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ABSTRACT

We study kinetic models of reversible enzyme
reactions and compare two techniques for ana-
lytic approximate solutions of the model. Ana-
lytic approximate solutions of non-linear reac-
tion equations for reversible enzyme reactions
are calculated using the Homotopy Perturbation
Method (HPM) and the Simple Iteration Method
(SIM). The results of the approximations are
similar. The Matlab programs are included in ap-
pendices.

Keywords: Enzyme Kinetics; Homotopy
Perturbation Method; Iteration Method;
Michaelis-Menten Kinetics; Quasi-Steady State
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1. INTRODUCTION

The variety of chemical reactions in a living organism
is carried out by enzymes. It appears that the rate of
chemical reactions (both forward and backward) is ac-
celerated by enzymes.

They are essential because many chemical reactions
occur without the activity of enzymes. Such reactions are
linked withan enzyme’s active site, and they become a
product after a series of stages. These stages are known
as the enzymatic mechanism. There are two types of
mechanisms, single substrate and multiple substrate me-
chanisms [1-4]. An important branch of enzymology is
enzyme Kinetics which is used to study the rate of chemi-
cal reactions. Differential equations are used to charac-
terize the enzyme kinetics based on some principles of
chemical kinetics [5-8].

The single enzyme reaction is one of the most power-
ful kinds of kinetic reaction. Simply put, this enzyme
reaction is defined as follows:

E+st<:>:EsL>E+P 1)
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where the concentrations of enzyme, substrate, enzyme-
substrate complex and product are defined by [E], [S],
[ES] and [P], respectively. Also, k,k, and k; repre-
sent the reaction rate constants. By using the idea of
mass action, we can describe the reaction Eqg.1 in terms
of a system of non-linear ordinary differential equations
[3].

There are varieties of possible simplifications for the
system (Eq.1) to describe analytic approximate solutions
of the system. One of the most common approaches to
simplify this system is the use of quasi-steady state ap-
proxmation (QSSA). The quasi-steady state assumptions
occur as fundamental assumptions for enzyme Kinetics,
and the history of this subject began 80 years ago. It plays
a key role with regard to the analysis of the enzyme ki-
netic equations [5]. Another simplification is the Micha-
elis-Menten equation created in 1913which pointed that
the enzyme reaction (Eq.1) should be k, >k, , therefore
[E][S] =ﬁ. It means that there is equilibrium between
[ES] Kk
[E], [S] and [ES] to produce [P] and [E]. In 1925, Briggs
and Haldane proposed that the Michaelis-Menten as-
sumption is not always applied. They said that it should
be replaced by the assumption that [ES] is present, not
necessarily at equilibrium, but in a steady state under
condition [S,]>[E,] . This means that the concentra-
tions of [ES] occur as a steady state. This is known as the
steady state assumption (SSA) or is sometimes called the
quasi-steady state approximation (QSSA), or pseudo-
steady sate approximation [9]. The first description of
QSS was given by Briggs and Haldane in 1925 [10].
They described the simplest enzyme reaction in Eq.1, and
pointed out the total concentration of enzyme [E], where
[E],, =[E]+[ES] isatiny value in comparison with the
concentration of substrate [S]. Also, they have shown the

d|ES d[S
term of [dt ] is negligible compared to _([:1t] and
d[P] .
9 As a result, they found the Michaelis-Menten
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equation, which is a differential equation used to de-
scribe the rate of enzymatic reactions. The classical Mi-
chaelis-Menten equation is defined as,

k [E][S]=(k, +ks)[ES], oOr

[ES]- [E][S] d[P]_ [

ks [E][S
ky +[S]" dt 5= = o

ok, +[S]

k, + K,
kl
(for more details see [11]). The purpose of this work is to
derive asymptotic approximate expressions for the sub-
strate, product, enzyme and enzyme-substrate concentra-
tions for Eqg.3 by using (HPM) and (SIM), and to point
out the similarities and differences between the methods
of (HPM) and (SIM) for all values of dimensionless re-
action diffusion parameters &,1,« and k. Another
aim of this project is to find out the appropriate iteration

in (SIM) compared to (HPM).

where k,, = is the Michaelis-Menten constant

2. MATHEMATICAL FORMULATION

The Michaelis-Menten Eqg.1 was applied by Kuhn in
1924 [12] to several cases of enzyme knetics. The model
of biochemical reaction was developed by Briggs and
Haldane in 1925 [3]. The model of an enzyme action
considers a reaction that includes a substrate [S] which
binds an enzyme [E] reversibly to asubstrate-enzyme
[ES]. The substrate-enzyme leads reversibly to product
[P] and enzyme [E]. This mechanism is often written as
follows:

E+s:<:>iEst<:>jP+E 3)

The mechanism shows the binding of substrate [S] and
the release of product [P] where the free enzyme is [E]
and the enzyme-substrate complex is [ES]. In addition,
k. k,.k; and k, denote the rates of reaction. It is clear
from Eq.3 that substrate binding and product are reversi-
ble. The concentration of the reactants in Eq.3 is denoted
by lower case letters:

e=[E],s=[S],c=[ES], p=[P] (4)

The time of evolution of Egs.3 and 4 are found by the
law of mass action to obtain the set of system of the fol-
lowing non-linear reaction equations:

% =—kes+k,C (5)
@——kes+(k +k;)c—k, pe (6)
dt - 2 TKg 4P
%:kles—(k2+k3)c+k4pe @)
d

d—?:kac—k4 pe ®)
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when the initial conditions at t = 0 are given by
e(0)=€,5(0)=5,,¢(0)=¢, p(0) =Py  (9)
Adding Eqgs.6 and 7, and using initial conditions Eq.9,
we obtain
e+c=e, (10)
Also, adding Eqgs.5, 7 and 8, and using initial condi-
tions EQ.9, we get
S+C+p=s, (12)
By using Eqs.10 and 11, the system of ordinary dif-

ferential equations (Eqs.5-8) reduce to only two vari-
ables, s and c, as follows:

