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ABSTRACT 

All real physical structures behave dynamically when subjected to loads or displacements. This research paper, there-
fore, presents seismic response of field fabricated liquefied natural gas spherical storage vessels using finite element 
analysis. The seismic analysis procedure used represents a practical approach in quantifying the response of spherical 
storage vessel with its content when it is subjected to seismic loading. In the finite element method approach, six de-
grees of freedom per node is used for legs/column of the spherical storage tanks. Lumped mass procedure is employed 
to determine system mass matrix of the structure. Computer programme code is developed for the resulting matrix 
equation form finite element analysis of the structure using FORTRAN 90 programming language. The modeling of the 
seismic load utilizes the ground acceleration curve of a site. From the results of the modal analysis, the system is un-
coupled thereby gives way to the application of Newmark’s method. Newmark’s method as one of the widely used 
time-step approach for the seismic response is applied. The developed programme coding is validated with analytical 
results (P > 0.5). It shows that the approach in this research work can be successfully used in determine the stability of 
large spherical storage vessels against seismic loadings when base acceleration spectral of the site are known. This ap-
proach gives better results than the static-force approach which gives conservative results. While the approach used in 
this research treats seismic loads as time event, static-force approach assumed that the full ground force due to seismic 
motion is applied instantaneously. 
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1. Introduction 

In more and more engineering situations today, it is nec- 
essary to obtain approximate numerical solutions to pro- 
blems rather than exact closed-form solutions. It is dis- 
covered that many of the engineering problems faced by 
engineers in today’s world present no simple analytical 
solutions. Though, design engineer may have been able 
to write down the governing equations and boundary 
conditions for the problem, yet he sees immediately that 
no simple analytical solution can be found. The difficulty 
in these types of engineering problems lies in the fact 
that either the geometry or some other feature of the 
problem is irregular or “arbitrary”. Analytical solutions 
to problems of this type seldom exist; yet these are the 
kinds of problems that design engineers are called upon 
to solve. 

The resourcefulness of the analyst usually comes to 

the rescue and provides several alternatives to over-
come this dilemma. One possibility is to simplify the 
difficulties and reduce the problem to one that can be 
handled. Sometimes this procedure works; but, more 
often than not, it leads to serious inaccuracies or wrong 
answers. Now that high-speed computers are widely 
available, a more viable alternative is to retain the com- 
plexities of the problem and find an approximate nu- 
merical solution. 

Finite element method is one the widely used ap- 
proximate numerical method and its model of a problem 
gives a piecewise approximation to the governing equa- 
tions. The basic premise of the finite element method is 
that a solution region can be analytically modeled or ap- 
proximated by replacing it with an assemblage of dis- 
crete elements. Since these elements can be put together 
in a variety of ways, they can be used to represent ex- 
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ceedingly complex shapes. Though, the finite element 
method can be used to solve a very large number of 
complex problems, there are still some practical engi- 
neering problems that are difficult to address because we 
lack an adequate theory of failure, or because we lack 
appropriate material data. This is not a finite element 
problem, but is of serious concern to any engineer who 
wants to supplant testing with analysis. The use of analy- 
sis usually permits faster design turnaround, the explora- 
tion of widely varying environments, and the use of op- 
timization tools.  

The seismic analysis procedures outline in Universal 
Building Code (UBC) is static-force procedures, which 
assume that the entire seismic force due to ground mo- 
tion is applied instantaneously. This assumption is con- 
servative but greatly simplifies the calculation proce- 
dures. In reality earth quakes are time-dependent events 
and the full force is not realized instantaneously. The 
UBC allows, and in some cases requires, that a dynamic 
analysis be performed in lieu of the static—force method. 
Although much more sophisticated, often the seismic 
loadings are reduced significantly. 

2. Finite Element Methodology  

The most common and effective approach for seismic 
analysis of linear structural systems is the mode super- 
position method. After a set of orthogonal vectors have 
been evaluated, this method reduces the large set of glo- 
bal equilibrium equations to a relatively small number of 
uncoupled second order differential equations. The nu- 
merical solution of those equations involves greatly re- 
duced computational time.  

2.1. Model Assumptions  

Below are the assumptions made in the model in this 
research work: 
1) The storage tank is full of water, hydrotest, for the 

worst case scenario. This gives maximum compres- 
sive load/force per leg support.  

2) In determining the system mass matrix, lumped sum 
mass matrix is employed.  

