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ABSTRACT 

This study explores the least square support vector and wavelet technique (WLSSVM) in the monthly stream flow fore- 
casting. This is a new hybrid technique. The 30 days periodic predicting statistics used in this study are derived from the 
subjection of this model to the river flow data of the Jhelum and Chenab rivers. The root mean square error (RMSE), 
mean absolute error (RME) and correlation (R) statistics are used for evaluating the accuracy of the WLSSVM and WR 
models. The accuracy of the WLSSVM model is compared with LSSVM, WR and LR models. The two rivers surveyed 
are in the Republic of Pakistan and cover an area encompassing 39,200 km2 for the Jhelum River and 67,515 km2 for 
the Chenab River. Using discrete wavelets, the observed data has been decomposed into sub-series. These have then 
appropriately been used as inputs in the least square support vector machines for forecasting the hydrological variables. 
The resultant observation from this comparison indicates the WLSSVM is more accurate than the LSSVM, WR and LR 
models in river flow forecasting. 
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1. Introduction water modeling and water resource processed such as 
flood stage forecasting [6], rainfall runoff modeling [7-9] 
and stream flow forecasting [10-12]. Researcher solved 
the standard SVM models using the complicated compu- 
tational programming techniques, which are very expen- 
sive in time to handle the required optimization pro- 
gramming. 

Pakistan is the home to the world’s largest contiguous 
irrigation system. This is an economy that is largely de- 
pendent on the agricultural sector; therefore, it has a vast 
irrigation network. The dependence on this form of farm- 
ing is developed by a persistent rainfall pattern that keeps 
the rivers flowing, which in turn leads to the availability of 
irrigation waters flowing downstream. The Jhelum and 
Chenab rivers provide the biggest percentage of irrigation 
waters in various provinces in Pakistan. 

The Suykens and Vandewalls [13] proposed the least 
square support vector machines (LSSVM) model to sim- 
plify the SVM. In the various areas, such as regression 
problems and pattern recognition [14,15], the LSSVM 
model has been used successfully. LSSVM and SVM 
have almost similar advantages but the LSSVM has an 
additional advantage, e.g. it needs to solve only a linear 
system of equation, which is much easier to solve and 
predict results [1-4]. The LSSVM and SVM mathematical 
models have been used in predicting ad analyzing the 
future flow of rivers. 

These days, river flow forecasting has a major role to 
play in water resources system planning. The sources of 
water with many activities such as planning and operating 
system component estimate for future demand. The 
composition of water is necessary for both short-term and 
long-term forecasts of the event flow to optimize system 
or an application for the growth or decline in the future. 
There are many mathematical models to predict future 
flow of rivers such as discussed by [1-4]. 

Recently, wavelet theory has been introduced in the 
field of hydrology, [16-18]. Wavelet analysis has recently 
been identified as a useful tool for describing both rainfall 
and runoff time series [16,19]. In this regard there has  

The Support Vector Machine (SVM) [5] forecasting 
method has been used in various studies of hydrology  
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been a sustained explosion of interest in wavelet in many 
diverse fields of study such as science and engineering. 
During the last couple of decades, wavelet transform (WT) 
analysis has become an ideal tool studying of a measured 
non-stationary times series, through the hydrological pro- 
cess. 

An initial interest in the study of wavelets was devel- 
oped by [20-22]. Daubechies [22] employed the wavelets 
technique for signal transmission applications in the 
electronics engineering. Foufoula Georgiou and Kumar 
[23] used geophysical applications. Subsequently, [17] 
attempted to apply wavelet transformation to daily river 
discharge records to quantify stream flow variability. The 
wavelet analysis, which is analogous to Fourier analysis 
is used to decomposes a signal by linear filtering into 
components of various frequencies and then to recon- 
struct it into various frequency resolutions. Rao and 
Bopardikar [24] described the decomposition of a signal 
using a Haar wavelet technique, which is a very simple 
wavelet. 

Wavelet spectrum, based on the continuous wavelet 
transform, has been proven to be a natural extension of the 
much more familiar conventional Fourier spectrum analy- 
sis which is usually associated with hydro metrological 
time series analysis [25]. Instead of the results being 
presented in a plot of energy vis a vis frequency for energy 
spectrum in Fourier Transform (FT) as well as FFT (Fast 
Fourier Transform), the wavelet spectrum is three di- 
mensional and is plotted in the time frequency domain in 
which the energy is portrayed as contours. The wavelets 
are mathematical functions that break up a signal into 
different frequency components so that they are studied at 
different resolutions or scales. They are considered better 
than the Fourier analysis for their distinct signals that pose 
discontinuities and sharp spikes. 