% = kg5 + (ks +k,)c (12)

%: kigos +(Kis+k, +k;)c+k, (& —¢)(s, —s—c¢) (13)

with initial conditions s(0)=s,,c(0)=c,. By introduc-
ing the following parameters:

t t t
:@,u(f)_ﬂyv(r)zc( ),W(z’): p( ),
€ 0 & €
()= o etk s Ky
e ks, ks, s, k'

We use the dimensionless technique to reduce the num-
ber of parameters for the system of Eqgs.12 and 13 and
the initial conditions EQ.9. This can be represented in
dimensionless form as follows:

%:—gu+g(u+k—/i)v (15)
:—V:u—(u+k)v+a(1—v)(1—u—8V) (16)
T
3_V:=au—a(uv+gv2+1) 17)
u(0)=1,v(0)=0,w(0)=0. (18)

In this paper, we estimate the analytic approximate
solution for a system of non-linear ODE (Egs.15-18), by
using the methods of (HPM) and (SIM).

3. ANALYTICAL APPROXIMATE
SOLUTION USING THE HOMOTOPY
PERTURBATION METHOD

The basic idea of the Homotopy-Perturbation Method
(HPM) is defined in this section. It is then applied to find
the approximate solution of the problem in Eqgs.15-18. It
is considered from the following function:

A(x)-f(r)=0,reQ (19)
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with the boundary conditions

oX)_
B(x,an) 0, rel 20)

where A,B, f(r) and T' are general differential op-
erators, boundary operators, a known analytic function,
and the boundary of the domain Q, respectively [13].
The function A consists of linear part L and non-
linear part N. So, the Eq.19 can be written as:

L(x)+N(x)-f(x)=0 (21)
The Homotopy function is defined
byz(r,q):Qx[0,1] - R, which satisfies
H(z,0)=(1-a)(L(z)-L(%))+a(A(z)- f (r)) =0,
(22)
qe[0,1],reQ, or
H (2,0) = L(2) - L(%) +aL (%) +a(N(x)- f(r))
(23)
where qe[0,1] is an embedding parameter. At the
same time, X, is an initial approximation of Eq.19,

which satisfies Eq.20. Basically, from Egs.22 and 23 we
can obtain:

H(z,0)=L(z)-L(x)=0, (24)
H(z1)=A(z)-f(r)=0, (25)

Changing z(r,q) from x, to x(r) depends on
the values of g from zero to unity. It is called deforma-
tion in the field of topology. At the same time,
L(z)-L(x,) and A(z)-f(r) are called Homotopy.
We use q asasmall parameter initially, and we defined
the Eqgs.22 and 23 as a power seriesin q:

Z=12,+0z +0°Z, +--- (26)
Let g=1 to getthe approximate solution of Eg.19

x=limz=2z,+2+2,+ (27)
q-ol

Thus, HPM includes a combination of the perturbation

solved analytically in a simple and closed form by using
the Homotopy Perturbation Method (HPM) (Ref Appen-
dix A). So, the approximate solutions of the system of
non-linear differential equations (Eqgs.15 and 16) be-
come: (see EQs.28 and 29).

The analytic expressions of the substrate u(z) and
enzyme substrate v(z) concentrations can be represent-
ed in EQs.28 and 29. The dimensionless concentration of
enzyme E can be obtained from EQqs.10 and 14 as fol-
lows:

E(r):it)zl—v(r) (30)

The dimensionless concentration of the product w is
obtained either by Eq.17 as follows:

W(r):.:[(a(u(t)—u(t)v(t)—gvz ()-2)+ mv (1))t
(31)

or we can use Egs.11 and 14 to find the concentration
of the product w as follows:

W(‘[) _ 1—u(r)—gv(r) .

&

The simple analytic approximate solution form of the
concentrations of enzyme E(z) and product w(r)
for all values of parameters &, 1, and k, are repre-
sented in Eqgs.30-32.

(32)

4. SIMPLE ITERATION METHOD

In this section, we use a simple technique to find the
analytic approximate solution for the system of Eqs.15
and 16. We introduce this method by rewriting Eqgs.15
and 16 as follows:

d_u:—gu+g(k—/1)v+guv (33)
T
j—v:(l—a)u—(k+a+ag)v—(1—a)uv+a£‘v2 +a
T

method and the Homotopy method. Eqs.15-17 can be (34)
U(T):Zeﬂew( ab +%)Tefm+abc—aag+aac o , ag’ —che—cac pl-e=0)r L aa | b o2er
c-¢ € C(g—c)2 Cz(g—c) ce &-C
(28)
4| _1,8ac—abc—aca _aa , b —ag’ +bce +cae -
c(g—c)2 Ce ¢&-¢C Cz(g—c)
b —er , bC—ag +Ca 4-cr b ba - b? 261, A b(lé‘—Cb2 —bca (-s-c)r

v(r)= e + e + + [ — e pac Al “ e

(7) c-¢ c(e-c) (C—g c(c—g)] (c—&)(c—2¢) c ce(e—-c) (29)

—bae +cb? + beca n

+[ b, W
e-c (e-c)(c-2¢) ce(e—c)
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Let a=¢(k-4),b=(1-«) and
then the Eqgs.33 and 34 can be written as:

u u
[ T+1J=A[ n+1]JFG(un,vn), for n=012,-- (35)

c=k+a+ae,

Vn +1 Vn +1

eu.v,

where G(un,vn):( j is a non-linear

—bu v, +aeu’ +a
- a) .
part of the system (EqQ.35), and A=[ b c] is a

matrix of the linear part of the system (Eq.35). To evalu-
atean approximate solution of Eq.35 with the initial con-
ditions implied by Eq.18, we introduce the following
steps to approach the approximate solution.

