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ABSTRACT 

The one million times ratio between nuclear and chemical energies is generally attributed to a mysterious strong force, 
still unknown after one century of nuclear physics. It is now time to reconsider from the beginning the assumptions used, 
mainly the uncharged neutron and the orbital motion of the nucleons. Except for the long range Coulomb repulsion, the 
electric and magnetic Coulomb’s forces between adjoining nucleons are generally assumed to be negligible in the 
atomic nucleus by the nuclear specialists. The Schrödinger equation with a centrifugal force as in the Bohr model of the 
atom is unable to predict the binding energy of a nucleus. In contrast, the attractive electric and repulsive magnetic 
Coulomb forces alone explain quantitatively the binding energies of hydrogen and helium isotopes. For the first time, 
with analytical formulas, the precision varies between 1 and 30 percent without fitting, adjustment, correction or esti- 
mation, proving the electromagnetic nature of the nuclear energy. 
 
Keywords: Nuclear Energy; Electromagnetic Interaction; Hydrogen Isotopes; Helium Isotopes; Binding  
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1. Introduction 

1.1. Historical Introduction 

After one century of nuclear physics, “it is an open secret 
that the underlying force remains a puzzle” [1]. The pa-
rameters of the potential are still determined by fitting to 
experimental data [2]. No fundamental law of the nuclear 
interaction exists. The mysterious strong force is compa-
rable to the “phlogiston”, a hypothetical substance quali-
fied as a gratuitous assumption by Lavoisier [3]. In this 
paper, it is shown that the binding energy of 2H and 4He 
is obtained only from the equilibrium between electro-
static and magnetic forces in the nucleus. These forces 
are known since two millenaries, when the Greeks dis-
covered the properties of amber (elektron) able to attract 
small objects and magnetite (mount Magnetos). Two 
centuries ago, the electric and magnetic Coulomb’s laws 
were discovered. Born had noticed “that the smallest 
particles carry the lightest energy. (···) From Newton’s 
law, one can derive that the binding energy of two mas-
sive bodies is inversely proportional to the distance be- 
tween them.” Unfortunately he believed that the neutron 
was an uncharged particle, thus needing “forces of a dif- 
ferent type (···) restricted to a very short range” [4]. The 
strong force hypothesis originated from the fact that the 

protons would repel one another and the nucleus should 
therefore fly apart. The attraction between a proton and a 
neutron seems still to be ignored although the discovery 
[5] of the magnetic moment of the neutron, showed its 
electric charges with no net charge. 

1.2. Electromagnetic Interactions 

The proton attracts a neutron as an electrized pen attracts 
small neutral pieces of paper. Bound up with a proton, 
the neutron becomes the deuteron and the induced dipole 
the deuteron quadrupole. The permanent dipole of an 
isolated neutron is negligible but a proton induces an 
electric dipole in a nearby not so neutral neutron. The 
dipole and polarizability formulas are invalid in the non- 
uniform electric field between a neutron and a nearby 
proton. In the deuteron the magnetic interaction is pro- 
duced by the collinear and opposite spins of the nucleons 
(Figure 1). The magnetic moments of the neutron and 
the proton being opposite, their interaction is repulsive in 
the deuteron. 

1.3. Fundamental Constants 

The physical constants used are: elementary electric 
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charge e, neutron and proton magnetic moments μn, μp, va- 
cuum electric permittivity ϵ0, magnetic permeability μ0, 
light speed c or, equivalently, fine structure constant α, 
proton mass mp, neutron and proton Landé factors gn, gp, 
proton Compton radius RP. The formulas in the appendix 
show the conversion between classical electromagnetic 
formulas to nuclear physics formulas. The usual funda- 
mental constants of the Coulomb’s electromagnetic po- 
tential are replaced by the rigorously equivalent nuclear 
fundamental constants shown in the appendix. The for- 
mula αmpc

2 is not “an arbitrary manipulation of the fine 
structure constant α together with the proton mass”: it 
shows an interesting similarity with the Hartree constant 
(twice the Rydberg constant), RH =α2mec

2. 

2. Assumptions and Approximations 

2.1. No Orbital Angular Momentum of the  
Nucleons 

Although a nucleus may rotate as a solid, the nucleons 
cannot orbit like planets around the sun because the nu-
cleus has no nucleus. Without orbiting nucleons, there is 
no kinetic energy and the binding energy is indeed the 
minimum of the electromagnetic interaction potential 
energy. Quantum mechanics intervenes only via the nu-
cleon spins generating the nucleon magnetic moments. 
No Schrödinger equation, only electrostatics and magne-
tostatics. 