The main purpose of the this study is to investigate the 
performance of the WLSSVM model for streamflow 
forecasting and to compare it with the performance of the 
least square support vector machines (LSSVM), linear 
regression (LR) and wavelet regression models (WR). 

2. Methods and Materials 

2.1. The Least Square Vector Machines Model 

LSSVM is a new version of SVM modified by [13]. 
LSSVM involves the solution of a quadratic optimization 
problem with a least squares loss function and equality 
constraints instead of inequality constraints. In this sec- 
tion, we briefly introduce the basic theory LSSVM in 
time series forecasting. Consider a training sample set 

i i , x y  with input i
nx R iy R and output . In fea- 

ture space SVM models take the form 

   Tw x b 
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y x                 (1) 

xwhere the nonlinear mapping 
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 maps the input data 
into a higher dimensional feature space. LSSVM intro- 
duces a least square version to SVM regression by for- 
mulating the regression problem as 
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then the weight w can be written as combination of the 
Lagrange multipliers with the corresponding data train- 
ing x . 
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If we put the result of Equation (9) into Equation (3), 
then the following result is obtained: 
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      (10) 

where, a positive definite kernel is defined as follows: 

x x x xK          (11) 

The   vector and b can be found by solving a set of 
linear equations: 
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where,      1 1n n; ; , 1; ;1 ,y y y ; ;   

 ,i i

  1 . This 
finally leads to the following LSSVM model for function 
estimation: 

 
1
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y K b x x
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x         (13) 

where i , are the solution to the linear system. Ker- 
nel function, i represents the high dimensional 
feature space that is nonlinearly mapped from input 
space x. The typical examples of the kernel function are 
as follows: 
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Here   and  are the kernel parameters. The ar- 
chitecture of LSSVM is shown in Figure 1. 

d

 

2.2. Wavelet Analysis 

Wavelets are becoming an increasingly important tool in 
time series forecasting. The basic objective of wavelet 
transformation is to analyze the time series data both in 
the time and frequency domain by decomposing the 
original time series in different frequency bands using 
wavelet functions. Unlike the Fourier transform, in which 
time series are analyzed using sine and cosine functions, 
wavelet transformations provide useful decomposition of 
original time series by capturing useful information on 
various decomposition levels. 

Assuming a continuous time series  , ,t  x t , 
a wavelet function can be written as: 
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where  stands for time,   for the time step in which 
the window function is iterated, and  0,s 
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 stands for the complex conjugation of 
. 

 

Figure 1. Architecture of LSSVM. 
 
of the time series multiplied by scale and shifted version 
of wavelet function  t . The use of continuous wave- 
let transform for forecasting is not practically possible 
because calculating wavelet coefficient at every possible 
scale is time consuming and it generates a lot of data. 

Therefore, discrete wavelet transformation (DWT) is 
preferred in most of the forecasting problems because of 
its simplicity and ability to compute with less time. The 
DWT involves choosing scales and position on powers of 
2, so-called dyadic scales and translations, then the 
analysis will be much more efficient as well as more ac- 
curate. The main advantage of using the DWT is its ro- 
bustness as it does not include any potentially erroneous 
assumption or parametric testing procedure [26-28]. The 
DWT can be defined as 

  presents the sum of over all time period  
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where m and n are integers that control the scale and time, 
respectively; 0s  is a specified, fixed dilation step 
greater than 1; and 0  is the location parameter, which 
must be greater than zero. The most common choices for 
the parameters 0 2s   and 0 1  . For a discrete time 
series    x t  where x t  occurs at discrete time t, the 
DWT becomes 
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where ,m n  is the wavelet coefficient for the discrete 
wavelet at scale   and . In Equation (18), 2m n 
   1,2, , 1t Nt  is time series x   , and N is an inte- 

ger to the power of  2 2MN  ; n is the time translation 
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parameter, which changes in the ranges , 
where . 

