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ABSTRACT 

A metric on a spherically symmetric space generated by a spherical source of gravity and filled with a gravitational me-
dium is constructed, and criteria for the continuity of this metric on the entire space (which is equivalent to the absence 
of black holes) are found. Properties of radial geodesics under various constraints on the size of the gravitational source, 
its mass, and the mass density of the gravitational medium are studied. 
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1. Introduction 

This paper considers a model for the spherically sym-
metric space generated by a volume source of gravity 
having the shape of a ball of radius r1 placed in a gravita-
tional medium, which represents dark energy uniformly 
filling the entire space [1]. If the gravitational source 
were a point source, then the metric on the space would 
inevitably have a discontinuity at some finite distance 
from the source (which essentially means the presence of 
a black hole) and a discontinuity at the point where the 
gravitational source is located. However, in the model 
with a volume source of gravity, which is physically 
more realistic, the metric has no discontinuities under 
certain conditions on the size of the source and on the 
mass densities of the source and dark energy. 

The question of how particles move in such a space 
inside and outside the volume source of gravity naturally 
arises. The accepted idea of the motion of point bodies in 
the case of a point gravitational source is described in [2, 
3]. It is assumed that, in a certain neighborhood of the 
point source, bodies are attracted by the source according 
to Newton’s law, while outside this neighborhood (at 
sufficiently large distances), the presence of dark energy 
causes repulsion from the source according to Hubble’s 
law; thus, the radial velocity of particles is directly pro-
portional to their distance from the source. Such a picture 

is typical of radial geodesics with respect to the absolute 
time s. These are precisely the geodesics subject to con-
straints with respect to the radial parameter r, which 
leads to the violation of the principle that a material body 
cannot travel faster than light. But if geodesics with re-
spect to the world time t [4] are considered, then, even in 
the simplest case of a point gravitational source, the mo-
tion along radial geodesics obey more complicated laws, 
without the violation of the principle prohibiting motion 
faster than light. 

The purpose of this paper is to describe properties of 
radial geodesics in the case of a volume source of gravity 
under various constraints on the parameters of the physi-
cal model. 

2. Description of the Model and Its Basic 
Equations 

Suppose given a pseudo-Riemannian spherically sym-
metric 4-space with signature  and a ball of 
radius 1  with constant mass density 1

   
r   at the center 

of symmetry of this space. The entire space, including 
the ball, is uniformly filled with dark energy of constant 
mass density 2 . The material ball (which may be a star 
or some other astronomical object) and dark energy de-
termine the geometric properties of the space. Mathe-
matically, the geometric properties of any pseudo-Rie- 
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mannian space are completely determined by its metric 

ijg . The interrelation between the mass distribution den-
sity   in the space and the metric tensor 

, is described by the Equation (5)  , , j 1, , 4ijg i

2

1 8π
, , 1, , 4,

2ij ij ij

G
R Rg g i j

c
           (1) 

where  is the Ricci tensor, which is defined by ijR

,
kk
ij k p k pik

ij pj ik pk ijj k
R

x x


     
 

       (2) 

p
ij  is the Christoffel symbol defined by 

1
,

2
lj ijp pl li

ij j i l

g gg
g

x x x

  
       

        (3) 

R

G

 is the scalar curvature defined by  

,ij
ijR g R                 (4) 

 is the gravitational constant; and  is the speed 
of light. Throughout the paper, summation over repeated 
indices is implied. Equation (1) directly implies the fol-
lowing relation between the scalar curvature  of the 
pseudo-Riemannian space and the distribution density 

c

R

  of the matter mass:  
2

.
32π

c
R

G
                  (5) 

According to relation (5), the specification of the 
distribution density of the matter mass in the space is 
equivalent to the specification of the scalar curvature 
field of the pseudo-Riemannian space. The mass distri-
bution density is governed by the gravitational field of 
the interaction of masses. According to the presently ac-
cepted point of view, the gravitational field is the metric 
on the pseudo-Riemannian space. Thus, the basic physi-
cal notions of gravitational theory, such as the density of 
the matter mass and the gravitational field, are inter-
preted in the language of differential geometry as the 
scalar curvature (up to proportionality) and the metric on 
the pseudo-Riemannian space, respectively. They are re-
lated by  

, , 1, , 4
4ij ij

R
R g i j              (6) 

this is a direct consequence of (1). Note that the system 
of Equations (5) and (6) is equivalent to (1). 