Step 1. For n=0,u,(7)=1v,(r)=0 and, if possi-
ble suppose that « — 0 (just in this step). It means we
assume the non-linear part of Eq.35 approaches zero.
Consequently, we obtain the following system:

oA ®
Vl Vl

We can solve the system of ordinary differential Eq.36
analytically [14]. So, the solution of EQ.36 with initial
conditions (EQ.18) is

u (7) _[de™ +dye™ 37)
vi(r)) (de™ —de
where p, and p, are eigenvalues of matrix A, and
dlz(pl+g)(p2+g),d2 _ (p,+¢) and
a(p2_pl) a(pz—pl)
d, = M . We substitute u, and v, inEq.30and
(pz - pl)

Eq.32, then obtain E, and w,, respectively. The be-
haviour of the components in EQ.37 are described in
Figures 1-5 (see Appendix C).

Step 2. For n=1, and substituting Eqs.37 in 35, we
obtain the following system of non-linear ODE:

Up | _ o[
Ao

It is clear that the system of non-linear differential

equations (Eq.38) is solved analytically [14]. The solu-
tion of the system with initial conditions (Eq.18) is ob-
tained as follows:

u, () =ace™ +ac,e™ +d,e*™

(39)
+d,elPP) 6% 4,

V,(7)=c;(p +)e™ +c,(p, +&)eP +dyee’™

(40)
+d,,eP P 4 d, 6P 1 d,,

where d,,,---,d,, and c;,c, are constants. We substi-
tute u, and v, in Eqgs.30 and 32, and obtain E, and
w, , respectively. The behaviour of concentrations in this
step is described in Figures 6-10 (See Appendix D).
Step 3. For n=2, and substituting Eqgs.39 and 40 in
Eq.35, we get the following system of non-linear ODE:

Ug) (U
[vé]_ A[VJ+G(u2,v2) (41)

The system of non-linear differential equations (Eq.41)
is solved analytically. The solution of the system with
initial conditions (Eqg.18) is obtained as follows (see
EqQs.42 and 43).

Where dg,,---,d;,, and c,c, are constants. We sub-
stitute u, and v, in EQ.30 and Eq.32, and obtain E,
and w,, respectively. The behaviour of concentrations in
this step is described in Figures 11-15 (See Appendix E).

On the other hand, we can easily realize that the be-
haviour of concentrations u, v, E and w of (HPM) are
described in Figures 16-20.

5. ASYMPTOTIC ANALYSIS

An important development of asymptotic analysis was
suggested by Kruskal (1963) for differential equations
[15]. He defined asymptotology as “the art of describing
the behaviour of specified solution (or family of solu-
tions) of a system in limiting case”. The following three
different conditions can be identified based on the initial

[E,]
[So]

1) If the initial concentration of enzyme [E,] is
much greater than the initial concentration of substrate

ratio [16].

Uy (7) = 8C,e™ +aC,e"" + dgge?™ + g, ™ )" 1 dg, €™ + dgye®™ ") 1 dy,el PP 4 d, reP

+0gg€™ + 0y 27 + g™ +dgge™ + 78" +dy ™ +d,e®P ) 4 PP (42)

(pL+2p2)7 4pyr
+dy,e +dy5€ + g6

V; (7) = D™ +h,Cee” +d,5,67"" + g™ P 4 d 6™ +dy e ) 1 d, el PP g d vt

pr 2Pyt 3p,7 Pt por Apr (Bp+p)r (2p+2py)r
+d,,e™ +d,,e " +d, e’ +d, e +d,7e +d "™ +d e 2" +d,0e 2 (43)

(p1+2py)7 4p,t
+ dlZle + d122e : + d123

Copyright © 2013 SciRes.
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[SO]. This means that EO% >1. Also, Schenelland
0

Maini in [2] emphasized that the initial concentration of
enzyme greatly exceeds the concentration of substrate,
that is[E,]>[S,]. So, from Eq.14, we get £>1. In
this case, the part of the enzyme concentration which
binds to the concentration of the substrate is small. This
means that there is a free rate of enzyme. This rate is
based on the availability of the substrate, and is increased
whenever the concentrations of substrate are increased,
or by adding additional substrate to the chemical reac-
tion.

2) If the initial concentration of substrate [S;] is
much greater than the initial concentration of enzyme

E
[E,]. This means that (&) <1. So, from Eq.14, we

[S,]

Copyright © 2013 SciRes.
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S
1)
(=}

obtain & <1. In this case, there is a small part of sub-
strate that links to the enzyme, while a part of it is free.
In this case, enzyme molecules usually bind to substrate
molecules which mean that a small amount of enzyme is
free. The availability of enzyme in this case depends on
this rate, and increases when the rate of enzyme is in-
creased, or by adding some extra enzyme to the chemi-
cal reaction.

3) If the initial concentration of enzyme and substrate

[E,]
[S.]
g=1. In this case, there are no any free molecules of

enzyme or substrate. In other words, all substrate mole-
cules are occupied by the enzyme molecules, and all en-

are equal. This means

=1, so from Eq.14, we get
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zyme molecules are also limited by the number mole-
cules of the substrate. Furthermore, if we look the con-
stant rate of reactions k, and k, from Eq.14, we can
define the following conditions:

4 If k, >k, then a>1.

5)If k, <k, then a<1.

6) If k, =k, then o =1.

In addition, according to the definition of 4 and k
from Eq.14, we obtain 1 <k, because k, always has a
positive value. As result, we can easily combine the
Conditions 1-6. We then get the following five basic

S. H. A. Khoshnaw / Natural Science 5 (2013) 740-755
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We apply the above cases separately in the analytic ap-
proximate solution for both methods (HPM) and (SIM).
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Figure 20. £¢=0.6, =12, A1=12 and k=1.7.

