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ABSTRACT 

The imaginary part of the non-equilibrium magnetic susceptibility of Ising spin glass in a transverse field under time- 
dependent longitudinal external magnetic field has been calculated at very low temperature on the basis of quantum 
droplet model and quantum linear response theory. Quantum and aging effects on the low temperature dynamics of the 
model are discussed. A comparison with recent theoretical and experimental data in spin glass is made. 
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1. Introduction 

Over the last two decades there is a great deal of research 
on the experimental and theoretical description of disor- 
dered magnetic materials. The understanding of the in- 
terplay between disorder, quantum and thermal fluctua- 
tions remains among the most relevant problem of con- 
densed matter physics. In strongly disordered systems the 
dynamics becomes very slow which is characteristic of 
glassy state and aging scenario [1-8]. Aging phenomena 
and non-equilibrium slow dynamics have been investi-
gated during last years in many materials with glassy 
properties such as spin glasses [1-8], polymer glasses 
[9,10], gels [11] and other areas like neural networks, 
information processing, optimization problems [12]. De-
spite a great progress towards the understanding of non- 
equilibrium dynamics, some problems remain open. One 
of them is an investigation of a very low temperature non- 
equilibrium dynamics in quantum spin glasses, namely 
the nature of quantum channels of relaxation, the behav- 
ior of quantum glassy system subjected to periodic driv- 
ing force, aging at very low temperatures. The natural 
basis for the interpretation of aging is based on coarsen-
ing ideas of a slow domain growth of a spin-glass type 
ordered phase [8,13,14]. A large attention in the last 
decade was paid to the spin glasses representing a model 
systems for study of non-equilibrium dynamics providing 
a measure of processes causing the aging: the magnetic 
susceptibility [15-22]. 

In classical spin glasses in the ac susceptibility meas-

urements the magnetic response of the system to a small 
oscillating magnetic field applied after quenching exhib- 
its aging effects. This response depends on its thermal 
history and the time interval the system has been kept at 
a constant temperature in the glass phase [1-8,15-17]. 

It is assumed that isothermal aging of a d-dimensional 
spin glass is a coarsening process of domain walls, and 
the temporal ac susceptibility (real part   andimagi-
nary part  ) at a given frequency of ac magnetic field 
ω at time t after the quenching scales as [23-25] 
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for ln ln t  , if 1L 1ln is proportional to    
and  R t ln t   is proportional to ; 1 2d   . Here 
 1L   is size of the droplet being polarized by oscil- 

lating field and  R t  is the typical domain size, L  
and R  may scale according logarithmic growth law or 
algebraic one [23-25].    1L R t   is proportional   
to     1

0 0ln ln t t


    if droplet theory is used,     
0 1dis some exponent,    t, and 0  is a certain- 

microscopic characteristic time [26]. The logarithmic 
growth law (like the algebraic one) is supported by recent 
experiments [23-25]. The expressions (1) and (2) are 
found when relaxation is governed by thermal activation 
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 over a free energy barrier B . It is supposed that barriers 
for annihilation and creation of the droplet excitations 
scale as ~B L , where  is a barrier energy at tem-
perature 


gT T ( gT  is the spin glass transition tem-

perature). The barriers have a broad distribution of ener-
gies. A droplet with barrier B  lasts for a time  of 
order of 

t
 0 Bt t    where  ~ exp B k T Bk

t
 is Boltz-

mann’s constant; here  is a rate of classic activation 
over energy barrier B . After a time  after quenching 
the domain size in the system grows as  

t

      
1

~ ln t t0Bk TR t T


   . 

In the ac susceptibility measurements, the ac field ex- 
cites droplets of length scales L  up to 

      
1

0lnBL k T1 ~ T


    

t

 . 

Because in aging experiments the time  spent after 
quench is t 1  [23-26] one has    1L R t  . 
These droplets have walls which partly coincide with 
walls of the domain of size R . 