0 2n M m  
1 m M 

 
According to Mallat’s theory [20], the original discrete 

time series x t  can be decomposed into a series of 
linearity independent approximation and detail signals by 
using the inverse DWT. The inverse DWT is given by 
[20,26,27]  
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or in a simple format as 

 x t A t D t

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which MA t
1,2, ,m M 

is called approximation sub-series or re- 
sidual term at levels M and  are 
detail sub-series which can capture small features of in- 
terpretational value in the data. 

 mD t

3. Study Area 

The time series of monthly streamflow data of the Jhe- 
lum and Chenab river of Pakistan are used. The locations 
of the Jhelum and Chenab catchments are shown in Fig- 
ure 2. The Jhelum River catchment covers an area of 
21,359 km2 and the Chenab catchment covers 28,000 km2. 
The first set of data comprises of monthly streamflow 
data of Chanari station at Jhelum River from Jan 1970 to 
December 1996 and the second data of set of streamflow 
data of Marala station at Chenab River from April 1947 
to March 2007. In the applications, the first 20 years and 
51 year of flow Jhelum data and Chenab data (237 
months and 430 months, 80% of the whole data set) were 
used for training the network to obtain the parameters 
model. Another dataset consisting of 75 monthly records 
(20% of the whole data) was used for testing. 

The performances of each model for both training and 
testing data are evaluated by using the mean-square error 
(MSE), mean absolute error (MAE) and correlation coef- 
ficient (R) which is widely used for evaluating results of 
time series forecasting. MSE, MAE and R are defined as 

 

  

   

2

1

1

1

1 1

1
MSE

1
MAE

1

1 1

n
o f
t t

t

n
o f
t t

t

n o o
t t tt

n no o
t tt t

y y
n

y y
n

y y y
nR

y y
n n







 

 

2 2

f f
t

f f
t t

y

y y






  

  

 
  

o







 

 (21) 

where t

 

Figure 2. Location map of the study area. 
 
relatively small of MAE and MSE in the training and 
testing. Correlation coefficient measures how well the 
flows predicted, correlate with the flows observed. Clear- 
ly, the R value close to unity indicates a satisfactory re- 
sult, while a low value or close to zero implies an in- 
adequate result. 

4. Model Structures 

One of the most important steps in developing a satis- 
factory forecasting model such as LSSVM and LR mod- 
els is the selection of the input variables. The appropriate 
input variables will allow the network to successfully 
map the desired output and avoid loss of important in- 
formation. There are no fixed rules in selection of input 
variables for developing this model, even though a gen- 
eral framework can be followed based on previous suc- 
cessful application in water resources problems [12,29, 
30]. In this study, the six model structures were devel- 
oped to investigate variable enabling of input variables 
on model performance. Six model structures are accom- 
plished by setting the input variables equal to the number 
of the lagged variables from monthly stream flows of 
previous periods data, 1 2t t t p, , ,y y y   , where p is set 1, 
2, 3, 4, 5 and 6 months. The model structure for original 
and DWT monthly streamflow data can be mathemati- 
cally expressed as 



 1 2, , ,t t t t py f y y y     
f

ty  and y  are the observed  and forecasted 
values at time , respectively and n is the number of 
data points. The criteria to judge for the best model are  

and 
t  1 2, , ,t t t t py f DW DW DW     
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1ty 

DW
where  denotes the streamflow value of 1 previous 
month, 1t  is obtained by adding the effective Ds 
(D2, D4 and D8), and approximately components of the 

1t  values. The model input structures for forecasting 
streamflow of Jehlum River and Chenab River is shown 
in Table 1. 

y

5. Results and Discussion 

5.1. Fitting LSSVM to the Data 

The selection of appropriate input data sets is an impor- 
tant consideration in the LSSVM modeling. In the train- 
ing and testing of LSSVM model, the same input struc- 
tures of the data set (M1 - M6) were used. In order to ob- 
tain the optimal model parameters of the LSSVM, a grid 
search algorithm and cross-validation method was em- 
ployed. Many work on the use of the LSSVM in time 
series modeling and forecasting have demonstrated fa- 
vorable performances of the RBF [6,31,32]. Therefore, 
RBF is used as the kernel function for streamflow fore- 

casting in this study. The LSSVM model used herein has 
two parameters  2,   to be determined. The grid 
search method is a common method which was applied 
to calibrate these parameters more effectively and sys- 
tematically to overcome the potential shortcomings of the 
trails and error method. It is a straightforward and ex- 
haustive method to search parameters. In this study, a 
grid search of  2,  with    in the range 10 to 1000 
and 2  in the range 0.01 to 1.0 was conducted to find 
the optimal parameters. In order to avoid the danger of 
over fitting, the cross-validation scheme is used to cali- 
brate the parameters. For each hyper parameter pair 
 2,   in the search space, 10-fold cross validation on 
the training set was performed to predict the prediction 
error. The best fit model structure for each model is de- 
termined according to the criteria of the performance 
evaluation.  