2.2. No Hypothetical Strong Force 

The nuclear interaction is usually assumed to be a myste-
rious strong force because the corresponding model is 
assumed to be similar to that of the Bohr atom where a 
centrifugal force exists. To equilibrate it in the nucleus, a 
new force named “strong force” was imagined around 70 
years ago. A nucleus having no nucleus, the centrifugal 
force is problematic; therefore, in this paper this assump-
tion is not used. Without centrifugal force, electric and 
magnetic Coulomb’s forces are strong enough to bind the 
nucleus as it will be shown below. Contrarily to the 
mainstream hypothesis, a strong force is not needed to 
calculate the binding energy of a nucleus. In fact, it is 
impossible because the physical laws of the strong force 
are unknown. 

2.3. No Empirical Polarizability, Permanent  
Dipole or Multipole Expansion 

Considering electric elementary point charges +e in the 
proton, +e and −e in the neutron and the original electric 
Coulomb’s law in 1/r is preferred, instead of empirical 
concepts derived from it (polarizability and dipoles vary 
in a non uniform electric field). 

 

Figure 1. Schematic deuteron structure. At large inter- 
nucleon distances the electric neutron-proton interaction 

potential is that of a dipole, in 
2

1

r
. At a short internucleon 

distance, the positive charge of the neutron is repulsed by 
the proton and its negative charge is attracted. The 
resulting force is thus an attraction as in any electrostatic 
induction [6]. The electrostatic repulsion between a proton 
and the positive charge of a nearby neutron may be 
neglected in a first approximation due to the decrease with 

the distance of the Coulomb potential in 
1

r
. The magnetic 

moments of the neutron and of the proton are opposite (and 
collinear by reason of axial symmetry: no couple), thus 

producing a magnetic repulsive interaction potential in 
3

1

r
. 

The positive charge of the neutron is neglected here in 
order to obtain an analytical binding energy formula. 
 
2.4. Magnetic Moments 

Magnetic moments attract or repulse themselves as can 
be seen by manipulating magnets, depending on their 
orientation. In the deuteron, they are opposite as it is well 
known. In the α particle, the proton magnetic moments 
are collinear and opposite; they are inclined at 60˚ with 
respect to the neutron-proton edges of the 4He tetrahe- 
dron. Same thing for the neutron magnetic moments. The 
magnetic moments of paired identical nucleons are here 
assumed to be collinear and opposite, repulsing them- 
selves, stabilized by the gyroscopic effect. 

2.5. Mainly Neutron-Proton Bonds 

The only bond of the deuteron is a neutron-proton bond. 
In A = 3 nuclides, the neutron-proton magnetic interac- 
tion, being almost zero, is replaced by the nn or pp repul- 
sion. In the α particle, where there are four np bonds, the 
single nn and pp bonds may be neglected in a first ap- 
proximation. 

2.6. Nuclear Structure 

The proton attracts the negative charge of the neutron 
and repulses the positive charge of the neutron. Accord-  
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ing to the electric Coulomb’s law in 1/r2, the positive 
charge is farther away from the proton than the negative 
charge. Therefore the repulsion of the positive charge is 
smaller than the attraction of the negative charge, result- 
ing in a net attraction of the neutron by the proton. In 
order to obtain an analytical formula for the binding en- 
ergy, the positive charge of the neutron is neglected in 
this paper, with an error of around 30% [7] (4% when 
positive charge taken into account [8]). In 4He, the elec- 
tric and magnetic interactions between neutrons and be- 
tween protons is neglected, justified by the fact that there 
are four neutron-proton bonds for one neutron-neutron 
bond and one proton-proton bond. Even if it were possi- 
ble to use the electromagnetic properties and spatial 
structure of the quarks in the nucleons, the calculations 
would be intractable. The nuclear geometric structure 
varying with the nuclides, the specific assumptions used 
are detailed in the paragraphs concerning 2H, 3H, 3He, 
4He and the N > 2 isotopes. Judicious approximations are 
necessary to obtain an analytical formula for the binding 
energies. 

3. Electric and Magnetic Coulomb Potential 
Energy 

The Coulomb electric potential energy between two  

electric charges distant from r is 
2

04π

e
U

r



 that can 

also be written as 2 P
p

R
U m c

r
  where 

2

02

e

hc
 


 is  

the fine structure constant, mp the proton mass and RP the 
proton Compton radius. 

