi-pixel 
state directly in a single measurement and the result of 
any figure’s multi-data state will be an interpretation into 
one of the device figure states. 

The goal of our approach is to find a device that rec-
ognizes figures as close as possible to a single pure quan- 
tum measurement by reducing the logical operators 
(gates) as much as it can. In theory, we show that it is 
possible to recognize images solely by a single pure 
measurement. 

In the area of pattern recognition an important and 
central issue is the location problem [16]. Since we con-
centrate on the interpretation approach, we avoid the lo-
cation problem by assuming that the photon representing 
the paint is coherent all over the entire surface of the 
paint. Furthermore, the paint fills the entire surfaced, 
thereby eliminating the need to locate it within the sur- 
face. 

2. Definitions 

We propose the following terminology: 
Paint state: Refers to the coherent light sources that 

generate the quantum measuring device input. This state 
refers to the raw image prior to any attempt at interpreta-
tion, similar to a painting before an art critic offers an 
interpretation. The corresponding state is denoted by π
π

 
(“ aint”). We will refer to the paint state by the term 
paint. 

Figured state: The quantum measurement output that 
was interpreted (figured out) by the quantum measuring 
device, similar to the explanation about a painting given 
by an art critic. The corresponding state is   (“

3. Interpretation Verses Revealing 

We recall that the observer selection of the measurement 
device is equivalent to an interpretation in a sense that 
the basis of states defines the way a paint is described. 
The goal of this article is to present a methodology spe- 
cifically dealing with that subject, i.e., instead of reveal-
ing some objective meanings of the paint, the paint is 
interpreted into a figure. The advantage of this approach 
is that the observer can define a small number of figures 
and in that sense it can speed up dramatically the paint 
interpretation. By selecting the measuring device all 
paints will collapse to the predefined figures. Moreover, 
the representation of the whole paint by a single photon 
enables us to interpret the paint into a figure in a single 
measurement. We present a conceptual scheme demon- 
strating how, in a single measurement, an image is inter- 
preted directly into a known image. 

4. The Single Photon State Description 

In the Fock space a photon state is defined by the pho- 
ton’s number 

  
gure”). 

n  and the photon energy which we refer  

as the photon color,   
1

2nE h n     
  

. We define  

a monochromatic single-colored paint, skipping the color 
state  . In our analysis we consider a single photon, 
that is, the states are 1n   for a single photon exis-
tence or 0n   for the photon absence. 

5. Simple Example—The “Positive” and 
“Negative” Paints 

Before we introduce a single photon state that represents 
a complex paint, let us start with a simple example that 
demonstrates the interpretation advantage of paints by a 
single measurement. 

In our description we refer the photon state 0  to a 
black color and the photon state 1  refers to a definite 
color and we assume the photon to be coherent allover 
the paint surface [17]. Quantum mechanics allows us to 
describe paint with superposition of the two single pho-
ton states: 

0 1

0 1

0 1

1 0 .

A A

A A








 

  
             (1) 

With the single photon normalization condition  
2 2

1A A0 1   We now show that the interpretation of 
the paint is subject to the observer selection of measuring 
device: 

Suppose that the observer decides to measure the 
amounts of colors in each paint. He therefore uses the 
following projective operator 

/
ˆ " " 1 1 " " 0 0B CM C B          (2) 
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We find no specific reason to describe the measure-
ment output by the numerical eigenvalues, in particular 
when the output is a color concept. Therefore we 
introduce the eigensymbols  and  that sym-
bolize the black and the definite colors,respectively. The 
states 

" "B " "C

0  and 1  stand for the photon presence or 
absence, respectively. The minus sign that appears in the 
π  is a phase that is responsible for the states or-

thogonality. Although the phase is in a way obscured 
through the measuring process, it provides the measuring 
device the ability of distinguishing between the states. 

The expectation values of the measurements are 
2

/ 0

2

/ 0

ˆπ π

ˆπ π

B C

B C

2

1

2

1

" " " "

" " " ".