6. RESULTS AND DISCUSSIONS

The figures in this section are divided in to four
groups. The first three groups are related to three itera-
tions of SIM and the last group refers to the HPM. Fig-
ures 1-20 show the analytic approximate solution of
substrate u, enzyme E, enzyme-substrate complex v
and product W. Each figure in this work corresponds to
one case in the previous section. The figures change in
terms of the values of the dimensionless parameters
a,e,A4 and k. We have applied two different methods
which are SIM and HPM to find the analytical approxi-
mate solutions for Eqgs.15 and 16. The HPM has been
used by many researchers for the system (Eq.1) [1,3,4].
The main purpose of this discussion is to find the simi-
larities and differences between the methods which are
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used in this study. Another purpose is to recognize the
best iteration of the SIM compared to the HPM.

There are a variety of data results that tell us the sec-
ond iteration in our approach (SIM) is similar to HPM.
First of all, the second iteration has many significant
similarities compared to (HPM), and some of them pro-
vide excellent results in terms of our work. For instance,
Figures 6-10 show that the value of the concentration of
substrate u slightly decreases from its initial value
(u(O) =l) and there are a few changes in the value of
the concentration of the enzyme-substrate complex v.
Generally, they reach some constant values after 7> 4.
Also, in Figures 16-20, it appears that the concentration
of the components are somewhat similar to those of cor-
responding Figures 6-10. Another example is that the
value of the concentration of enzyme E in both sets of
figures is more or less is the same, especially in Cases 1,
2 and 5. Another crucial point is that the value of con-
centration v in Figure 13 reaches a maximum when
0<7<2. Also, in the same interval of time, the value of
the concentration v reaches a maximum in Figure 18 as
well. We can also realize that the value of the enzyme in
both figures ends up at a minimum value whenO <z < 2.
In addition, Figures 11-15 and Figures 16-20 show that
there is a gradual decrease in the rate of substrate u be-
tween 0<7 <2 which then levels off after z>4. On
the other hand, the concentration of the product w
slightly increases between 0<7 <2 in both set of fig-
ures, and is likely to remain stable after z> 4.

However, there are some differences between our sim-
ple technique (SIM) and the classical technique (HPM).
For example, Figures 1-5 show that the value of the con-
centration of substrate u slightly decreases from its initial
value (u(0)=1), and there are a few changes in the
value of the concentration of the enzyme-substrate com-
plex v. Generally, they become zero after z>5. Mean-
while, in Figures 16-20, it appears that the concentration
of the components do not fall to zero, but instead reach
some constant values. Basically, it could be pointed out
that the differences between them are small and can be
therefore be ignored.

Overall, it can be said that the second and third itera-
tions of SIM are appropriate for obtaining a good ap-
proximate solution for our case study. In particular, the
results of the second iteration are more fitted to an ap-
proximate solution in comparison with the classical tech-
nique (HPM). However, although there are some differ-
ent values in terms of results between HPM and the sec-
ond iteration method, they are tiny.

Figures 1-5. In these profiles of the normalized con-
centrations of the substrate u, enzyme-substrate complex
v, enzyme E and product w correspond to Cases 1-5, re-
spectively. The equations of Step 1 are applied to plot the
figures (see Appendix C).
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Figures 6-10. In these profiles of the normalized con-
centrations of the substrate u, enzyme-substrate complex
v, enzyme E and product w correspond to Cases 1-5, re-
spectively. The equations of Step 2 are applied to plot the
Figures (see Appendix D).

Figures 11-15. In these profiles of the normalized
concentrations of the substrate u, enzyme-substrate com-
plex v, enzyme E and product w correspond to Cases 1-5,
respectively. The equations of Step 3 are applied to plot
the figures (see Appendix E).

Figures 16-20. In these profiles of the normalized
concentrations of the substrate u, enzyme-substrate com-
plex v, enzyme E and product w correspond to Cases 1-5,
respectively. The Egs.28 and 32 are applied to plot the
figures (see Appendix A).

7. FINDINGS

We have used the mean of the second norm (Eq.44) to
find the total differences between the HPM and each
iteration of the SIM (see Tables 1-3). The rate of con-
vergence between the SIM and the HPM is shown in
Figure 21. Thus, we use the following equation to find
this rate of convergence:

(44)

where f and g are the value of the concentrations of
substances u, v, E and w for the SIM and the HPM re-
spectively, and N is the number of timescale iterations.
The average norm between the second iteration and
HPM is small in value. For instance, the average value of
the norm concentration of E is small (equal to 0.02) (see
H-S2 in Figure 21). This means that the second iteration
method is the most appropriate iteration in this case
study in terms of approaching the approximate solution.
Although the rate of the second norm for the third itera-
tion is also small (see H-S3), but the second iteration
method of our work is the best iteration in order to obtain
the convergence in terms of the solution in comparison
with the classical method (HPM).

0.5
0.45

0.4
0.35

03 - =H-S1 |
0.25 =H-S2|

02 H-S3 |
0.15 '
0.1
0.05
0
u \'S e w

Figure 21. The average value of the second norms convergence
between the HPM and the iterations of the SIM.

Openly accessible at http://www.scirp.org/journal/ns/




S. H. A. Khoshnaw / Natural Science 5 (2013) 740-755 749

Table 1. The average number of second norms between the
first iteration (SIM) and HPM, the results are calculated by

using Matlab program (see Appendices B and C).

Nor.Con. Casel Case2 Case3 Case4 Case5 Ave.l
Uu1l 0.2674 0.2015 0.1748 0.1655 0.1808 0.1980
VV1 0.2691 0.2031 0.1752 0.1662 0.1838 0.1995
EE1 0.2968 0.2488 0.1472 0.1873 0.3144 0.2389

Ww1 0.5633 0.3745 0.3630 0.2911 0.6140 0.4412

Table 2. The average number of second norms between the
second iteration (SIM) and HPM, the results are calculated by

using Matlab program (see Appendices B and D).