In this paper we investigate the real time non-equilib- 
rium dynamics in d-dimensional Ising spin glass in a 
transverse field in terms of droplet model at very low 
temperatures [26]. We calculate the dissipative compo-
nent of the ac susceptibility as a function of the time 
elapsedsince a thermal quench and frequency of driven 
field. 

2. Model Hamiltonian 

The droplet model describing the low-dimensional short- 
range Ising spin glass is based on renormalization group 
arguments [26,28]. In dimensions above the lower criti-
cal dimension l  (usually in spin glass l ) the 
droplet model finds a low temperature spin-glass phase 
in zero magnetic field. This phase differs essentially from 
the spin-glass phase in the mean-field approximation of 
the Sherrington-Kirkpatrick infinite-range spin-glass mo- 
del [13]. In the droplet model there are only two pure 
thermodynamical states related to each other by a global 
spin flip. In magnetic field there is no phase transition. A 
droplet is an excited cluster in an ordered state where all 
the spins are inverted. The natural scaling ansatz for 
droplet free energy 

d 2 3d 

L , which are considered to be in-
dependent random variables, is ~L L ,  L T ;   
is the correlation length, L  is the length scale of droplet 
and   is the zero temperature thermal exponent. The 
droplet excitations have a broad distribution of their free 
energies at scale L  for large L  in a scaling form [4] 

     
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,  

,   . T

 

 is a generalized temperature de-
pendent stiffness modulus which is of order of character-  

1 2
2
ijJ J 0 at T  and vanishes for  istic exchange 

gT T dL
d 0

. One droplet consists of order  spins. Below 

l ,  ; above l  one has d 0  

T

. The droplet mod-
el of classical Ising spin glass was considered by D.S. 
Fisher and D.A. Huse [26,27]. 

In this paper we use a phenomenological quantum 
droplet model of spin glass theory [26-29] (which does 
not use the mean-field approximation) in order to de-
scribe the non equilibrium behavior of the magnetic dy- 
namical susceptibility at very low (but finite) tempera-
tures . 

We consider the following model hamiltonian of d- 
dimensional Ising spin glass in a transverse field, 

z z x
ij i j iij i

H J                 (4) 

x
i

z
i  and where   are the Pauli matrices,   is the 

strength of the transverse field and the nearest neighbor 
interactions ijJ  are independent random variables of 
mean zero and the sum in Equation (4) is performed over 
nearest neighbors. 

The quantum spin glass transition in a dilute dipole 
coupled magnet 1 4x x  is described by this model 
hamiltonian [4,13,20]. It is supposed that this model may 
also represent, for example, the physics of deuteron glass 
such as 

LiHo Y F

 1 4 2 4x x  and mixed betaine phos-
phate-phosphite [28]. The transverse field in [28] is in-
terpreted as the frequency of the proton tunneling. 

Rb ND D PO

In ref. [26,27], M. J. Thill and D. A. Huse have shown 
that for enough low T the quantum hamiltonian Equation 
(4) can be represented as independent quantum two-level 
systems (low energy droplets) with the hamiltonian, 

 1

2 L L LL

z x
D D L DL D

H              (5) 

where 
L

x
D  and 

L

z
D  are the Pauli matrices represent-

ing the two states of the droplet LD ; the sum is over all 
droplets LD  at length scale L  and over all length 
scales L , and 

0

d
~

L L

L

L


 

L

 

where 0  is a short-distance cutoff; 
LD  is the droplet 

energy which is independent random variable with scal-
ing ansatz 

LD ~ .L  The droplet length scale L  is 
more or of order of the correlation length.The value 

 0L  which regulates the strength of 
quantum fluctuations ( L

exp dL   
0   corresponds to the clas-

sical limit) is the tunneling rate for a droplet of linear size 
L  and   is a coefficient which is approximately the 
same for all droplets. 0  is a microscopic tunneling rate 
and, finally, we assume L  is the same for all droplets 
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L  [26,27]. of scale 
In the quantum droplet model of Thill and Huse [26,27] 

the relative reduction of the Edwards-Anderson order 
parameter  from its zero temperature value  EAq T