M A B A C

M A C

 

  A B

 

 
      (3) 

Clearly the 
2

0A  and 
2

1A  are the different amounts 
of black and the defined colors. It is also seen that the 
difference between the two expressions is a color flip-
ping; that is, if the "  and  color amounts for  "B " "C

/
ˆπ B CM π   are 

2

0A  and 
2

1A , respectively, then 

the  color amounts for /B C /
ˆπ B CM π   are 

2

1A   

and 
2

0A  in the same order. This means that the two 
states π  and π

ˆ

  have opposite colors, like posi-
tive and negative paints. 

Selecting a measurement device is like making an in-
terpretation, or, selecting the language to describe the 
phenomena. The measuring device /B C  describes the 
paint by the amounts of the black and the definite colors. 
A measuring device that directly detects the states 

M

π , 
π  through the operator 

/
ˆ " " π π " " π πP NM P N    

, res

      (4) 

distinguishes between a positive or negative paint as in-
dicated by the “eigensymbols” letters selection " "P  and 
" "N pectively. For example if we choose the two 
pictures as described in Figure 1 then, by the use of the 
device as presented in Equation 4, a single measurement 
will distinguish between the two paints. It will not reveal 
the headline “paint” but it will distinguish between the 
positive and negative paint in a single measurement 
without the necessity of a complicated analysis. Note that 
this measurement requires an input photon that is coher-
ent all over the paint. 

An impaortant quality of this measuring method is the 
 

 

Figure 1. Example of positive and negative paints. Black 
color can be considered as the photon absence while the 
white color can stand for the photon existence. These two 
paints are distinguished in a single measurement. 

full interpretation output. We should bear in mind that 
the observer does not seek for an absolute truth, he rather 
seeks for a clear observation between the paints: Positive 
or negative? Eventually, even paints that are not clearly 
distinguishable as positive or negative paints will col-
lapse during the measurement process into one of the 
categories. 

5.1. Measurement Correction 
(Interpretation)-Stressing the Paint Details 

Let us assume that the paint is described by means of 
superposition of the -states: π

π π      

ˆ

             (5) 

which means that we have a white and gray paint (see 
Figure 2). An observer that uses the /P N  measuring 
device (Equation (4)) is blind to gray colors and therefore 
he will measure only the states 

M

  or π π  with 
probabilities 

2  and 
2 , respectively. This kind of 

measurement can be applicative if one needs to stress 
details in a fuzzy paint. 

5.2. The Detailed Paint State 

In order to obtain a significant paint we have to describe 
the colors distribution across the canvas. This is per-
formed by dividing the paint into an N N  small 
squares matrix (pixels) represented by the states ,i j

,i j
, 

where  describes the pixel location. To avoid confu-
sion we note that the states ,i j  refer to a a single par-
ticle state that for convenience reason was expressed in 
this form in order to appear in a matrix form (see, for 
example, the right side of Figure 3). 

With a tensor product we assign the photon state such 
that 0 ,i j  and 1 ,i j

,i j
 represent black and colored 

pixels in the  location, respectively 
The paint is described by the following superposition 

, ,

0, , 1, ,
, 1,1 , 1,1

π 0 . 1 .
N N N N

i j i j
i j i j

i j i j 
 

   .      (6) 

By selecting various coefficients  , it is possible to 
form a set of paints to serve as the measuring device in-
put. There is no particular demand regarding this set and 
the state members can be nonorthogonal provided that 
the paint and the figure states belong to the same Fock 
space, meaning that every single photon state possesses 
the same number of pixels. 
 

 

Figure 2. A gray paint example. Clearly it does not fall 
under the category of positive or negative paint. Yet, the 
measuring output will be one of the figures of Figure 1. 
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measurement can interpret (figure out) the paint into a 
figure state with reasonable reliability. 

 

5) In case of a paint that is different from the figure 
states, the vague paint state will collapse into clear figure 
identification as expected by the observer. 