3. The General Form of a Static Spherically 
Symmetric Metric 

A static spherically symmetric metric can be represented 
in spherical coordinates , , ,t r    as  

     
2

2 2 2 2
44 11 22

d

d d d sin d

S

g r t g r r g r

where        0, , 0, , 0,π , 0, 2πt r        , and 

11 22,g g , and 44g  are unknown positive functions. It 
follows from general geometric properties of a spheri-
cally symmetric space that the function  22g r  must 
satisfy the condition  

 22 0 0g .                    (8) 

According to relations (2)-(5), the system (6) of grav-
ity equations with respect to the components of metric (7) 
can be represented in the form  

 

22 44 11 22 44

22 44 11 22 44

2 2

22 44
112

22 44

22 22 11 22 44

11 11 11 22 44

2

22 222
11 22

44

1

2 2 2

1 1 8π
,

2 4

1

2 2 2 2

1 8π
1 ,

2

1

2

g g g g g

g g g g g

g g G
g

g g c

g g g g g

g g g g g

G
g g

g g c

g

g





         
      

    

    
      

   
       
     

   

   








 

44 11 22 44

11 11 11 22 44

2

44 442
11 44

2 2 2

1 8π
,

2

g g g g

g g g g

G
g g

g g c


       
     

   

 

      (9) 

where 
d

d
ij

ij

g
g

r
   and   is the distribution density of  

the matter mass, which generally depends on the radial 
parameter . In [5], it was shown that if r  r  is a 
piecewise constant function having at most countably 
many discontinuities with respect to the parameter  
and 

r
 m r  is the mass of a ball of radius , then the 

spherically symmetric metric satisfying the system of 
Equations (9) has the form  

r

 
   

2

2
2 2 2 2

d

2 d
1 d d sin d

2
1

S

m r r
t r

m rr

r

,  
 

     
  

(10) 

where 
0

. The system of units used for 
measuring physical quantities is chosen so that 

  24π d
r

m r x x 
, 1G c  . 

Metric (10) is a generalization of the Schwarzschild 
metric to the case of an arbitrary spherically symmetric 
mass distribution in a space with piecewise constant 
density  . Note that metric (10) satisfies system (9) 
only on domains of continuity of the density. 

2     
(7) 

4. Equations for Geodesics and First  
Integrals 

We seek equations for geodesics by using the Lagrangian 
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formalism. Let us introduce a Lagrangian of the form  

      2 2 2 2
44 11 22 sin ,L g r t g r r g r       2



 (11) 

where  and 1L
d d

, ,
d d

t
t

s s

   . 

Substituting Lagrangian (11) into the Euler-Lagrange 
equation  

d
0,

di i

L L

x s x

 
 

 
 

where x is one of the parameters , , ,t r   , we obtain the 
following system of equations for the geodesics with 
respect to the parameter s :  

 2 211 22

11 11

244

11

222

22

22

22

44

44

d d1 1
sin

2 d 2

d1
0,

2 d

d1
sin cos 0,

d

d1
2cot an 0,

d

d1
0.

d

g g
r r

g r g r

g
t

g r

g
r

g r

g
r

g r

g
t rt

g r

2 2 

   

  

  

 

  

  

 

  



  

  

 

    (12) 

The system of differential Equation (12) can be inte-
grated in the general form without any simplifying as-
sumptions. As a result, we obtain  

1
12 2 2

2 2 2 4 2
1 4 11

22 44

1
2 2

2 3
2 2

22

3 4
2

22 44

,

1
,

sin

1
, ,

sin

C C
r C C g

g g

C
C

g

C C
t

g g







 
     
 

 
  
 

 







     (13) 

where  and 4  are integration constants; 
 and  must satisfy the condition  

1 2 3, ,C C C

4C
C

1C
2 2
4 1 1,C C                (14) 

and 2  and  can be chosen arbitrarily. The physical 
meaning of 3  is the angular momentum  of the 
rotating body, and 4  is the kinetic energy  of the 
moving body. The functions 

C 3C
C L

EC

11 22,g g , and 44g  are  

  2 1
44 22 11 44

2
1 , ,

m r
.g g r g g

r
     

5. The Radial Geodesics with Respect to the 
Absolute Time s 

We consider the radial geodesics in the equatorial plane,  

i.e., satisfying the conditions 
π

2
   and 0  . Ac- 

cording to (12), we have ; therefore, 0    remains 
constant during the motion along the geodesic, and 

2 3C C . The condition for a geodesic in the equatorial 
plane to be radial is  

30, . ., 0.i e C    

The radial geodesics with respect to the absolute time 
s  are given by the equations  

 
1

2 2
44 ,r E g               (15) 

44d1
.