Tables 2(a) and 2(b) show the performance results 
obtained in the training and testing period of the regular 
LSSVM approach (i.e. those using original data). For the  

 
Table 1. The model structures for forecasting streamflow of Jhelum and Chenab Rivers. 

Model Original streamflow data  Model DWT of streamflow data 

ty1M  1 1tDW MW1   
1 2,t ty y  1 2,t t MW2 DW DW2M    

1 2 3, ,t t ty y y   1 2 3, ,t t t MW3 DW DW DW3M     

1 2 3 4,t t t ty y y y  1 2 3 4, , ,t t t tDW DW DW DW, ,   MW4 4M      

5M  1 2, ,  3 4 5, ,t t t t ty y y y y   1 2 3 4 5, , , ,t t t t tDW DW DW DW DW MW5      

1 2 3 4 5 6, , ,t t t t ty y y y y     1 2 3 4 5 6, , , , ,t t t t t t, ,ty  DW DW DW DW DW DW MW6 6M        

 
Table 2. Forecasting performance indicates of LSSVM for (a) Jhelum River of Pakistan; (b) Chenab River of Pakistan. 

(a) 

Training Testing 
Model 

MSE MAE R MSE MAE R 

M1 0.0160 0.0974 0.7757 0.0133 0.0892 0.8064 

M2 0.0104 0.0730 0.8615 0.0102 0.0727 0.8556 

M3 0.0077 0.0626 0.8993 0.0075 0.0662 0.8943 

M4 0.0096 0.0715 0.8730 0.0090 0.0744 0.8777 

M5 0.0087 0.0673 0.8851 0.0081 0.0703 0.8719 

M6 0.0084 0.0655 0.8885 0.0090 0.0752 0.8775 

(b) 

Training Testing 
Model 

MSE MAE R MSE MAE R 

M1 0.0123 0.0810 0.7622 0.0083 0.0694 0.7644 

M2 0.0047 0.0427 0.9167 0.0041 0.0421 0.9098 

M3 0.0039 0.0391 0.9307 0.0036 0.0416 0.9229 

M4 0.0041 0.0406 0.9277 0.0039 0.0438 0.9143 

M5 0.0037 0.0391 0.9349 0.0035 0.0430 0.9203 

M6 0.0039 0.0401 0.9318 0.0035 0.0429 0.9162 
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training and testing phase in Jehlum stations, the best 
values of the MSE, MAE and R were obtained using M3. 
In the model M3 had the smallest MAE and MSE 
whereas it had the highest value of the R. For Chenab 
River training and testing phase, the best value of MSE 
and MAE were obtained using M5, whereas the best 
value of R for testing was obtained using M3. 

5.2. Fitting Hybrid Models Wavelet LSSVM and 
Wavelet LR to the Data 

Two hybrid wavelet-LSSVM (WLSSVM) model and 
wavelet-LR (WR) model are obtained by combining two 
methods, DWT with LSSVM and DWT with LR. Before 
LSSVM and LR applications, the original time series 
data were decomposed into periodic components (DWs) 
by Mallat DWT algorithm [20,26,27]. The observed se- 
ries was decomposed into a number of wavelet compo- 
nents, depending on the selected decomposition levels. 
Deciding the optimal decomposition level of the time 
series data in wavelet analysis plays an important role in 
preserving the information and reducing the distortion of 
the datasets. However, there is no existing theory to tell 
how many decomposition levels are needed for any time 
series. To select the number of decomposition levels, the 
following formula is used to determine the decomposi- 
tion level [26].  

 logM n  

where, n is length of the time series and M is decom- 
position level. In this study, n = 315 and 552 monthly 
data are used for Jhelum and Chenab, respectively, which 
approximately gives M = 3 decomposition levels. Three 

decomposition levels are employed in this study, the 
same as studies employed by [28]. The observed time 
series of discharge flow data was decomposed at 3 de- 
composition levels (2 - 4 - 8 months). 