6.1. The Orthogonality of the Figure States Figure 3. An example of two paints: The letters F and L. 
The states  and 

Copyrig

0 1  are represented by the dark and 

white colors, respectively. On the right, the We pointed out that there is no necessity for the paints 
set to be orthogonal. However, when collapsing into the 
figure states, the new figure basis must be become or- 
thogonal, otherwise the measuring results will be indis- 
tinguishable. 

4 -pixel 
states definitions, the two figures on the left, the definition 
of the paint states F and L. 

4

k

 
For the definition of the paint set we add superscripts 
 such that 

, ,

0, , ,
, 1,1 ,

0 .
N N N

k i j k
i j i j

i j 
 

  1, , ,
1,1

1 .
N

i j k i j 

 , , , , , ,exp i .i j k i j k i j k

    (7) 

As we need the figure state to resemble the paint state 
as much as possible, we introduce a formalism of alter- 
nating nonorthogonal states into an orthogonal set with 
the introduction of relative phases. 

Suppose we have a states set like in Equation (7) that 
are nonorthogonal. 

6. The Measuring Process 

In order to understand the measurement role in the paint 
interpretation process we recall few essential issues: 

We propose that in the measurement process the coef-
ficients gain a phase such that 

1) The measuring device possesses a set of eigenstates 
that span the Fock space. We referred those states as to 
the figure states (figured out by the measuring device). 

               (8) 
2



,

, , , , ,
, 1

i

The term , ,i j k  is the amount of color at the match- 
ing pixel (see Equations (6) and (7)). Therefore, the addi- 
tion phase does not change the paint nature. However, we 
can select phases that can impose orthogonality between 
the states. 

2) The measuring device does not reveal some objec-
tive meaning of the paint. It simply projects the arriving 
photon paint state into the device eigenstates. 

3) In the collapse process the measuring device forces 
the measurement output to be one of device eigenstates. 
This collapse is responsible for the interpretation. 

N

.
N

i j k i j k k k
i j

   
 




4 4

            (9) 

4) Since the single photon arrives already “dressed” in 
the paint state and by assuming that the paint states are 
similar to the figure states we can assume that a single 

For example we can choose the following   states 
representing the letters F  and  (Figure 3). L

The corresponding states are: 

 

 

 

 

1

2

 
1

0 1,1 1, 2 1,3 2,1 3,1 3,2 3,3 4,1
4
1

1 1,4 2, 2 2,3 2,4 3, 4 4,2 4,3 4, 4
4

 
1

0 1,1 2,1 3,1 4,1 4, 2 4,3
4
1

1 1,2 1,3 1,4 2, 2 2,3 2, 4 3, 2 3,3 3, 4 4,4
4

F letter

F

L letter

L





        

       

      

         

            (10) 

 signs) These are nonorthogonal states. Yet, by introducing the following relative phases (the 

 

 

 

 

1

2

 
1

0 1,1 1,2 1,3 2,1 3,1 3,2 3,3 4,1
4

1
1 1, 4 2,2 2,3 2,4 3,4 4, 2 4,3 4,4

4
 

1
0 1,1 2,1 3,1 4,1 4, 2 4,3

4
1

1 1, 2 1,3 1, 4 2,2 2,3 2, 4 3, 2 3,3 3,4 4, 4 ,
4

F letter

F

L letter

L





        

       

      

         

            (11) 



Y. ROTH 816 

 
We obtain orthogonal states. We note that now the 

states are denoted by the letter   since now they are the 
measurement related states. 

6.2. The Measuring Device Scheme 

The measuring device is composed of two components: 
The Translating Slide and, behind it, the Determination 
Plane (see illustration in Figure 4). 

The Translating Slide is the component in which the 
paint state πk  is interpreted into the figure language 
  through the superposition 

π


πk k  

0z 

             (12) 

and the Determination Plane is a macroscopic device that 
is responsible for the original state collapsing into one of 
the figure states. 