3) The only externally applied load/force is the weight 
of the content (tank full of water) and shell. Exter- 
nally applied force on each of the leg is the sum of the 
weight of content (tank full of water) and shell di- 
vided by the number of legs. While there is base ac- 
celeration applied to the support due to seismic effect 
Figure 1. 

4) Seismic effect on one of the storage tank support legs 
is representative of the effect of seismic load on the 
entire storage tank structure. If one of the legs fails 
due to seismic load, the entire structure fails Figure 
2. 

 
Figure 1. Typical vibration model with compressive force 
and earth/support motion. 
 

 
Figure 2. Showing section of spherical tank with leg sup- 
port. 

2.2. Dynamic Equilibrium  

Taking into account the equivalent static force, the gen- 
eral equations of equilibrium for a structure is as follows  

       0
dyn

K u F F         (1)
 

where {F} is the force vector representing the external 
applied forces as a function of time. {F}dyn, is the assem-
bled force vector for the complete structure due to inertia 
and damping forces. [K] is the system static stiffness 
matrix and {u} is nodal displacement. 

For many structural systems, the approximation of 
linear structural behaviour is made to convert the physic- 
cal equilibrium statement, Equation (1), to the following 
set of second-order, linear, differential equations, general 
equation of motion  

          M u C u K u F           (2) 

where M is the mass matrix (lumped or consistent), C is a 
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viscous damping matrix (which is normally selected to 
approximate energy dissipation in the real structure) and 
K is the static stiffness matrix for the system of structural 
elements. The time-dependent vectors, u , u  and u are 
node accelerations, velocities and displacements respec- 
tively. 

2.3. System Stiffness Matrix 

To determine the stiffness matrix for the beam-column 
support of spherical storage vessels. It is assumed that a 
typical member leg can be thought of a 3-D space frame 
having four actions: two bending actions, a twisting ac- 
tion, and an axial action. Thus, the displacement of each 

node is described by three translational and three rota- 
tional components of displacement, giving six degrees of 
freedom at each unrestrained node. Corresponding to 
these degrees of freedom are six nodal loads. The nota- 
tions use for the displacement and force vectors at each 
node are, respectively,  

   T

x y zu u v w          (3a) 

   T

e x y z x y zf f f f m m m       (3b) 

On the local level, for each member, the forces are re-
lated to the displacements by the partitioned matrices  

    eF k u       (4) 
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E is the elastic modulus, G is the modulus of rigidity, 
Le is the length of beam-column element, Ix, Iy, and Iz are 
the second moment of inertia about x, y, and z respec-
tively. 

2.4. System Mass Matrix  

It is useful to realize that using lumped mass method to 
generate the system mass matrix, the methodology does 
not involve derivatives of the shape functions. We can 
therefore be more lax about the choice of shape function 
for the determination of system mass matrix than for the 
stiffness matrix. In many applications, it is preferable to 

use a lumped mass (and damping) approximation where 
the only nonzero terms are on the diagonal. The simplest 
mass model is to consider only the ger translational iner- 
tias, which are obtained simply by dividing the total mass 
by the number of nodes and placing this value of mass at 
the node. Thus, the diagonal terms for the 3-D frame can 
be given as 

   1
1 1 1 0 0 0 1 1 1 0 0 0

2 em AL
 

(6) 

where ρ is material density of beam element, A is the 
beam-column cross sectional area and Le is the length of 
beam-column and [M] is the mass matrix. 

These neglect the rotational inertias of the flexural ac-
tions. Generally, many researchers in the field of finite 
element methods had proved that the contributions of the 
rotational inertia of the flexural actions to the system 
mass matrix are negligible and matrix Equation (6) above 
is quite accurate especially when the elements are small. 
There is, however, a very important circumstance when a 
zero diagonal mass is unacceptable and reasonable non- 
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zero values are needed. In the present research, a zero 
diagonal mass is unacceptable because this leads to com- 
puter programme error when applying Newmark’s me- 
thod for the seismic response analysis. Therefore, Equa- 
tion (6) is then modified to give equation below with 
non-zero diagonal. 

 

 

1

2
1 1 1 2 1 1 1 2

em AL

     




  (7) 

where 
2

40
eL

  . 

where   is typically taken as unity. This scheme has 
the merit of correctly giving the translational inertias. 
Therefore, estimate the effective length L ≈ √A/π as ba-
sically the radius of a disk of the same area as the trian-
gle. Again, α is typically taken as unity. 