 0EAq  for 0   is given by, 
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Here   is the stiffness modulus, and 
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 L T
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is the classical-to-quantum crossover length scale defined 
by . For droplets with B  L L T

L Bk T
 and  

  (quantum regime [26-28]), the excitation  

energy 2 2
L L  is always greater than B  and 

thermal fluctuations are irrelevant. These droplets behave 
quantum mechanically. The larger droplets 

   k T

 L L T
k T 

0

 
have L B  and behave classically. In quantum 
regime the length growth is due to quantum fluctuations 
connected with droplet are quantum-mechanically active 
for  is proportional to T L . 

3. Dynamic Nonequilibrium Magnetic 
Susceptibility 

We consider the time dependent Hamiltonian Ĥ  of the 
quantum system in the form [34] 

 0
ˆ ˆ ˆ  0

ˆˆH H H t  H Ah t 

ˆ

         (6) 

where 0H  is the Hamiltonian of the unperturbed system 
and describes the equilibrium system.We suppose that 
the external perturbation  Ĥ t
ˆ

 is in some sense small. 
A  is a linear operator which connects external time- 

dependent force  h t

 

 with the system. We shall use the 
quantum-mechanical equations for the system dynamical 
response  

0
B̂ t  B̂ t B ˆ  to the force  h t


 in  

terms of the time-evolution operator ˆ , tU t ;  B̂ t  is 

an Heisenberg operator,        0
ˆ ˆ ˆ, ,B t U t t B̂ t tU t ,  

0
 is the average value of  in equilibrium; the 

sign + means conjugate value. It is necessary to ap-
proximate 

B̂ B



ˆ

ˆ ,U t t
h

 using the well-known perturbation 
expansion through first order in . We have 
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  (7) 

where       0
ˆ ˆt t H   

 

0 , expU t t i ћ  . 

   

We consider the functional of the dynamic response of 

the form [34] 0 0
0

1 ˆ ˆ, ; , ,t t t A t B t t
iћ

      , where  

 means thermal average with a density matrix  
0


 0 0ˆ ˆ t  0t,  is the time moment when the perturbat-  

ing field is turned on, 

  1

0 0 0
ˆ ˆˆ exp expTr H H  


        

 

. 

Now we apply the aforementioned expressions for 
dynamic response to a magnetic droplet system. The re- 
sponse B̂ t  M t    is then the induced magnetization 

of the system. 
0

B̂

0

 is the equilibrium magnetization  

 h tM . Let a small magnetic oscillating field   
 exph i t  be applied in z-direction. Here  and h   

are the amplitude and frequency of the ac field. 
When one measures the ac susceptibility in spin 

glasses in the external magnetic oscillating field it is ob- 
served an aging effect: magnetic response of the system 
to the weak external field depends on the thermal history 
of the sample, on the time during which the system was 
kept in a spin glass phase. The sample is quenched in 
zero magnetic field from temperature gT  to the 
temperature 1

T
g 0tT T  which is reached at time  . At 

this moment a very small external magnetic oscillating 
field  h t  is applied to measure the ac susceptibility of 
the sample. The evolution continues in isothermal condi-
tions, ac  is measured as a function of the time  
elapsed since the sample reached the temperature  at 
fixed frequency 

t

1T
 . 

The system is probed at the time  after quench end 
(“the age”). Using the linear response theory the mag- 
netization of magnetic system is [35] 

t

     
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
        (8) 

 where ,t t t   is the magnetic dynamic susceptibil-  

ity and defines the magnetic response at moment  to a 
unit pulse of magnetic field at moment 

t
t t . The 

nonequilibrium processes are investigated by means of 
low-frequency susceptibility measurements. The fre- 
quency dependent ac susceptibility is measured by means 
of applied ac magnetic field  h t 0t at time  . Then 
one can find  , t  by the Fourier-transform of the  

 magnetization over the time interval ~ 2πm mt t   

centered on  [15,35], t

     2
0

2

1
, d e d , e

m

m

t
t t i t ti t

t
t

m

t t t t t t
t

  
   