Let us assume a paint, located at , emitting a 
plane wave photon ie kzπ

z

N N

, 

k . The Interpretation Slide is 
located at i , perpendicular to the wave function 
direction. The Translating Slide is a varying transparency 
slide that is locally adjusted into the desired measured 
figures. In addition, in order to force orthogonality, each 
part of the slide can locally shift the phase of the arriving 
paint photon. 

z 

The slide is divided into  squares where each 
square represents a miniature of a figure. In order to form 
a miniature, each square is subdivided into smaller 
squares that play the part of pixels in the figure minia-
ture. 

We define the pixels in each miniature by the 
subscripts    (in analogy to the i  pixels of the 
paint state) to obtain the miniature states 

, j

, ,

0, , ,
, 1,1 , 1

0 ,
N N N N

   
   

1, , ,
,1

1 ,      
 

   



 (13) 

where  marks the miniatures. Now the coefficients 

0, , ,    and 1, , ,     that represent the relative amount 
of photons amplitude can be interpreted as the pixel rela-
tive transparency and phases. We design the pixels to 
form orthogonal figure states. 



Thus, a photon that passes through a single miniature 
indicates that originally it was in a paint state that 
 

 

Figure 4. An illustration of the measuring device. 

matches the figure state. However, a paint photon that is 
not a member of the figure basis will be described by the 
superposition of all the miniature states, described in 
Equation (12), that is, extended all over the Translating 
Slide, meaning, no conclusive interpretation regarding 
the photon figure state is obtained. For that scenario we 
introduced the Determination Plane. The Determination 
Plane is a macroscopic object located behind the Trans- 
lating Slide. An extended photon that passes through the 
slide when interacting with the Determination Plane will 
collapse to exhibit a single location in the plane. The 
miniature against that location will be regarded as the 
figure interpretation. 

7. Figure Composed of Template Pixel 

In this paper we introduced the concept of an image that 
is represented by a single photon in contrast to the multi- 
photon approach for which each pixel is represented by a 
photon state and the image state is composed of the 
pixel-photon-states product. 

A middle way is to compose the image from template 
pixels. 

We define a template pixel as a figure basic element 
that instead of being single-colored, is a complicated 
figure by itself. In many ways this template image com-
position resembles the way a painter describes his image. 
He describes it as composed of templates such as lines or 
other shapes rather then small single colored squares. 

The image states Im  that are composed of   
number of templates, are composed from all the template 
states  product combinations i

=1

.i
i

Im


                 (14) 

8. Summary 

Rapid figure recognition is a crucial requirement in arti- 
ficial intelligence. The ability of a future artificial intel- 
ligence machine to function independently depends on its 
ability to swiftly recognize and interpret its surroundings. 
It should be noticed that a robot interacting within human 
society must have the ability of interpreting its surround-
ings correctly, rather than just displaying some objective 
reality. 

A figure interpreted within the coordinate’s basis may 
contain an enormous database. Therefore, in order to 
reduce the time consumed by the interpretation process, 
the multi-database is usually analyzed with sophisticated 
algorithms. The shorter the running time the more effi- 
cient the algorithm will be. In our approach, interpreting 
was analyzed strictly within the figure basis with no con- 
cern for the time-consuming algorithms. This corre-
sponded with the single measurement that measures the 
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figure as a whole. In the same manner as we reduced the 
time-consuming interpretation by replacing the sophisti- 
cated algorithms with almost a single measuring device, 
we can design a robot for which the interpretation capa- 
bilities are also physically embedded within its electronic 
brain with a measuring device as we described here in 
order to reduce the time-consuming algorithm compo- 
nents. 

Let us conclude with a philosophical thought. Gestalt 
is a psychology term that refers to theories of visual per- 
ception. It attempts to describe how to organize visual 
elements as a whole. Here we proposed a kind of quan- 
tum Gestalt theory that by almost a single measurement 
detects the image as a whole. 
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