The effectiveness of wavelet components is deter- 
mined using the correlation between the observed 
streamflow data and the wavelet coefficients of different 
decomposition levels. Tables 3(a) and 3(b) show the 
correlations between each wavelet component time series 
and original monthly stream flow data. It is observed that 
the D1 component shows low correlations. The correla- 
tion between the wavelet component D2 and D3 of the 
monthly stream flow and the observed monthly stream 
flow data show significantly higher correlations com- 
pared to the D1 components. Afterward, the significant 
wavelet components D2, D3 and approximation (A3) 
component were added to each other to constitute the 
new series. For the WLSSVM model, the new series is 
used as inputs to the LSSVM model and LR model. Fig- 
ure 3 shows the structure of the WLSSVM model. Fig- 
ures 4 and 5 show the original streamflow data time and 
their Ds, that is the time series of 2-month mode (D1), 
4-month mode (D2), 8-month mode (D3), approximate 
mode (A3), and the combinations of effective details and 
approximation components mode (A2 + D2 + D3). Six 
different combinations of the new series input data (Ta- 
ble 1) is used for forecasting as in the previous applica- 
tion. 

A program code including wavelet toolbox was written 
in MATLAB language for the development of LSSVM 
and LR models. The forecasting performances of the 
wavelet-LSSVM (WLSSVM) models, Linear Regression 
(LR) and wavlet-regression (WR) are presented in Ta- 

 
Table 3. The correlation coefficients between each of sub-time series and original monthly streamflow data. 

(a) 

Discrete Correlations Jehlum data Mean 

Wavelet  
Components 1t tD Q  2t tD Q  3t tD Q  4t tD Q  5t tD Q  6t tD Q  Absolute  

Correlation 

D1 0.053 0.140 0.003 0.011 0.014 0.017 0.040 

D2 0.209 0.189 0.203 0.154 0.097 0.081 0.156 

D3 0.815 0.824 0.809 0.809 0.800 0.768 0.804 

A3 0.466 0.416 0.512 0.546 0.583 0.627 0.525 

(b) 

Discrete Correlations Chenab data Mean 

Wavelet  
Components 1t tD Q  2t tD Q  3t tD Q  4t tD Q  5t tD Q  6t tD Q  Absolute  

Correlation 

D1 0.110 0.055 0.016 0.015 0.047 0.040 0.047 

D2 0.338 0.353 0.285 0.172 0.074 0.173 0.233 

D3 0.835 0.846 0.875 0.902 0.903 0.867 0.871 

A3 0.251 0.261 0.281 0.304 0.338 0.394 0.305 
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Input time series (e.g. previous 
monthly streamflow) Wavelets Decom

Sum of effective Ds (
As (approximation) 

LSSVM or 

LSSVM or LR
Model

Output 
(currently monthly 

streamflow) 

position

details) and 
as input for 
LR

 

Figure 3. The structure of the WLSSVM and WR models. 
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Figure 4. Decomposed wavelet sub-series components (Ds) of streamflow data of Jhelum Station. 
 
bles 4(a) and 4(b), Tables 5(a) and 5(b) and Tables 6(a) 
and 6(b) respectively, in terms of MSE, MAE and R in 
training and testing periods. 

Tables 4(a) and 4(b) show that WLSSVM model has a 

significant positive effect on streamflow forecast. As 
seen from Table 4(a), for the Jhelum station, the MW3 
model has the smallest MSE (0.0031) and MAE (0.0413) 
and the highest R (0.9614) in the training phase. How- 
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Figure 5. Decomposed wavelet sub-series components (Ds) of streamflow data of Chenab Station. 
 

Table 4. Forecasting performance indicates of WLSSVM for (a) Jhelum River of Pakistan; (b) Chenab River of Pakistan. 