Nor.Con. Casel Case2 Case3 Case4 Case5 Ave.2
uu2 0.0361 0.2050 0.0232 0.1411 0.0572 0.0565
VV2 0.0361 0.0251 0.0233 0.1411 0.0572 0.0566
EE2 0 0.0136 0.0255 0.0654 0.0172 0.0243

WW2 0.0336 0.020 0.0525 0.1633 0.0877 0.0719

Table 3. The average number of second norms between the
third iteration (SIM) and HPM, the results are calculated by
using Matlab program (see Appendices B and E).

Nor.Con. Casel Case2 Case3 Case4 Case5 Ave.3
uu3 0.0843 0.0411 0.0470 0.1343 0.0362 0.0686
VV3 0.0844 0.0411 0.0471 0.1344 0.0363 0.0687
EE3 0.0262 0.0094 0.0273 0.0672 0.0326 0.0325

WW3 01083 0.0259 0.0824 0.1591 0.0682 0.0888

On the other hand, the differences between our ap-
proach (SIM) and the HPM occurred more frequently in
the first iteration than in other iterations (see H-S1 val-
ues). It could be said that this iteration is not quite ap-
propriate in this case study. This may be caused by giv-
ing the non-linear part in this iteration a zero value (see
Step 1).

The blue column (H-S1), red column (H-S2) and green
column (H-S3) describe the second norm differences
between (HPM) and the iterations of (SIM), respectively.
The figure is plotted by using the results of Tables 1-3.
The second norm differences are represented by u, v, E
and w.

8. CONCLUSION

The simple iteration method (SIM) and the Homotopy
Perturbation Method (HPM) are used to find approxi-
mate analytic solutions to non-linear differential Eqs.15
and 16. Straightforward methods are derived for esti-
mating the concentrations of substrate u, product w, en-
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zyme-substrate complex v and enzyme E. The dimen-
sionless technique applies to reduce the non-linear sys-
tem of ODE. The HPM was used for a simple enzyme
reaction (Eq.1) [1,3]. We have used this method for our
case study, and have obtained an analytical approximate
solution. Furthermore, a simple approach technique (SIM)
was applied. This consisted of three iterations (steps).
The approximate solution of the second step is similar to
the classical method (HPM) (see Figures 6-10 and Fig-
ures 16-20). We have also used the idea of the second
norm to determine the best iteration for the problem. So,
it is clear that the second iteration method is quite similar
to the HPM. Consequently, Figure 21 shows that the
second iteration is the appropriate one (see Figure 21 for
the H-S2 values). Thus, the SIM technique could be ap-
plied to some other complex chemical reactions to find
appropriate solutions, and to describe the behaviour of
their parameters. For example, it could be applied to
many open path ways in terms of biochemical reactions
[17]. In addition, we highly recommend applying the
simple approach (SIM) to describe the approximate solu-
tions of complex enzyme reactions [18], the reaction
mechanism of competitive inhibitions, and the reaction
scheme of allosteric inhibitions [19].
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Appendix A. This appendix consists of the solution of The analytical solutions of Eqs.50-55 with initial con-
Eqgs.15 and 16 by using the HPM. Furthermore, this ditions EQ.47 are:
method is used to derive EQs.28 and 29 from Eqs.15 and

16, let a=z(k-4), b=1-a and Uy () =€ (56)
c=k+a+as, u(r)=e* (57)
(1- q)[—+gu}+q[—+gu av-— gv} 0, (45 and, v, (7)=0, (59)
(1- q)[—+cv}+q[——bu+cv+buv aev —a} 0, v, (7)= C?ge‘”+bcg(j"’"_t)°a e, (60)
(46) 2
with initial conditions, u(0)=1v(0)=0.  (47) v, (7) =[%+%]e‘” +me‘2“
Thus, by using the HPM [1,3,4], the approximate so- ) )
lution of Eqs.45 and 46 are: +bea —cb” —cba g-ec)r | b, b
ce(e—-c) e-¢ (e-c)(c-2¢)
U=U,+qu, +q°U, +--- (48)
+ —bea + cb? + cba + ab ot L &
v=v0+qv1+q2v2+~~ (49) Cé‘(é‘—C) C(E—C) c
Substituting the Eqs.48 and 49 in Eqgs.45 and 46, and (61)
comparing the coefficients of the like power g, we get According to the HPM, we can easily find that
the following system of ordinary differential equations: )
d u(r)=Iqlmu(r)zuo+u1+u2+--- (62)
q° :%-ﬁ-{;‘uo =0, (50)
¢ and, v(r):lirrlv(r):vo+vl+v2+--- (63)
q-
q :%+ gu, —av, — UV, =0, (51) ) _ i
dr By putting EQs.56-58 in EQ.62 and EQs.59-61 in
, du Eq.63, we obtain the approximate solution for the sys-
q 3d—;+ £U, —av; —&UgVy — Uy, =0, (52) tem of non-linear ODE equations (Eqgs.15 and 16) which
is described in Eqgs.28 and 29.
and. ¢° d—+cv0 -0, (53) Appendix B. Let k =&k,=4,k;=a and t=r,

and we use the following Matlab programming to plot
the functions in Eqs.28-32.

dv.