      

mt

 (9) 

If magnetic response function slightly changes over 
the time segment  then the susceptibility  , t  
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 , e i tt t t

will be equal to [15,35] 

t © 2013 

 
0

, d
t

t t      

ˆ

         (10) 

We consider the behavior of the magnetic droplet sys-  

tem described by the Hamiltonian H  and under ac  
field  h t  L Bk T 


 in quantum regime . In our cal- 

culations, we suppose that 0 ld d 

L

1
L t

. There is a com-  

plicated crossover between classic and quantum behav- 
iors of the droplets which depends on temperature, ac 
field frequency and length scale . According to [26,27] 
the dynamical crossover length is determined from the  

condition    , i.e. 

1

~
d

dyn BL T k T
   

  

L
L

. The  

system behaves presumably classically or quantum me- 
chanically when the dominant length scale  is above 
or below dyn

  .  for fixed frequency 
Following to aforementioned quantum droplet theory 

with model Hamiltonian (4) and domain growth ideas, 
we calculate the magnetic dynamic susceptibility using 
the dynamical response functional which includes first 
and second order linear response functions. The contri- 
bution of a single droplet to the ac susceptibility up to 
some factor  is, 2 2~ d

EAq L
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EAqwhere  is the Edwards-Anderson order parameter, 
2 2

L L La   , sin L La   , cos L La 

 0D  

, 

L
 is the static susceptibility of the droplet 

LD
1t

. The expression (11) is obtained for low frequencies 
under  the condition   (and L   ), because this 
condition is used to observe non-stationary dynamics in 
susceptibility measurements [5]. Now we have to aver- 
age the susceptibility (11) over droplet energies L  and 
over droplet length scales . We use the droplet energy 
distribution 

L
 L LP   given by Equation (3). Here we as-  

sume 0  . While integrating over , we note that the 
susceptibility is dominated by droplets of length scale  

L
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1 0~ 1 ln
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;  is the natural length scale  
of the problem when L   and it is the low limit 
ofthe integration over . The upper limit is  L
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2 0 0~ 1 ln
d

L t . After integration over droplet    

 

energies and length scales we obtain the following ex- 
pression for imaginary part of susceptibility of the drop-
let system: 
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 where ,G    is the incomplete gamma-function, 

 ,E    is the exponential integral function,  
1

0ln
d

d

ћ
 

 
 

1   , 
1

1

d

d t
M     

dA0ln
ћ

 
, 

B M

, 

, d 0a
ћ


t

g  22 2 2 2ћ t  

ћ

, , , 2 2 2ћ t  x

j   . 

During the calculations we have used the following  �
approximations:    cosπ

2

z
si z

 
z

   , 
sin z

ci z
z



 , t 



. Figure 2. Imaginary part  as function of time   t, 

t 1 50 0.01 at T   and 0.05 
16

0 10  15
0 10

 for different values 

of quantum parameter  and   . 
The Equation (12) is the main result of this paper. 
As we see, the susceptibility  depends on 

many parameters of the droplet system and the external 
ac magnetic field: on the form of droplet energies distri-
bution 

 

L LP  , on the droplet microscopic tunneling 
rate 0 , on the temperature, on the system “age” , on 
the ac field frequency and amplitude. Furthermore, we 
note that the expression (12) consists of terms which are 
time independent which describe oscillations with fre-
quency, and terms which depend on  and define non- 
stationary non-equilibrium dynamics of the droplet sys- 
tem. Thus the imaginary part of susceptibility can be 
represented as a sum of stationary part 

 t



t

�ST  and 
non-stationary part  NST : Figure 3. Imaginary part  as function of time    t, 

t 1 50 , t ST NST                  (13)  T 0.01 at 

For a numerical calculations of the expression (12), we 
take the following values of the parameters: 3d  , 

0.5  , , , , 1510  16
0 10  27 1h10ћ   , 

, , 15 010   1 5t   0.05,0.1  . 
In Figures 1-3 it is shown the -dependence of the 

imaginary part  at different fixed Т (Figure 1), 

0  (Figure 2) and 

t
   , t

   (Figure 3). The susceptibility 
quickly goes down and then slowly decays to some value 
with oscillations. Then we observe the stationary behav-
ior of susceptibility. In particular, in Figure 2 we observe 
as, on longer times, the quantum fluctuations ( 0  de-
pendence) becomes irrelevant. 
 