(a) 

Training Testing 
Model 

MSE MAE R MSE MAE R 

MW1 0.0103 0.0813 0.8638 0.0100 0.0786 0.8585 

MW2 0.0054 0.0515 0.9312 0.0046 0.0489 0.9385 

MW3 0.0031 0.0413 0.9614 0.0049 0.0487 0.9326 

MW4 0.0041 0.0271 0.9832 0.0039 0.0505 0.9479 

MW5 0.0071 0.0316 0.9784 0.0038 0.0476 0.9482 

MW6 0.0081 0.0304 0.9777 0.0043 0.0502 0.9409 

(b) 

Training Testing 
Model 

MSE MAE R MSE MAE R 

MW1 0.0122 0.0793 0.7640 0.0078 0.0647 0.7803 

MW2 0.0017 0.0297 0.9705 0.0016 0.0294 0.9610 

MW3 0.0018 0.0290 0.9684 0.0013 0.0291 0.9671 

MW4 0.0018 0.0302 0.9698 0.0014 0.0298 0.9672 

MW5 0.0021 0.0224 0.9801 0.0011 0.0248 0.9729 

MW6 0.0012 0.0231 0.9796 0.0012 0.0264 0.9695 
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Table 5. Forecasting performances indicates of LR for (a) Jhelum River of Pakistan; (b) Chenab River of Pakistan. 

(a) 

Training Testing 
Model 

MSE MAE R MSE MAE R 

LR1 0.1271 0.0981 0.7736 0.1162 0.0912 0.8826 

LR2 0.1157 0.0850 0.8171 0.1045 0.0806 0.8447 

LR3 0.1122 0.0835 0.8298 0.1058 0.0838 0.8395 

LR4 0.1084 0.0808 0.8418 0.1030 0.0835 0.8496 

LR5 0.1055 0.0779 0.8561 0.0995 0.0798 0.8611 

LR6 0.1048 0.0769 0.8497 0.1018 0.0819 0.8534 

(b) 

Training Testing 
Model 

MSE MAE R MSE MAE R 

LR1 0.1165 0.0854 0.7317 0.0918 0.0732 0.7549 

LR2 0.0980 0.0699 0.8192 0.0727 0.0581 0.8580 

LR3 0.0971 0.0703 0.8231 0.0729 0.0590 0.8571 

LR4 0.0963 0.0687 0.8267 0.0722 0.0578 0.8613 

LR5 0.0924 0.0654 0.8420 0.0707 0.0555 0.8713 

LR6 0.0893 0.0630 0.8536 0.0766 0.0569 0.8767 

 
Table 6. Forecasting performances indicates of WR for (a) Jhelum River of Pakistan; (b) Chenab River of Pakistan. 

(a) 

Training Testing 
Model 

MSE MAE R MSE MAE R 

WR1 0.1125 0.0914 0.8281 0.1023 0.0781 0.8505 

WR2 0.0839 0.0644 0.9089 0.0809 0.631 0.9089 

WR3 0.0736 0.0525 0.9305 0.0801 0.0626 0.9105 

WR4 0.0690 0.0465 0.9391 0.0882 0.0586 0.8935 

WR5 0.0706 0.0486 0.9358 0.0768 0.0404 0.9181 

WR6 0.0677 0.0440 0.9402 0.0917 0.0561 0.8848 

(b) 

Training Testing 
Model 

MSE MAE R MSE MAE R 

WR1 0.1124 0.0836 0.7532 0.0881 0.0685 0.7768 

WR2 0.0666 0.0533 0.9209 0.0536 0.0435 0.9248 

WR3 0.0577 0.0449 0.9413 0.0449 0.0356 0.9468 

WR4 0.0525 0.0394 0.9519 0.0372 0.0307 0.9677 

WR5 0.0461 0.0345 0.9632 0.0356 0.0280 0.9682 

WR6 0.0423 0.0308 0.9690 0.0409 0.0281 0.9607 

 
ever, for the testing phase, the best MSE (0.0038), MAE 
(0.0476) and R (0.9482) was obtained for the model in- 
put combination MW5. From Tables 5(a) and 5(b) for 
Chenab station, the MW6 model has the smallest MSE 

(0.0012) and MAE (0.0231) and the highest R (0.9796) 
in the training phase. However, for the testing phase, the 
best MSE (0.0011) and MAE (0.0248) and R (0.9729) 
was obtained for the model input combination MW5. 
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5.3. Comparisons of Forecasting Models 

For further analysis, the best performances of the 
LSSVM, LR, WLSSVM and WR models in terms of the 
MSE, MAE and R at testing phase are compared. 