1. 9V _ _ 2 _
4 gt bu, +bugVy — vy —a =0, (54) t=0; fori=1:101 k, =1, k, =1.2; k, =0.9; k=1.3;
q2:%+Cvz—bul+buovl+bulv0—Zavovl:0, (55) a=k x(k—k,);b=1-ky;c=k+ksxk +k;;

u (r):( ab +%)z’e L abc—ace+aca ,o ag’ —che —cas oo paa b o
’ c-¢ ¢C c(e- C) Cz(g—c) ce &-cC
(58)

e*ST

4l -1+ aac—abc—aca aa b 4 ag’ +bce +cae
2 2
c(e—c) C¢ C-e¢ c’(e-c)

u=2xexp(—k; xt)+((axb)/(c—k)+(ks xk ) /c)xtxexp(—k xt)+(axhxc—axksxk +axk,xc)/(cx(k —c)"2)
xexp(—cxt)+h/(k, —c)xexp(- 2><k1><t)+(k3><k1"2—c><b><k1—k3xcxkl)/(c"Zx(kl—C))
xexp((—kl—c)xt)+(a><k3)/(c><kl)+(—l+(a><k1><k3—axbxc—axk3xc)/(cx(ki—c)"Z)

—(a>< k3)/(c>< k1)+b/(c—k1)+(a><b><k1—k3 xk M2+k, ><C><k1)/(c"2><(k1—C)))xexp(—kl><t);
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v:b/(c—kl)xexp(—klxt)+((c><b—k3><k1+k xc)/(cx(k, —

+ky /c+(b/(c—k; )+
+(k3><k1><b—c><b"2—k3><c><b)/(c><kl><(
+(cxb, —k3><k1><b+k3><c><b)/(c><k1><(kl—

E=1-v;w=1k —u/k —v;
A(i)=u;B(i)=v;C(i)=E;D(i)=w;T (i) =t;t =t+0.1;

end; plot (T,A’r’,T,B,’k.”,T,C,’b.”,T,D,’g") y label ("Con-
centration of u, v, E and w’) x label (’Dimensionless
Time (t)"); axis square.

Appendix C. Let k =&k, =4, ky=c and t=r,
and we use the following Matlab programming to plot
the functions of Step 1.

t=0; fori=1:10Lk =1, k, =1.2; k, =0; k =1.3;
a=k x(k—k,); b=1-ky; c=k+k;+k;xkj;
pl:(—kl—c—sqrt((kl+c)"2—4><(c><k1—axb)))/Z;
p, =~k —c+sart((k +c)"2—-4x(cxk — axb)) /2
dy = (P, +K)/(p, = pu)ids =(py+k) /(P = Py);

dy = ((ps+k)x(p, +kl))/(a><(p2 -p));

u, =d, xexp(p, xt)+d; xexp(p, xt);

Vl=dl><exp(p1><t)—d1><exp(p2Xt);

e =1-v;; w =1k —u /k —vi; A(i)=uy;
B(i)=v;;C(i)=e;D(i)=w,;T(i)=t; t=t+0.1; end;
plot (T,A,’r’,T,B,’k.”,T,C,’b.”,T,D,’g") y label (’Concen-
tration of uy, v4, E; and w;’) x label (’Dimensionless
Time (t)"); axis square.

Appendix D. Let k =&k, =4, k;=a and t=r,

and we use the following Matlab programming to plot
the functions in Step 2.

t=0; fori=1:101 k, =1; k, =1.2; k; =0.2; k =1.3;

C3:(1_(:122 23~ 24

(ks xb)/(cx(c—k,)))xexp(—k xt)+(b"2/((c—k,)
c))xexp((-c-
C))+(k3><b)/(c><(kl

))xexp( cxt)

)x(c—2xk,)))xexp(-2xk, xt)

k)xt)+(b/(k —c) +b2/((k,~¢)x(c~2xk,))
—C)))xexp(—CXt);

a=k x(k—k,); b=1-k;; c=k-+k; +k;xk;
by = (—k, —c—sart((k +c)"2-4x(cxk —axb)))/
p, = (— —c+sqrt((k +c)"2- 4><(C><k—a><b)))/
p, -

(p2+k1)/( 2= Pu)ids =(p+k)/ (P - Py
s =((pork)x(pz +ky))/(ax(p = p));
d4:k1><d2><d1;d5:(—klxdzxd1)+(k1><d3><dl);
dy =k, xdy xdy; d, = (-bxd, xd, )+ (k, xk, xd, A 2;
d, = (bxd, xd,) —(bxd, xd, ) —(2xk, xk, xd, 2);
dy = (bxdyxd, )+ (ky xk, xd, 2 2);
w =P +k1)/(a><(p2 - pl));dM =-1Y(p,~ p.);
dp, =(p1+kl)/(a><(pl— pz));d13 =Y(p, - p,);
dy, =(d, xdy +dyy xd; )/ py;dyg = (dypxdg +dyy xdg ) /P, ;
dyg = (dyp xdg +dy; xdg ) /(25 p, = P, );dy; = (ks xdyy )/ Py
dyg :(dlzxd4+d13><d7)/(2>< pl—pz); dg :(dlzxd5+dl3><d8)/pl;
Ay =y, xdg +0yy xdg )/ Py 5 dyy = (—kyxdy3 )/, 5
dy, =axd, +axdy;dy, =axd+axd;;
dy, =axd+axd,; d, =axd, +axdy;
dys = (P +k )xdy +(p, +k )x

d,, P, +ky )xdys +( P, +k )xdg;

(
(
(
(

=(p+k;) )
dy (p1+k1)><d16+ p2+k1)><d20;
=(p+k) )

Oy = (P +K )xdy; +( P, +K )xdy;

Oys)/a—(ax(dy + 0y +0yg +0yg) + (p1+k1)><(1—d22—d23—d24—d25))/(ax(p1—pz));
Cy =(@x(dyg + 0y + g+ ) +(py +k ) x(1-dp, —d,

3 =0y _dZS))/(aX(pl_ pz));

U, =C;yxaxexp(pxt)+c, xaxexp(p, xt)+d,, xexp(2x p,xt)+d,, xexp(( p, + p, ) xt)+d,, xexp(2x p, xt) +d,;

V, =Cyx(py k) xexp(p,xt) +C, x (P, +K ) xexp(p, xt)+dys xexp(2x p, xt)+d,
xexp((py+ Py ) xt)+ 0y xeXP(2x P, xt)+d,g;
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e, =1-v,;w, :]/kl_uz/kl_vz
A(i)=u,; B(i)=v,; C(i)=e,;;D(i)=w,;T(i)=t;t=t+0.%

end; plot (T,A,’r’,T,B,’k.’,T,C,’b.”,T,D,’g’) y label ("Con-
centration of u,, v,, E; and w,’) x label (’Dimensionless
Time (t)’); axis square.