2.5. Free Undamped Vibration Mode  

The structure is not excited externally in free vibration 
mode i.e. no force or support motion acts on it. So, under 
the condition of free motion, dynamic analysis can be 
carried out and the important properties like natural fre- 
quencies and mode shapes corresponding to the natural 
frequency can be obtained. Since free vibration mode is 
considered, the structure is not under the influence of any 
external force. Hence, the force and damping force vec- 
tors in stiffness equations are taken as zero. 

By taking the above condition into consideration, the 
stiffness equation can be represented as, 

      0M u K u          (8)  

Thus    2u u             (9) 

substituting Equation (9) into Equation (8) gives 

     2 0K M u         (10) 

This is linear eigenvalue problem whose solutions, 
when arranged in order of magnitude of the eigenvalues, 
are approximation to the corresponding natural frequen- 
cies and normal modes of the vibration of the system. To 
convert the generalized eigenvalue problem to the stan- 
dard form, the following steps need to be taken: 

The general equation is written as 

      0K M u       (11) 

Rearranging Equation (11) gives 

     K u M u        (11a) 

or 

      1
M K u u            (11b) 

or 

      1 1
K M u u


          (11c) 

Equation (11c) may be rewritten as 

       1 1
0K M I u


   

 
         (12) 

where [I] is an identity matrix 
The only problem with Equation (12) is that although 

[K] and [M] are symmetric, the product [K]–1[M] is gen- 
erally not symmetric. To preserve symmetry, the Cho- 
lesky’s method may be used [1]. The Cholesky method 
decomposes a square, symmetric matrix to the product of 
an upper triangular matrix and the transpose of the upper 
triangular matrix. Applying the Cholesky decomposition 
to the matrix [K] gives 

    TK C C           (13) 

Substituting Equation (13) into (12) and converting it 
into the standard form gives (Griffiths and Smith, 1991) 

          
11 T 1

0C M C I u


   
 

        (14) 

Equation (14) is in the form of a standard eigenvalue 
problem. It can be expressed more closely to Equation 
(11) if it is rewritten as 

      0S I u             (15) 

where          11 T
S C M C

  and 
1


  

Since the matrices in eigenvalue problem often be- 
come very large, the matrices may be converted to a 
simpler form using Householder’s method before solving 
for the eigenvalues [1]. Householder’s method converts a 
symmetric matrix into a tridiagonal matrix. A tridiagonal 
matrix has non-zero elements only on the diagonal plus 
or minus one column [2]. Solutions are obtained using 
FORTRAN 90 programming language. The output of the 
program consists of the natural frequencies of the system 
with the corresponding mode shapes. 

Since the matrices in eigenvalue problem often be- 
come very large, the matrices may be converted to a 
simpler form using Householder’s method before solving 
for the eigenvalues [1]. Householder’s method converts a 
symmetric matrix into a tridiagonal matrix. A tridiagonal 
matrix has non-zero elements only on the diagonal plus 
or minus one column [2]. Solutions are obtained using 
FORTRAN 90 programming language. The output of the 
program consists of the natural frequencies of the system 
with the corresponding mode shapes. 

2.6. Transformation of Modal Equation  

The dynamic force equilibrium Equation (2) can be re- 
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written in the following form as a set of N second order 
differential equations: 

            
1

J

j j
j

M u C u K u F f g t


       (16) 

All possible types of time-dependent loading, inclu- 
ding wind, wave and seismic, can be represented by a 
sum of “J” space vectors fj, which are not a function of 
time, and J time functions g(t)j. The number of dynamic 
degrees of freedom is equal to the number of lumped 
masses in the system. 

The fundamental mathematical method that is used to 
solve Equation (16) is the separation of variables. This 
approach assumes the solution can be expressed in the 
following form: 

   u t Y t           (17a) 

where   is an N by N matrix containing N spatial vec-
tors that are not a function of time, and Y(t) is vector 
containing N functions of time. 

From Equation (17a), it follows that: 

   u t Y t                 (17b) 

   u t Y t                  (17c) 

Before solution, it is require that the space functions 
satisfy the following mass and stiffness orthogonality 
conditions: 

T T 2andM I K              (18) 

where I is a diagonal unit matrix and Ω2 is a diagonal 
matrix in which the diagonal terms are 2

n . The term 
2
n  has the units of radian per second.  
After substitution of Equations (17) into Equation (16) 

and the pre-multiplication by T , the following matrix 
of N equations is produced: 

         2

1

J

n j j
j

I Y d Y Y F P g t


         (19) 