In Tables 7(a) and 7(b), it shows that WLSSVM has 
good performance during the testing phase, and they 
outperform LSSVM, LR and WR in terms of all the 
standard statistical measures. The correlation coefficient 
(R) for Jehulm River and Chenab River data obtained by 
LSSVM models is 0.8943 and 0.9203 and by WR models 
is 0.9181 and 0.9682 respectively, with WLSSVM 
model, the R value is increased to 0.9482 and 0.9729. 
The MSE obtained by LSSVM models is 0.0075 and 
0.0035 for both data sets respectively with WLSSVM 
model this value is decreased to 0.0038 and 0.0011. 
Similarly, while the MAE obtained by LSSVM is 0.0662 
and 0.0430, the MAE value of WLSSVM model is de- 
creased to 0.0476 and 0.0248. The WLSSVM model ob- 

tained the best value of MSE and MAE decrease 49% 
and 69%, respectively, and the best of R increases by 6% 
compared with single LSSVM model for Jhulem data. 
For Chenab data the best of R increases by 6% and the 
best value obtained for MSE and MAE decreases 28% 
and 42%. 

Figures 6 and 7 show the hydrograph and scatter plot 
for the LSSVM, WLSSVM, WR and LR models for the 
testing period. It can be seen that the WLSSVM forecasts 
quite close to the observed data for both station. 

The performance of WLSSVM in predicting the 
streamflow is superior to the classical LSSVM model. As 
seen from the fit line equations (assume that the equation 
is y a bx 

R 0.9482
R 0.9729

) in the scatterplots that a and b coefficients 
for the LSSVM, WLSSVM, WR and LR models, respec- 
tively, the WLSSVM has less scattered estimates and the 
R value of WLSSVM model close to 1 (  and 

 ) compared to the LSSVM, WR and LR 
models for both data sets respectively. Overall, it can be 

 
Table 7. The performance results LSSVM, WLSSVM, LR and WR approach during testing period. 

(a) 

Jehlum River 

Model MSE MAE R 

LSSVM 0.0075 (49%) 0.0662 (28%) 0.8943 (6%) 

WLSSVM 0.0038 0.0476 0.9482 

LR 0.0995 (96%) 0.0798 (52%) 0.8611 (10%) 

WR 0.0768 (95%) 0.0404 (38%) 0.9181 (3%) 

(b) 

Chenab River 

Model MSE MAE R 

LSSVM 0.0035 (69%) 0.0430 (42%) 0.9203 (6%) 

WLSSVM 0.0011 0.0248 0.9729 

LR 0.0707 (98%) 0.0555 (55%) 0.8773 (11%) 

WR 0.0356 (97%) 0.0280 (11%) 0.9682 (1%) 

 

 

 

Figure 6. Predicted and observed streamflow during testing period by WLSSVM, LSSVM, LR and WR for Jhelum Station. 
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Figure 7. Predicted and observed streamflow during testing period by LSSVM and WLSSVM for Chenab Station. 
 
concluded the WLLSVM model at both studies provided 
more accurate forecasting results than the LSSVM, WR 
and LR models for streamflow forecasting. 

6. Conclusions 

The new method based on the WLSSVM is developed by 
combining the discrete wavelet transforms (DWT) and 
least square support vector machines (LSSVM) model 
for forecasting streamflows. The monthly streamflow 
time series is decomposed at different decomposition 
levels by DWT. Each of the decompositions carries most 
of the information and plays a distinct role in original 
time series. The correlation coefficients between each of 
the sub-series and original streamflow series are used for 
the selection of the LSSVM model inputs and for the 
determination of the effective wavelet components on 
streamflow. The monthly streamflow time series data are 
decomposed at 3 decomposition levels (2 - 4 - 8 months). 
The sum of effective details and the approximation 
component were used as inputs to the LSSVM model. 
The WLSSVM models are trained and tested by applying 
different input combinations of monthly streamflow data 
of Chanari station in Jhelum River and Marala station in 
Chenab in Punjab of Pakistan. Then, LSSVM model is 
constructed with new series as inputs and original 
streamflow time series as output. The performance of the 
proposed WLSSVM model is then compared to the 
regular LSSVM model for monthly streamflow forecast- 
ing. 

Comparison results carried out in the study indicated 
that the WLSSVM model was substantially more accu- 
rate than LSSVM, LR and WR models. The study con- 
cludes that the forecasting abilities of the LSSVM model 
are found to be improved when the wavelet transforma- 
tion technique is adopted for the data pre-processing. The 
decomposed periodic components obtained from the 
DWT technique are found to be most effective in yield- 

ing accurate forecast when used as inputs in the LSSVM 
models. 
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