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ABSTRACT 

This paper presents a complete integrability condition for fully rheonomous affine constraints in terms of the rheono- 
mous bracket. We first define fully rheonomous affine constraints and develop geometric representation for them. Next, 
the rheonomous bracket is explained and some properties of it are derived. We then investigate a necessary and suffi- 
cient condition on complete integrability for the fully rheonomous affine constraints based on the rheonomous bracket 
as an extension of Frobenius’ theorem. The effectiveness and the availability of the new results are also evaluated via an 
example. 
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1. Introduction 

Many studies on nonholonomic systems [1-3] and sub- 
Riemannian geometry [4,5] have been done in the re- 
search fields of mathematics, control theory, and robotics 
and so on so far. Especially, the class of linear con-
straints: , , , which is 
one of most fundamental classes of constraints, has been 
mainly studied. The class of the linear constraints covers 
wide-ranging mechanical systems such as mobile and 
acrobatic robots, however, there also exist wider classes 
of constraints. 

  0B q q  nq R  n m nB R  

The author has focused and researched affine con-
straints: ,    0A q B q q  n mA R 

0

, which form a 
wider class of constraints than the linear constraints, 
from the viewpoints of mathematics and control theory. 
The affine constraints can be found in mechanical sys-
tems such as space robots with initial angular momenta, a 
ball on a rotating table, a ship on a running river, and so 
on. Especially, in [6,7], we investigated integrability and 
nonintegrability of the affine constraints and derived 
some judgment conditions. Moreover, as an extension of 
these studies, we dealt with A-rheonomous affine con-
straints: , which contain the time 
variable  explicitly only in 

   ,A t q B q q 

t R A  [8-10]. Note that 
in analytical mechanics, the terminology “rheonomous” 
means “time-varying,” and the opposite word of it is 
“scleronomous”. These results have made it possible to 
treat such constraints systematically, however, we are  

still interested in fully rheonomous affine constraints: 
   ,A t q B q q 0   as a much wider class of con-

straints than the A-rheonomous affine constraints. If the 
extension of the results to the fully rheonomous affine 
constraints, the range of applications will enlarge further. 

In this paper, we aim at derivation of some properties 
on the rheonomous bracket and an integrability condition 
for the fully rheonomous affine constraints as an exten-
sion of Frobenius’ theorem for the linear constraints 
[11-14]. The organization of this paper is as follows. In 
Section 2, we first define the fully rheonomous affine 
constraints and introduce their geometric representation. 
Next, in Section 3, we explain the rheonomous bracket 
and investigate its some properties. We then derive a 
necessary and sufficient condition on complete inte-
grability for the fully rheonomous affine constraints in 
terms of the rheonomous bracket in Section 4. Finally, 
Section 5 shows an example for verification of the effec-
tiveness and the availability of the new results. 

2. Fully Rheonomous Affine Constraints 

In this section, we first give the definition of fully 
rheonomous affine constraints and introduce their geo-
metric representation. Denote the time variable by t R  
and a time interval by I R . Let  be an n -dimen-  Q

sional configuration manifold and    1 2q q q Q 
T

be a local coordinate of . Associated with , we re-
fer 

Q
 Q

q
 T

1 nq q q     as a tangent vector field. A 
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set of   of differential equations in the 
form: 

n m

1,

A t



n m

  , ,

, .
i iq B t q

i n 



0  1 1 ,in nq B t q q

m

   
    (1) 

is called fully rheonomous affine constraints. Note that 
all the coefficients , , _1, , , 1, ,i ijA B i n m j n  

t
 ex- 

plicitly depend on the time variable . We now rewrite 
(1) as 

 A t q  , ,B t q q  0,               (2) 

where a rheonomous affine term  , n mA t q R   is a 
vector-valued function whose -th entry is i  ,iA t q , 
and a velocity coefficient matrix  is a matrix- 
valued function whose -th entry is . We here 
assume the following sufficient condition on independ-
ency of the fully rheonomous affine constraints (2): 

 ,B t q
 ,ijB t qij

 q n 

n 

n 
1Y t

Q

1, , mY Y

 q span

 ,D t q

Q

, , ,m t I q Q   rankB t

D t

dim

.         (3) 

Next, we shall introduce geometric representation of 
the fully rheonomous affine constraints (2). From (1), we 
can see that the  row vectors of  in (2) 
are independent of each other. Hence, we consider  
vector fields which are independent of each other and 
annihilators of the  row vectors of , and 
denote them by  as time-varying 
vector fields on . Furthermore, we also denote a space 
spanned by , that is, a time-varying distribution 
on  by 

m  ,B t q

 ,B t q






,

m

m
 , ,q , ,mY t q

Q

    1, , , , mY t q Y t q .       (4) 