For three-dimensional seismic motion, this equation 
can be written as: 
where T

j jP f   and are defined as the modal par- 
ticipation factors for load function j. The term Pnj is asso- 
ciated with the nth mode. There is one set of “N” modal 
participation factors for each spatial load condition fj. For 
all real structures, the “N by N” matrix is not diagonal; 
however, to uncouple the modal equations, it is necessary 
to assume classical damping where there is no coupling 
between modes. Therefore, the diagonal terms of the 
modal damping are defined by: 

2nn nd                (20) 

where n  is defined as the ratio of the damping in 
mode n to the critical damping of the mode [3]. A typical 

uncoupled modal equation for linear structural systems is 
of the following form: 

         2

1

2
J

n n n jn n n j
j

y t y t y t F P g t  


       (21) 

For three-dimensional seismic motion, this equation 
can be written as: 

     
     

22 n nn n n

nx ny nzgx gy gz

y t y t y t

P u t P u t P u t

   

  

 

  
       (22) 

where the three-directional modal participation factors, 
or in this case seismic excitation factors, are defined by 

T
nj jP M   in which j is equal to x, y, or z and n is 

equal to the mode number. 
By examining Equation (22) above, the damping term 

constant can be written as 

2n n nc             (23) 

It has been shown that damping ratio of a structure is 
proportional to the structural stiffness. Therefore, this is 
then adopted in the present work and Equation (23) then 
becomes 

2
n n nc              (24) 

where n  is the mode damping ratio. 

2.7. Step by Step Numerical Integration  
Procedure  

The step by step analysis is based on the powerful itera- 
tive technique developed by [4] known as Newmark’s 
  parameter method. The acceleration at the end of a 
time step is estimated, and the velocity and displacement 
are then calculated by 

Pa             (25) 

u , u , and u  represent the displacement, velocity, and 
acceleration of any point. The suffixes i and i + 1 re- 
presenting the ends of the time intervals i and i + 1. The 
above expressions are substituted in the general equa- 
tions of motion and a new estimate for the acceleration at 
the end of the time step i + 1 is determined. The process 
is repeated until successive values of the acceleration 
agree within a specified tolerance. 

The parameter β in the Newmark’s equation governs 
the influence of the acceleration at the end of the time 
interval i + 1 on i + 1 the displacement at that instant. 
Furthermore, the value selected for β determines the 
variation of the acceleration during the interval Δt from i 
to i + 1, the method becomes a linear acceleration as- 
sumption [4]. A β value of 1/4 represents a constant ac- 
celeration throughout the interval and β = 1/8 may be in- 
terpreted as a step function having acceleration iu  over 
the first half of the time interval and u through the last 
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half [4]. 

2.8. Participating Mass Ratio  

This requirement is based on a unit base acceleration in a 
particular direction and calculating the base shear due to 
that load. The steady state solution for this case involves 
no damping or elastic forces; therefore, the modal res- 
ponse equations for a unit base acceleration in the x-di- 
rection can be written as: 

n nxy P                (26) 

The node point inertia forces in the x-direction for that 
mode are by definition: 

 xn n n nx nf Mu t M y P M         (27) 

The resisting base shear in the x-direction for mode n 
is the sum of all node point x forces. Or: 

T 2
nx nx x n nxV P I M P             (28) 

The total base shear in the x-direction, including N 
modes, will be: 

2

1

N

nx nx
n

V P


            (29) 

For a unit base acceleration in any direction, the exact 
base shear must be equal to the sum of all mass com- 
ponents in that direction. Therefore, the participating 
mass ratio is defined as the participating mass divided by 
the total mass in that direction. Or: 

2

1
mass

N

nx
n

x

P
X

M




            (30a) 

2

1
mass

N

ny
n

y

P
Y

M




            (30b)
 

2

1
mass

N

nz
n

z

P
Z

M




             (30c) 

An examination of values giving by the factors in 
Equations (30) gives design engineer an indication of the 
value of the base shear associated with each mode. The 
angle with respect to the x-axis of the base shear associ- 
ated with the first mode is given by: 

1 1
1

1

tan x

y

P

P
 

 
   

 
           (31) 

3. Seismic Response Analysis  

Case 1: To validate the computer program developed, 
modal analysis is performed on a 2-degree of freedom 

structural system subjected to free undamped vibration 
with the following characteristics and the results are 
compared with the analytical method. 

2 0

0 1
M

 
  
 

, K=
6 2

2 1

 
    

Case 2: 
Spherical pressure vessel leg support with the chara- 

cteristics below is subjected to the seismic loading. The 
leg column is carbon steel, cold hollow circular pipe of 
outside diameter 323.9mm. The seismic loading in this 
model is base acceleration of Table 1. 