Appendix E. Let k =g,k, =4, k;=a and t=r,
and we use the following Matlab programming to plot
the functions in Step 3.

t=0; fori=1:101; k, =1, k, =1.2; k, =0.2; k =1.4;
=k x(k—k;); b=1-ky; c=k+ks +k;xk;
b = (—k, —c—sart((k, +c)"2—4><(c><k1—a><b)))/2;
( —c+sqrt k +C)"2—4><(C><kl—a><b)))/2;
dZ:(p2+k1)/(p2 pl);d3=(p1+k1)/(p1—p2);
dl:((p1+kl)x(p2+k1))/(ax(p2_pl));
d, =k xd, xd;;dg = (—k, xd, xd,)+(k xdyxd, );
dg = —k, xdyxd;; d; =(-bxd, xd, )+ (k; xk; xd, *2);

C; = (1_ dzz —Hy T

G =(a><(d26 0y + g + 0y )+ (P k) x (1= dy, —

dy = (bxd, xd, ) —(bxdy xd, ) — (2xk, xk, xd, 7 2);
dg = (bxdyxd;)+ (kg xky xdy,);dig = (P, + k) /(@x(p, = py));
duz—]/(pz—pl);dlz=(pl+k1)/(ax(pl—p2));
dys =1/(P, — py)idy, =(d, xdy +dy; xd, )/ py;
dlS:(dloxd5+dll><d8)/p2;
dys = (dy x dg +d11><dg)/(2>< p2—-pl);dy, :(—k3><d11)/p1;
d18=(dlzxd4+d13><d7)/(2x PP,
dyg =(dyp xdg +dy5 xdg )/ py 0y = (dyp xdg +0ys xdg )/ Py
d,, :(—k3><d13)/p2; d,, =axd, +axdy;
dy; =axd;+axdy; d,, =axd+axd,;
dy =axdy, +axd,;dy, =(p, +k )xdy, +(p, +k )xdg;
dy; = (P +k )xdig +(p, +k ) xdy;
dyg = (P +K )xdig +(P, +K ) xdyo;
dye = (P, +k )xdy; +(p, +k )xdyy;

dys /a (a>< d26+d27+d28+d29) (pl+k1)><(1—d22—d23—d24—d25))/(a><(p1—pz));

_d24 _dzs))/(ax(pl_ pz));

dy :k1><C32><a><(p1+k1)+k1><d22><d29+k1><d26><d25;
dyy =k xCyxcyxax(p, +Kk ) +k xcyxCyxax(p,+ky)+k xdyxdyg +k xdy xdyy;

dy, =k xCyxaxdys +ky xCyx(py+k )xdyy;
Oy =k xCyxaxdy +Kk xC,xaxdy
+|(1><C4><(p2+kl)><d22+|(1><C3><(pl+kl)><d23;
d,, =k xcyxaxdy +k xc¢, xaxd,, +k, xc, x(p,
+ky ) x dyg + Ky xCyx (P K )xdyy;
dys = Ky xCy x@ax dyg +Ky xCyx (P +K )xdy;
dys =k, xc, M 2xax(p, +ky)+k xdy,
X0 + K, X 0yg x Ao
dy; = kyxCyx@axdyg + K xCpx (P + K xdy;
Oag = Ky X Cy x@x g +K X Cy x (P, +K; ) xdy;
g =Ky x Uy xUyg; gy =k xUyy xdyy +K x Uy x g
gy =Ky xdyy xdyg + Ky xdyy xdyy +K; xdyy x g

dyy =k xdy xdyg +ky xdy, xdyy;
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dy3 =Ky xdyy xdyg;dyy =Ky xdyg xdyg;

dys =—bxdyy /Ky +Kyxk xCy M 2x(py +k )N 2+ks x kK
X0 X Uyg + Ky x Ky x 0yg x Ay
dyg =—b><d31/k1+k3><k1><c3><c4><(pl+k1)><(p2+kl)
+Ky 3 Ky X Gy x €y x (P + Ky )x (P, +K )+ Ky xky xdy; xdyg
K x Ky x 0y xdyg;

d, =—b><d32/kl+k3xkl><c3><d26><(p1+k1)

+k3><k1x03><d26x(pl+kl);

dyg :_bXd33/k1+k3Xklxc3Xdz7X(p1+k1)

+Ky xky x €, xdog x (P, +Ky );

dy :—bxd34/kl+k3><kl><c3><d28><(pl+k1)

-1-k3><kl><c4><d27><(p2+kl)+k3><kl><c4><d27

x(p2+kl)+k3><kl><c3><d28><(pl><kl);
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gy = b x dyg /K, + Ky 3k, X € x g
x( Py +ky) kg xky x g xdg x( Py xky);
dgy = —bxdyg [k, +k; xk; xC, 22 (p, +k,)
Ky x Ky X 0yg xdyg + Ky x Ky xdyg xdy;
dgy = by, /K, + Ky 3k, xC, x g x( P, +K,)
kg x kg x €, x g x (P, +K, );
gy = —Dx Ay /K, +k; xky X €, g x(p, +K,)
+ky x Ky x €y x g x (P, +K, );
Oy, = b dgg /K, + Ky xky x(dyg ) V2,
Ogs = b g /K, + Ky xky x Og x Oy + kg x K x T x
Ogg = —D>x gy /K +Kg x K x g x g
+Ky 3 kg X (dyy ) A 24Ky x Ky X Oy x Ao
Agy = by /K, + Ky 3k, x Oy x g + kg x K x 0y x Oy
Ogg = —bx 0y /K, +Kyxk, x(dyg ) 2;

dsg :_bde/k1+(d29)A2 +Kg;dgo :(dlo x O +d11><d45)/( pl);