The Coulomb magnetic potential energy is repulsive 
when the magnetic moments between two magnets are 
collinear and opposite, as in the deuteron, thus giving a  

positive potential: 3
0

1

4π
i j

m
np

U
r

 


  . This formula can 

also be written as 

3

2

8
i j P

m p
np

g g R
U m c

r


 
   

 
 where  

gi and gj are the nondimensional Landé factors. When the 
magnetic moments are not collinear, a coefficient Sij (see 
below the general formula) have to be used. It seems that 
it is the first time that the electric and magnetic Cou- 
lomb’s formulas are united in a single formula to de- 
scribe static interactions between particles having both 
electric and magnetic properties [5,9,10,11]. 

The total electromagnetic potential energy Uem of a 
nucleus is the sum of the electrostatic interaction energy 
Ue between particles i and j with electric charges ei and ej 
and the magnetostatic interaction energy Um between 
their magnetic dipoles μi and μj. Formulas (1) and (2) 

show that the Coulomb potential is attractive or repulsive 
depending on the sign of the product of the electric 
charges: 

3

2
2 16

i ji j P P
em p ij

i i j i i j ijij

g ge e R R
U m c S

re r


 

    
           
  (1) 

where 

    cos , 3cos , cos ,ij i j i ij j ijS   r    r      (2) 

is the tensor operator [12] and rij is the internucleon vec-
tor. Sij is positive for magnetic repulsion and negative for 
magnetic attraction, depending on the relative orientation 
and position of the magnetic moments of the nucleons. gi 
is the Landé factor of the ith nucleon. The electromag- 
netic nuclear potential is the product of αmpc

2 = 6.8 MeV, 
almost equal to the α particle binding energy, and a 
purely numerical function to be determined (see Para- 
graph 11 for more details). 

4. Deuteron Electromagnetic Binding  
Energy 

The deuteron is the simplest nucleus beyond the protium, 
containing one proton with one positive charge +e and 
one neutron containing electric charges with no net charge. 
The electric field of the proton, acting on a neighboring 
neutron, separates the neutron charges, creating an in- 
duced dipole. The negative charge is attracted by the 
proton and the positive charge is repulsed at a greater 
distance from the proton than the negative charge. There- 
fore, according to Coulomb’s law, the attraction is larger 
than the repulsion, giving a net attraction (Figure 1). The 
positive charge of the neutron may thus be neglected in a 
first approximation, giving a simple equation for the 
electromagnetic potential, easily solvable to obtain the 
binding energy. As explained above, for the sake of sim- 
plicity, we shall consider, in this paper, only the negative 
charge of the neutron in the deuteron. The electromag- 
netic potential of the deuteron with one positive charge in 
the proton and one negative charge in the neutron, with 
collinear and opposite magnetic moments is, according to 
formulas (1) and (2):  

3

2

16
n pP P

em p np
np np

g gR R
U m c S

r r


  
         

      (3) 

It is more complicated for the magnetic moments:  

    
 

cos , 3cos , cos ,

1 3 1 1 2

np

n p n np p np

S

 

      

r    r     (4) 
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The neutron-proton interaction potential energy is thus, 
numerically:  

 
2

2 1.44 0.34
1H

em np
np np

U r
r r

  
        

MeV       (5) 

where rnp is in fm. The total binding energy is the total 
potential energy at its local minimum, according to the 
minimum potential energy principle. The derivative of 
the potential energy (3) relative to the radius rnp has to be 
a zero force at equilibrium: 

 2 3
2

2 4

d 3
0

d

H
em np n pP P

p
np np np

U r g gR R
F m c

r r r



     

 8






 (6) 

Solving this equation, one obtains the ratio : 

8

3
P

np n p

R

r g g
                 (7) 

Replacing RP/rnp in the potential, the total binding en- 
ergy writes:  

2 2 8 2
1.6 MeV

33
H

em p

n p

B m c
g g

          (8) 

The binding energy per nucleon is, numerically: 

2 938 2 2
0.8 MeV

137 3 3.8 5.6 3
H

emB A     
 

   (9) 

The calculated binding energy per nucleon of the deu- 
teron, −0.8 MeV, is 30% weaker than the experimental 
value, −1.11 MeV. A better value (−1.1 MeV) is obtained 
when the positive charge is taken into account [8]. The 
binding energy of the deuteron is thus predicted electro- 
magnetically although the precision is poor due to the 
neglect of the positive charge of the neutron but the ad- 
vantage is to have an analytical formula. This calculation 
uses only classical electrostatics, magnetostatics and fun- 
damental constants. 