Compressive vertical Load/force per leg (N) = 3465.0;  
Moment of inertia about x-axis, Ix (m

4) =28600 × 10−8; 
Moment of inertia about y-axis, Iy (m

4) =14300 × 10−8; 
Moment of inertia about z-axis, Iz (m

4) =14300 × 10−8; 
Length of the support (m) =2.0; 
Modulus of Elasticity, E (N/m2) =206.8 × 109; 
Poisson Ratio, v = 0.3; 
Modulus of Rigidity, G (N/m2) = E/(2(1 + v)); 
Material Density (Kg/m3) = 7850; 
Structural Damping proportional constant = 0.5. 

4. Results and Discussions  

The results of the Case 1 in Table 2 show that the FOR- 
TRAN coding developed in this research give better re- 
sults of the natural frequency of free undamped vibration 
considered. In case two considered, Figure 3 gives the 
variation of natural frequencies against for different modes. 
Mode 7 gives highest natural frequency of value of over 
4500 Hz while the least of all is mode 1 which gives 
natural frequency with value of zero Hz. Figures 3-6 give 
relative response of the second mode of vibration for ac-
celeration, velocity and displacement.  

In the computer simulation for the Case 2, the same 
value of damping ratio is assumed for all modes. The 
structural system under consideration has the same value 
for the damping constant in all modes. Also, the results 
show above for the case two simulation considered seis-
mic effect in one direction alone—the vertical direction. 
In reality, the effects of base acceleration in different 
directions at the site on the structural system have to be 
considered and superimposed. By doing this, the design  

 

 

Figure 3. Showing frequency (Hz) against mode. 
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Figure 4. Showing relative acceleration response of second 
mode. 
 

 

Figure 5. Showing relative velocity response of second 
mode. 
 
Table 1. Showing typical earthquake ground acceleration 
with time. 

Time (Sec) 
Acceleration  
Spectrum (g) 

Time (Sec) 
Acceleration  
Spectrum (g) 

0 −0.06282 0.14 0.06112 

0.01 −0.05914 0.15 0.060828 

0.02 0.005203 0.16 0.060709 

0.03 0.075961 0.17 0.06653 

0.04 0.067458 0.18 0.060541 

0.05 0.065777 0.19 0.060319 

0.06 0.063504 0.20 0.060005 

0.07 0.061549 0.21 0.059668 

0.08 0.060357 0.22 0.059424 

0.09 0.060173 0.23 0.059832 

0.1 0.060925 0.24 0.059559 

0.11 0.061601 0.25 0.059832 

0.12 0.061857 0.26 0.060157 

0.13 0.061563   

 
Table 2. Comparing FEA and analytical solutions. 

Mode 
Natural Frequency 

(Hz) (FEA) 
Natural Frequency 
(Hz) (Analytical) 

Percentage Error 
(%) 

1 0.225 0.225 0.0 

2 0.356 0.356 0.0 

 

Figure 6. Showing relative displacement response of second 
mode. 
 
engineer will be able to have better understating of the 
behavioral or response pattern of the structure to the 
seismic loading. 

5. Conclusions and Recommendations  

The use of finite element method in the seismic response 
analysis of field fabricated spherical pressure vessels 
cannot be over emphasized. This is also in line with the 
recommendation from UBC which allows design engineer 
to use other method such as finite element method in car- 
rying out the seismic response of a structure. This is be- 
cause; it is believed that static-force used by UBC code is 
conservative, and to get accurate response of any structure 
subjecting to seismic load the use of finite element analy- 
sis is desirable. 

While it is noted that in ASME code section VIII Div 1, 
recommendation is made to consider other loads apart 
from internal and external pressures. Such other loads are 
wind, local and seismic yet it silent on procedures for 
determining the effects of such loads on pressure vessels. 
The decision, therefore, lies in the hands of design engi- 
neer to use any suitable method available at his disposal 
in analyzing effects of such loads on pressure vessels. 
One of such methods available to design engineers is fi- 
nite element method. If this method is properly applied, it 
will give sound and safe design. 

This research work has shed light on the methodology 
of applying finite element method to seismic response 
analysis of field fabricated spherical pressure vessels. The 
seismic analysis procedure used represents a practical 
approach in quantifying the response of spherical storage 
vessel with its content when it is subjected to seismic 
loading.  

The result shows that the approach in this research 
work can be successfully used in determine the stability 
of large spherical storage vessels against seismic loadings 
when base acceleration spectral of the site is known. This 
approach gives better results than the static-force ap- 
proach which gives conservative results. 
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