Since the basial vectors of : 1  are inde- 
pendent of each other,  is a nonsingular distribution, 
that is, 

D , , mY Y
D

, ,m t I q Q              (5) 

holds. A curve on :  is said to satisfy the 
fully rheonomous affine constraints (2) if for a time- 
varying vector field on : 

:q I Q

Q X  and the generalized ve-
locity of : , q

 
 q tq T Q

     , , ,t D t q t t I  q t X t q  .     (6) 

We call X  {¥it a rheonomous affine vector field} 
and it satisfies the equation: 

   , ,  , 0, ,A t q B t q X t q t I q Q     



.    (7) 

This definition is an extension of the one for the scler-
onomous affine constraints that do not contain the time 
variable explicitly [6]. Under the preliminaries shown 
above, we define geometric representation of the fully 
rheonomous affine constraints as the following. 

Definition 1 
The fully rheonomous affine constraints (2) are geo-

metrically represented by a pair , where  is 
an -dimensional time-varying distribution defined by 
(4) and 

 ,D X D
m

X  is called a rheonomous affine vector and 
satisfies (7). 

Geometric representation of the fully rheonomous af-
fine constraints (2) can allow us to analyze them geomet-
rically and derive geometric conditions. 

3. Rheonomous Bracket 

We next investigate an operator called the rheonomous 
bracket for the fully rheonomous affine constraints (2), 
which is originally introduced in order to analyze the 
A-rheonomous affine constraints in [8-10]. The rheono-
mous bracket will play important roles in derivation of a 
complete integrability condition in the next section. The 
rheonomous bracket is fundamentally defined based on 
the normal Lie bracket  , :TM TM TM   

,
 which is 

an operator for two vector fields Z W : 

 , :
W Z

Z W Z
q q

 
 
 

W .          (8) 

The definition of the rheonomous bracket is as fol-
lows. 

Definition 2 [8-10] 
For the vector fields defined on  on the geometric 

representation of the fully rheonomous affine constraints 
(2): 

Q

1, , , mX Y Y , the rheonomous bracket is an operator: 
, :TQ TQ  TQ   that satisfies the following three 

properties: 
(a) For a rheonomous affine vector field $X$, 

,X X  0                 (9) 

holds. 
(b)  is defined as a set of vector fields that consists 

of  and iterated rheonomous brackets of 

1 m

0D

1, ,Y 
,

mY
, ,X Y  Y  and does not contain X . For a rheono-

mous affine vector field X  and a vector field 0Z D , 

  , , , ,
Z Z ,X Z X Z Z X Z
t t

 
    
 

X   (10) 

holds. 
(c) For two vector fields 0,Z W D , 

 , 0, , ,Z Z Z W Z W             (11) 

holds. 
It is the main characteristic for the rheonomous 

bracket that the rheonomous affine vector field X  is 
perceived as special, and this yields an additional term of 
a time differential of a vector field as the property (b). It 
must be also noted that from Definition 2 the rheono-
mous bracket is equivalent to the normal Lie bracket for 
scleronomous affine constraints, that is, constraints that 
do not contain the time variable explicitly. From the next 
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proposition, it turns out that the rheonomous bracket has 
some important characteristics in common with the Lie 
bracket. 

Proposition 1 
For the vector fields on the geometric representation of 

the fully rheonomous affine constraints (2): 1, , , mX Y Y

0D
 

and the set of iterated vector fields of them: , the fol-
lowing properties (a), (b), and (c) hold. 

(a) Bilinearlity: 

0

, ,

, , ,

, , ,

, ,

,

X aZ bW a X Z b X W

aZ bW x a Z X b W X

a b R Z W D

  

  

 

        (12) 

(b) Skew-symmetry: 

0, , ,X Z Z X Z  D                 (13) 

(c) Jacobi’s identity: 

0

, , , , , , 0

,

X Z W Z W X W X Z

Z W D

 




  (14) 

(Proof) 
Based on the definition of the rheonomous bracket, we 

can calculate as follows: 

   

   

, ,

, ,

, , ,

aZ bW
X aZ bW X aZ bW

t
Z Z

a a X Z b b X W
t t

a X Z b X W

 
   


 

   
 

 

 

   

   

,

,

, , .

aZ bW
aZ bW X aZ bW X

t
Z Z

a a Z X b b W X
t t

a Z X b W X

 
    


 

    
 

 

,

,  

Hence, we complete the proof of (a). Next, a simple 
calculation can show 

   , ,

, .