5. Triton Electromagnetic Binding Energy 

The triton 3H (Figure 2), having only one proton, the 
proton-proton interaction is inexistent. The two neutrons 
are separated from the proton by rnp. The distance be- 
tween the two neutrons being twice that between the 
proton and the neutrons, their electric and magnetic in- 
teractions may be neglected. The total electrostatic po- 
tential, due essentially to the two neutron-proton interac- 
tion, is given by formula (1): 

 3 H 2

 

Figure 2. Approximate electromagnetic structure of the A = 
3 nuclides. The electrostatic attraction between neutrons 
and protons is attractive as in the deuteron. The magnetic 
moments of the triton and the helion are approximately, 
respectively, equal to those of the proton and the neutron, 
as schematized on the picture but they have different 
orientation. The repulsion between the protons (or the 
neutrons) is smaller because they are farther away, explain- 
ing the binding energy per nucleon larger than that of the 
deuteron. The triton and the helion 3He and 3H being 
mirror nuclei, we need only to calculate the binding energy 
of the triton and then switch round the Landé factors. 
 

The magnetic moment of the proton, being almost 
perpendicular to those of the two neutrons and to their 
common vector radius rnn, formula (2) becomes:  

     cos , 3cos , cos , 0np n p n np p npS   r r      (11) 

The magnetic interaction between the 2 neutrons can- 
not be neglected because it is the only repulsive force. 
According to formula (1) we have:  

 3

1 2

1 2

3
2

H 2

16
n P

m np p n n
n n

g R
U r m c S

r


 
   

 
      (12) 

The magnetic moments μn1 and μn2 of the neutrons be- 
ing almost collinear and opposite, their magnetic interac- 
tion is repulsive: 

    
 

1 2 1 2 1 1 2 2 1 2
cos , 3cos , cos ,

        1 3 2

 

    

n n n n n n n n n nS r r    
(13) 

With Sn1n2 = 2 and 2 np bonds, the magnetic compo- 
nent of the potential between the neutrons distant by 2rnp 
is: 

 
 

3

1 2

2 3
H 2

3
2 2

16 2

n P
m n n p

np

g R
U r m c

r
        (14) 

Applying the general formula (2), the electromagnetic 
interaction potential in 3H is the sum of the electric at- 
traction between the proton and the two neutrons equili- 
brated by the repulsion between the magnetic moments 
of the two neutrons as shown on Figure 2. Adding the 
electrostatic potential (10) and the neutron-neutron mag- 
netic potential,  nn

m nnU r  (14), the magnetic neutron- 
proton potential being zero, equation (11), the electro- 
magnetic potential of the 3H nucleus becomes: 

2 P
e np p

np

R
U r m c

r
             (10) 
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 3

3
2

H 22
64

nP P
em np p

np np

gR R
U r m c

r r


  
         

     (15) 

The equilibrium distance is obtained by derivation, as 
for the deuteron:  

3 H 2 3
2

2

d
0 2 3

d 6
em nP

p
np np np

U gR R
F m c

r r r


 
       

 
44
P    (16) 

Solving the preceding equation, we have: 

8

3
P

np n

R

r g
                 (17) 

Putting this value into the potential (15) gives the total 
binding energy of the triton: 

3 H 2 32
7.5 MeV

3 3
em p

n

B m c
g

         (18) 

The binding energy per nucleon is thus −3.7 MeV for 
= −2.83 MeV experimental (30% error). 

6. Helion Electromagnetic Binding Energy 

The helion nucleus is a triton where neutrons and protons 
are interchanged. Therefore, to calculate the binding en-
ergy of the helion it needs only to switch round the 
Landé factors, as shown on Figure 2. The binding energy 
per nucleon of the helion is thus:  

3 3He H 2.54 MeVn
em em

p

g
B A B A

g
          (19) 

1% weaker than the experimental value 
3 He

emB A = −2.57 
MeV. 

7. α Particle Electromagnetic Binding  
Energy 

It is well known that the magnetic moment of the α parti- 
cle is zero. The simplest structure of the 4He nucleus be- 
ing a tetrahedron, approximately regular, we shall as- 
sume that the magnetic moments are collinear and ori- 
ented oppositely along the neutron-neutron and the pro- 
ton-proton vectors by reason of symmetry (Figure 3). 
Therefore the magnetic moments are inclined at 60˚ with 
respect to the neutron-proton edges and collinear with the 
proton-proton and neutron-neutron edges. 