Aoy = (dyp xdyy + 0y xdyg)/(P,);
dg, =(dyp xds, +d11><d47)/(2>< p);
A = (i x gy +dyy xdyg ) /(P + P, );
dg, =(dyp xdg, +d11><d49)/(2>< P,);
dgs = (dyy xdye +dy; xdp);
= (dy xdgg +dyy xds; ) (=P, +2x P, );
(dy xdy; +dyy xdg, ) /(=P +3x p, );
deg = (yp xdag + 0y, x ey ) /(=P + P,);
dge = (dy x dyg +d11><d54)/(3>< n);
Ay =(dyp x g + 0y xdgs ) /(2% P+, );
dyy = (dy xdyy +dyy xdgg ) /(P +2% P, );
dy, =(dy xdy, +0dyy xdg; ) /(3% p, );
d,; =(d10><d43+d11><d58)/(—p1+4>< pz);
dy, = (dy xdyy +dyy xdsg ) /(—P,);
dys = (dy, xdy +d13><d45)/(2>< P-D,);
dyg = (dyp x gy +dyy xdyg ) /(Py);
d;, =(dy, xdy, +d13><d47)/(3>< p-D);
dse =(dy, xdgy +d13><d48)/(2>< )

Copyright © 2013 SciRes.

dyg =(dyp xday +dyg x g ) /(P + P, );
dgy = (dy, xdyg + 0y x gy )/ (P, = P, );
dg, :(d12 X Ogg +d13><d51)/( pz);
dgy =(dy, xdy; +0dyy xdgy ) /(2% P, );
dgy =(dy, xdgg +dyy xdg5);
Ay, = (dy, xAgg + ;5 x g, ) (4% P = P, );
dgs = (dyp x o +dy xdgg ) /(3% Py );
=(dy, xdyy +diyxdgg ) /(2% py+ P, );
o = (dip Xy, + iy xdg; ) /(p,+2x p,);
dgg = (dyp x dyg +dyy xdgg ) /(3% P, );
gg :(d12 xd,, +d13><d59)/(—p2);

dgo =axdg, +axd,;dg; =axdy +axdy;

d
d

dg, =axdg, +axd;;;dg =axdg, +axdy,;
dy, =axdg, +axd,g;dys =axdg;
dgg =axdgy; dy; =axdg, +axdy;
dgg = axdg; +axdg,; dgg =axdgg; 0gy =axdg;
dyy =axdg +axdg,;d,, =axd;; +axdg;
Oy =axd, +axdg; dg, =axd,, +axdg;
dyps =axd,; +axdg; d =axd,, +axdg;
h=p, +k; h, =p,+k;d; =h xdg +h, xd,;
Oyps =y xdg; +h, xdyg; dygg = h xdg, +h, xd;y;
0y =h xdg; +h, xdqg; dyy; =h xdg, +h, xdyg;
dy, = hyxdg; dyys =h, xdgy;dy,, =h xdg +h, xdg,;
dys =h xdg; +h, xdg,;d; g =h xdgg; dyy; =h, xdg,;
dyg = h xdgy +h, xdg,; dyyg =h xd,y +h, xdg;
Oy = hy xd; +h, xdgg;d,, = xdy, +h, xdgy;

122 hl+d92 +d93+d94+d96+d97 +d98+d99

+lel + leZ + leS + d104 + d105 + leG’

N = dyq7 +dygg +dygg +dyyo + iy +0yy5 + iy,
+yy5 + dygg + Gy + Aygg + pgp + iy + iy + s

G5 =((1-M)xh, +axN)/(ax(h, - h));
¢ =—N/h, —(h/h,)xc;
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+dgy xexp((p, + p, ) xt)
+d92><exp((3>< pl)xt)+d93><exp((2>< p, + p2 ><t)+d94><exp P, +2x p2 xt)+d95><t><exp((p1)><t)

Uy = Cg xaxexp(p, xt)+c, xaxexp(p, xt)+dg, ><exp( 2xp,) ><t)
((
+0gs xexp(( Py ) xt)+dg; xexp((2x p, ) xt)+dgs xexp((3x p,)

xt)+ dgg xexp((2x p, ) xt)
+0ygo xtxeXp((2x P, ) xt)+dygy xexp((4x py)xt)+ dy, xeXp((3x Py + P, ) xt) +dygy xeXp((2x py + 2% p, ) xt)
+0y0, x€xp(( Py +3x Py ) xt)+ dyog xXP((4x P, ) xt) + e

V; =G5 xhy xexp( p, xt)+C, xh, xexp( p, xt)+dyg, xexp((2x p, ) xt)+dyog xexp(( p, + p, ) xt)
+0y00 xexp((3% Py ) xt)+dyy xeXp((2x Py + P, ) xt)+dyyy xexp((p, +2x p, ) xt)+d;y, xtxexp(( py)xt)
+0y5 xexp((py ) xt)+dyy xexp((2x P, ) xt)+dyyg xexp((3x py ) xt)+dyys xexp((2x p, ) xt)

+0;5 xtxeXp((Zx p2)><t)+d118 ><exp((4>< p1)><t)+d119 ><exp((3>< p, + p2)><t)+d120 xeXp((Zx p, +2x pz)xt)
+0,,, xexp(( p, +3x pz)xt)+dm><exp((4>< pz)xt)+d123'

e, =1-v;; Wy =1/k —u, /K, —V,; A(i) =U; B(i) =V,; end; plot (T,A,’r’,T,B,’k.”,T,C,’b.”,T,D,’g") y label ("Con-

] ) ) centration of us, v3, E3 and ws’) x label (’Dimensionless
C(i)=¢; D(i)=wy; T(i)=t; t=t+0.5, Time (t)); axis square.
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