Z Z
,X Z X Z Z

t t

Z X

        
 

X 


 

Therefore, (b) holds. Finally, we shall prove (c). Since 
we can calculate the following: 

 

 

 
2

, , , ,

, , ,

, , ,

Z
X Z W X Z W

t

Z
W X Z W

t

W Z Z
W X Z W

q t t q


 



        
  

        

 

   

 

 
2 2

,
, , , ,

,
, ,

, ,

, ,

Z W
Z W X Z W X

t
Z W

Z W X
t

W Z
Z W Z W X

t q q

W W Z Z Z W
,Z W Z W

t q q t t q q t


     


     

   
          

     
               

X

 

 

 

 
2

, , , , , ,

, ,

, , ,

W
W X Z W X Z W X Z

t

W
Z W X Z

t

Z W W
Z W X Z

q t t q

          
         

  
        

 

we then obtain 

0

, , , , , , 0

,

X Z W Z W X W X Z

Z W D

  


 

where we utilize Jacobi’s identity for the normal Lie 
bracket. Consequently, the proof of (c) is completed. 

From the properties in Proposition 1, it turns out that  
we only have to consider the iterated rheonomous brack-
ets in the form: 

 
1 2 1

1 1

: , , , ,

, , , , ,

k k

k m

P P P P P

P P X Y Y







 

,
        (15) 

in checking a complete integrability condition for the 
fully rheonomous affine constraints, which will be shown 
in the next section. Furthermore, the Philip Hall basis 
[14], which is a systematic method to generate iterated 
Lie brackets with an order efficiently, can be also con-
structed for the rheonomous bracket as follows. 

Algorithm 1 
For iterated rheonomous brackets (15) of the geomet-

ric representation of the fully rheonomous affine con-
straints (2): 1, , , mX Y Y , we define the length of (15) as 
 l P k , that is, the number of vector fields in the iter-

ated rheonomous bracket. In addition, the symbol  
means the magnitude relation for two iterated rheono-
mous brackets. Then, the Philip Hall basis 



H  for the 
rheonomous bracket can be constructed by the next rules. 

(a) 1, , , mX Y Y  are the first  elements of 1m  H  
and 1 mX Y Y  . 

(b) If    l P l P1 2 , then . 1 2P P

(c) 1 2,P P H  if and only if 1 2,P P H  and  

1P P 2 , either 1P X  or  holds   1 1, ,iP Y i m  

or 1 3 4,P P P  with  and . 3 4 3 4,P P H P P
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4. Complete Integrability Condition 

After that, this section investigates complete integrability  
for the fully rheonomous affine constraints (2). If all the 
$n − m$ rheonomous affine constraints (2) are integrable, 
that is, there exist $n − m$ independent first integrals of 
(2), then they are said to be completely integrable. Now, 
we define a smallest and involutive time-varying distri-
bution  that contains 1  and iterated 
rheonomous brackets of them, and satisfies  

0 ,C t q , , mY Y

0 0, ,X W C W C   , that is,  is spanned by all the 
rheonomous brackets of 1 m

0C
,, ,X Y  Y  with the exception 

of X . Then, we can derive a necessary and sufficient 
condition on complete integrability for the fully rheono-
mous affine constraints (2) as the next theorem. 

Theorem 1 
For the fully rheonomous affine constraints defined on 

an $n$-dimensional manifold  (2) and a time interval Q
I R , the following statements (a) and (b) are equiva-
lent to each other. If they hold, the fully rheonomous 
affine constraints (2) are said to be completely integrable. 

(a) There exist n  independent first integrals of 
the fully rheonomous affine constraints (2). 

m

(b) For a smallest and involutive time-varying distri-
bution ,  0 ,C t q

 0dim , , ,C t q m t I q Q          (16) 

holds. 
(Proof) 
Let us consider the -dimensional product space  1n  
:Q R Q  , where  is the space of the time variable 

, and the local coordinate of 
R

t Q  is given by  
TT,q t q    . On Q , the fully rheonomous affine con-  

straints (2) can be represented by Pfaffian equations of 
 differential forms: n m

   , ,A t q dt B t q dq 0.          (17) 

Since the rheonomous affine vector field X  of geo-
metric representation satisfies (7),  vector fields 
on 

1m 
Q  which annihilate (17) are given by 

   

 

, : , ,

: 0 , , 1, , .i i

X t q X t q
t

Y Y t q i


 


    m
         (18) 