The helium 4He (Figure 3) has one nn, one pp and 4 
np bonds. We may neglect, in a first approximation, the 
interactions between neutrons and between protons be-
cause there are four neutron-proton interactions for one 
neutron-neutron and one proton-proton interaction. Each 
proton inducing each neutron, the induced electric charge 
in one neutron is around twice that of the deuteron: 

 

Figure 3. Tetrahedral 4He. The magnetic moment of the α 
particle being zero as it is well known, the magnetic mo- 
ments of the nucleons are paired, collinear and oppositely 
oriented by reason of symmetry. Therefore, there is electric 
and magnetic repulsion between protons and between neu- 
trons, neglected in a first approximation in comparison with 
the four neutron-proton bonds. The main magnetic interac- 
tion is the tensor repulsion between neutrons and protons 
whose projections on their common edge are oppositely 
oriented both outward (or both inward). 
 

  22np P
e np p

np

R
U r m c

r
             (20) 

As explained in the assumptions section, the magnetic 
moments of one proton and one neutron being perpen- 
dicular, the first term of Equation (2) is zero. Being in- 
clined at 60˚ with respect to their rnp bond (Figure 3), 
their projections on their common edge have the same 
orientation and, thus, the same cosines because they are 
assumed to be both oriented outward (or inward). The 
projections on the edges of the tetrahedron rnp are oppo- 
site. Formula (2) becomes:  

     cos , 3cos cos ,

1 1 3
      0 3

2 2 4

 

       
 

np n p n np p npS r r   
   (21) 

The general formula (2) gives thus a factor Snp = 3/4 
instead of 2 in the deuteron formula (5). The magnetic 
component of the 4He potential is thus 3/8 times that of 
the deuteron. According to formula (2), the magnetic 
component of the electromagnetic potential of the neu- 
tron-proton bond in 4He is thus: 

 
3

2 3

4 16
n pnp P

m np p
np

g g R
U r m c

r


 
     

 
     (22) 

With 4 neutron-proton bonds, Equations (20) and (22), 
the total electromagnetic potential of the α particle, is:  
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     4 4 4He He He

3

2 2 3
                4

4 16


 

  
         

em np e np m np

n pP P
p

np np

U r U r U r

g gR R
m c

r r

  (23) 

At equilibrium, the force, being zero, the potential is at 
its minimum, obtained by derivation:  

 
4 He 3

2
2 4

d 2 9
4 0

d 4 16
n pem P P

np p
np np np

g gU R R
r m c

r r r


  
         

  (24) 

The ratio of the proton Compton radius over the dis- 
tance between a proton and a neutron in a 4He nucleus is: 

16

3 2

P

np n p

R

r g g
              (25) 

Replacing P

np

R

r
 at equilibrium in the potential gives 

the total binding energy of 4He: 

4 He 2 256
30 MeV

9 2
em p

n p

B m c
g g

          (26) 

or, per nucleon:  

4 He 2 64
7.4 MeV

9 2
em p

n p

B A m c
g g

         (27) 

differing by 5% from the experimental value, −7.07 MeV. 

8. Hydrogen and Helium Isotopes with N > 2 

The 2H and 4He isotopes having halo neutrons, the excess 
neutrons (N > 2), are almost unbound, thus simplifying 
the calculations. Indeed, the total binding energy being 
almost constant, it suffices to divide it by the atomic 
number. 

A preceding calculation on hydrogen isotopes [7] tak- 
ing into account the interaction between neutrons has 
given coherent results. It has since been found that the H 
and He isotopes with N > 2 have almost the same total 
binding energy. This results in an important simplifica- 
tion for the hydrogen and helium isotopes with N > 2 
whose binding energies are obtained by dividing the 3H 
or 4He total binding energy by their mass number (Fig- 
ure 4).  