�
Figure 1. Imaginary part  as function of time  

at  and 

  t,  t

0.0516
0 10   

0.001

 for different temperatures 

 and T . T1  0.04 2 

   and  for different fre- 

quencies  and . 

16
0 10 

1 0.35  2 0.55 

4. Discussion and Conclusions 

In this paper we have investigated the low temperature 
non-equilibrium dynamic behavior of magnetic suscepti- 
bility in d-dimensional short-range Ising spin glass in a 
transverse field in terms of phenomenological droplet 
model taking into account quantum fluctuations. In par- 
ticular we calculated the imaginary part of low-frequency 
susceptibility  , t  t as function of time  (elapsed 
from the quench to measurement moment) and frequency 
  of the ac magnetic field. It has been shown that the 
imaginary part of  , t 

t

 of the droplet system at low 
temperatures (quantum regime) has two time regions 
where its time behavior has different nature. On short 
times  we observe quickly non-equilibrium dynamic 
decay of  , t  . On long times the susceptibility 
curve is a periodical function oscillating near some con- 
stant value (stationary process). We find temperature 
dependence of imaginary part of susceptibility and show 
how the quantum fluctuations influence the dynamic 
susceptibility of the droplet system at very low tempera-
tures. If the ac field frequency increases then the non- 
equilibrium dynamics is suppressed. Thus the droplet 
system response to an external perturbing field depends 
on its thermal history. 

Copyright © 2013 SciRes.                                                                                 JMP 
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In [17] it is shown that the behavior of response func- 
tion  ,R t t



w  confirms the existence of two time re- 
gimes in spin glass: stationary and aging regimes in 
quantum systems. The theoretical curve (Figure 2 in [17]) 
of ,R t t w was given as function of w  

for t t   
 0,50 2.wt   40 t, and  ( w —waiting 

time). For char

5,5,10, 20 and
  ( char  is some characteristic time) a 

stationary regime was found, whereas for char 

 , t 

 the 
dynamics is non-stationary. In [17] it is shown that 
quantum fluctuations in quantum glassy systems depress 
the phase transition temperature, in a glassy phase the 
aging effect survives the quantum fluctuations, and be- 
cause of quantum fluctuations, the fluctuation-dissipation 
theorem is modified. In reference [19-21] it is shown that 
all terms in the dynamical equations governing the time- 
evolution of spin response and correlation function which 
are due to quantum effects, are irrelevant at long times. 
Quantum effects enter only through the renormalization 
of parameters in dynamical equations [19-21]. The beha- 
vior of spin response as function of τ in [36] is similar to 
behavior of dynamical susceptibility in our paper. In [36] 
it is shown that quantum fluctuation slightly influences 
the aging regime and the quantum system behavior is 
approximately classic. 

As far as we know there are no experiments on quan- 
tum spin glasses. In papers [17,23] there are experimen- 
tal data for dynamic susceptibility in classic spin glasses. 
P. Svedlindh et al. [35] have investigated the behavior of 

 and have found that decay is close to a loga- 
rithmic one. Shins et al. [22] also show that susceptibility 
decays with time in a nearly logarithmic way. 

In our quantum system at very low temperature, we 
cannot find agreement with these data because classical 
and quantum spin glass has, in general, different behav- 
ior. We may compare our results with experimental data 
only approximately because these experimental data are 
on classical spin glasses and we consider here low-tem- 
perature dynamics of quantum spin glass. We observe a 
qualitatively similar behavior in the range of the small 
times elapsed since the quench. 
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