We now define an involutive distribution Q  defined  
on C  which contains 1, , , mX Y Y  and iterated Lie  

brackets that consist of 1, , , mX Y Y . Therefore, from 
Frobenius’ theorem [11-14], we can see that a necessary 
and sufficient condition on complete integrability for 
(17) is given by 

 dim 1,C q m q Q    .          (19) 

Calculating the iterated Lie brackets which consist of 

1, , , mX Y Y , then we have 

       
     

     
   

   

     

     

, , , 0 , , , ,

, , , , ,

0 , , , , , , ,

, , ,

0 , , , ,

, , , , ,

0 , , , , , , .

i i

i

i

j i

j i

k j i

k j i

X t q Y t q X t q Y t q

X t q X t q Y t q

X t q X t q Y t q

Y t q Y t q

Y t q Y t q

Y t q Y t q Y t q

Y t q Y t q Y t q

    
    

 

  

 

    

 





    (20) 

It turns out that X  is independent of 1, , mY Y  and 
the iterated Lie brackets (20). Hence, we can change the 
necessary and sufficient condition (19) into the condition 
such that 1, , mY Y  and the iterated Lie brackets which 
consist of 1, , , mX Y Y  span an -dimensional space. 
From (18) and (20), we only have to consider 1  
on  instead of 

m
, , mY Y

Q 1, , mY Y  on Q , and iterated 
rheonomous brackets which consist of 1, , , mX Y Y  on 

 instead of Lie brackets which consist of Q 1, , , mX Y Y  
on Q . Consequently, a necessary and sufficient condi-
tion on complete nonholonomicity for the fully rheono-
mous affine constraints (2) is that 1  and the iter- 
ated rheonomous brackets which consist of 1

, , mY Y
, , , mX Y Y  

span an -dimensional space, that is, (16) holds. m
From the result of Theorem 1, it can be confirmed that 

the complete integrability condition for the fully rheono- 
mous affine constraints (2) is quite simple and has a 
similar structure as the ones for the scleronomous affine 
constraints and the A-rheonomous affine constraints [6,7], 
Moreover, we can see that the rheonomous bracket plays 
a significant role in the condition (16). 

5. Example 

Finally, in this section, we shall deal with an example in 
order to evaluate our new results. We consider a 3-di- 
mensional configuration manifold: 

  T 3
1 2 3 1 0Q q q q q R q          (21) 

with 3n  , and a fully rheonomous affine constraints on 
: Q

 

 

2
1 1 2 3

,

12 2 2 2 2
1 2 3 1 3 1 2

2

3
,

0

0
0 1 0

A t q

B t q

q tq q q

q
t t q q q t q q t q q

q

q

 
 
 

 
           







 

  (22) 

with 1m  . We here consider a time interval  0,I   . 
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It can be confirmed that Assumption 1 holds for (22). 
One geometric representation for (22) can be obtained as 
follows: 

1
2
1 2

1 2 3

0 , 0 .

0 1

q
tq qt

X Y

tq q q

    
  

   
      
 


         (23) 

Calculating an iterated rheonomous bracket for X  
and  above, we obtain Y

 , ,
Y

X Y X Y
t


  


0 .         (24) 

Hence, we can see that all the iterated rheonomous 
brackets for ,X Y  are 0. Therefore, we have 

   0 ,C t q span Y t q ,

,



         (25) 

and then it turns out that 

 0dim , 1, ,C t q t I q Q          (26) 

holds. 
From Theorem 1, it is confirmed that the fully rheono-

mous affine constraints (22) are completely integrable. 
In fact, there exist two independent first integrals of 

(22): 

   

 

20 0 0 02 1 2 31 2 3 0
1

0
2 2 2

,

,

t q q qtq q qh t q tq t q

h t q q q

 

 
        (27) 

where  is the initial point at 

the initial time . 

T0 0 0 0
1 2 3q q q q Q   

0t t

6. Conclusions 

In this paper, we have derived some important properties 
of the rheonomous bracket and developed a necessary 
and sufficient condition on complete integrability for the 
fully rheonomous affine constraints, which is an exten-
sion of Frobenius’ theorem for the linear constraints. We 
can say that the condition is easy to utilize because of its 
simple structure due to the rheonomous bracket, and the 
results obtained in this paper provide a fundamental 
mathematical tool for analysis of systems subject to 
rheonomous affine constraints. 

Future work in this research theme includes develop- 
ment of integrating algorithm for the fully rheonomous 
affine constraints, applications to control of systems sub- 
ject to the fully rheonomous affine constraints, and ex- 
tensions to more general classes of constraints. 
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