9. Nuclear and Chemical Energies 

The energy needed to separate an electron from a proton 
is given by the Rydberg constant, half the Hartree energy, 
according to the Bohr formula:  

2 21
13.6 eV

2y eR m c             (28) 

 

Figure 4. Calculated and experimental binding energies per 
nucleon of the hydrogen and helium isotopes. 2H, 3H, 3He 
and 4He have been calculated individually. Nuclides with 
more than two neutrons have been calculated from the 
maximum binding energy by assuming a zero separation 
energy for the extra neutrons. Therefore B, for a given Z, is 
independent of the neutron number N > 2 and B/A 
decreases in proportion, thus unable to predict the peaks at 
even N on the experimental curves. The experimental and 
the theoretical isotopic curves coincide approximately. The 
binding energies, calculated from nuclear masses [13,14], 
are taken positive on the graph. 
 
where me is the electron mass. The calculated separation 
energy of a neutron from a proton is the total binding 
energy of the deuteron [7]:  

22 8

3 3
 em p

n p

BE m c
g g

           (29) 

20.23 1.6 MeV   pm c       (30) 

This calculated binding energy of the deuteron is 30% 
weaker than the experimental value, −2.2 MeV due to the 
approximations used. The order of magnitude of the nu- 
clear/chemical energy ratio may thus be characterized by  

1836 137 250,000p

e

m

m
           (31) 

The experimental binding energies per nucleon vary 
from 0.6 MeV for 7H to almost 9 MeV for Fe. This gives 
a ratio varying from 44,000 to 662,000, coherent with the 
above calculated value and the usual estimation of one 
million for the nuclear/chemical energy ratio. The bind- 
ing energy of any nuclide is given by ampc

2 multiplied by 
a coefficient depending only on the electromagnetic 
structure of the nucleus. This is not numerology, it is the 
strict application of Coulomb’s laws. 

10. Conclusions 

All calculations of the binding energies of nuclei in the 
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literature use fitting parameters, cutoff, corrections, esti- 
mations or ad hoc constants, unable to evaluate even the 
order of magnitude of the nuclear energy. The binding 
energy of the simplest nucleus beyond the proton, the 
deuteron, has never been calculated, only explained by 
saying that its size exceeds the range of the nuclear 
forces, thus rather weakly bound [12]. 

At the present time, only the electromagnetic approach 
is able to calculate nuclear binding energies. Figure 4 
shows graphically and on Table 1, the results of the hy- 
drogen and helium isotopes compared with the experi- 
mental values. In order to obtain analytical formulas, 
rough approximations are necessary. Thus the precision 
is between 1% and 30%, depending on the approximation 
used. The order of magnitude of the nuclear to chemical 
energy ratio has been obtained for the first time, using 
only fundamental constants, the fine structure constant 
combined with the masses of the proton and the electron.  

11. Fundamental Constants Used [15] 

 Light velocity:  

299,272,013 m/sc              (32) 

 Proton-electron mass ratio:  

1836.152672                 (33) 

 Fine structure constant:  
2

0

1

2 137.035999679

e

hc
  


       (34) 

 Proton mass:  
 
Table 1. Binding energies per nucleon of 2H, 3H, 3He and 
4He. The formulas are derived in the text of the paper. Dis- 
crepancies appear between calculated binding energies, due 
to the approximations used, with or without the positive 
charge of the neutron. 3H and 3He differ only by their 
Landé g factor, explaining why 3H has a greater binding 
energy than 3He. The ratio between the binding energies of 
the deuteron and the α particle is found to be between 6 and 
8, for 6.5 experimental. 

Nuclide Formula 
This 
paper 

[8] [7] Experimental

2H 
2 32

27p

n p

m c
g g

  −0.8 −1.1 −0.8 −1.11 

3H 
2 32

3 3
p

n

m c
g

   −3.7  −2.9 −2.83 

3He 
3 H n

em

p

g
B A

g
  −2.54   −2.57 

4He 
2 64

9 2
p

n p

m c
g g

  −7.4 −6.2  −7.07 

938.272013 MeVpm           (35) 

 Proton Compton radius:  

0.21030890861 fmP
p

R
m c

 


      (36) 

 Nuclear magneton:  

1 1J T 5.05078324 J T
2 2

P
N

p

ecRe

m
      


  (37) 

 Magnetic moments of the neutron and the proton: μn 
and μp and their corresponding Landé factors, 

1J T
2 4

i
i N i P

g ec
g R               (38) 

where i means n or p. 
 Relation between vacuum dielectric permittivity and 

magnetic permeability:  
2

0 0 1c                   (39) 

 Nuclear electrostatic energy constant: 
2

2

0

6.84690165 MeV
4π p

P P

e c
m c

R R

 


  


  (40) 

This fundamental constant, 4% weaker than the α par-
ticle binding energy per nucleon (−7.07 MeV), is the nu- 
clear equivalent of the Hartree energy or twice the hy-
drogen atom binding energy (Rydberg constant). 
 Nuclear magnetic energy constant: 

0 2
3

9.147871896 MeV
164π

n p n p

p
P

g g
m c

R

  
   (41) 
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