2 d

g
r

r
                (16) 

For the model considered in this paper, we have  

  2
44 1 2

8π
1

3
g r     at  and  1r r

3
21

44 1 2

8π 8π
1

3 3

r
g r

r
     at . Outside the ball,  1r r

the acceleration and the velocity have the form  

1
22

8π
,

3

m
r

r
r                (17) 

 
1

22 21
2

2 8π
1

3

m
r r

r
      

 
 ,E        (18) 

where 3
1

4
π

3
m 1 . Inside the ball, the acceleration and  

the velocity have the form  

 1 2

8π
,

3
r    r             (19) 

   
1

22 2
1 2

8π
1

3
r r       

 
 .E        (20) 

Thus, outside the ball, on the interval 

1

3
1

1 1
2

,
2

r r r



 
   

 
  

where 1 2 2  , a test body experiences the action of an  

attractive force, while at 

1

3
1

1
22

r



 
  
 

r , it experiences  

the action of a repulsive force. Inside the ball, a test body 
experiences the action of a braking force, and the 
acceleration is positive up to the center of the ball, at 
which it vanishes. 

If  
2 1

2 3 3
1 21 4π 2E    2

1r , then the velocity outside  

the ball, which is determined by (18), vanishes at two 
points  and . For the inequalities 2̂r 3̂r 1 2 3ˆ ˆr r r   to  

hold, it is necessary that  2 2
1 2

8π
> 1

3
E r   . Thus,  
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if  

   
2 1

2 2 23 3
1 2 1 1 2 1

8π
1 4π 2 1

3
r E r        ,

1 2̂r r

    (21) 

then  and 

 

2
1 2 1

1 2 3 3
1 2

3 1 1
min ,

8π
4π 2

r
 

 

 
    
 

.  

The motion of the particle begins at the rest position 
characterized by 2  in the direction of the ball if the 
sign in (18) is “ .” The acceleration of the test body on 
the interval 1 2  is negative, i.e., the particle 
experiences an attractive force. As the particle passes 
through the surface of the ball, its velocity remains  

r̂

r r 


r̂

continuous, while the acceleration jumps by 1
2

1

3m

r
. 

On the part 
 
 

2

1
1 2

3 1

8π

E
r r

 


 


 of the trajectory  

inside the ball, the particle is subject to a braking force, 
and it stops at the position characterized by the radial  

parameter 
 
 

2

1 2

3 1
.

8π

E
r

 





 

Another motion from the rest state starts at the position 
characterized by the parameter 3 . If the sign in (18) is 
“+,” then the motion of the particle starts at  with  

r̂

3̂r

positive acceleration, because 

1

3
1

3
2

ˆ
2

r



 
  
 

1r . According  

to (17) and (18), the acceleration and the velocity of the 
particle unboundedly increase with , which contradicts 
the principle that a body cannot travel faster than light. 

r

If  
2 1

2 3 3
1 21 1 4π 2E     2

1r , then the velocity of a  

test body does not vanish at any point outside the ball; 
inside the ball, it vanishes at the radial parameter  

 
 

2

1 2

3 1
ˆ .

8πs

E
r

 





 

If , then (18) and (20) imply that the velocity of 
the particle nowhere vanishes, and (17) and (18) imply 
that as the radial parameter  unboundedly increases, 
the velocity and the acceleration unboundedly increase as 
well. 

2 1E 

r

6. Radial Geodesics with Respect to the 
World Time t 

We proceed to consider the radial geodesics with respect 
to the world time . In this case, we have  t

2

2 2 3

d d
, .
dd

r r r r r
t

t tt t t
  
  

   

Taking into account (15) and (16), we obtain  
2

244
44 442 2

dd 1 3
,

d 2d

gr
g E g

rt E
 
 


        (22) 

 
1

244 2
44

d
,

d

gr
E g

t E
            (23) 

where 
 

44

2
1 0

m r
g

r
    at . For the model con-

sidered in this paper, we have 

1r r

  2
44 1 2

8π
1

3
g r     

if  1r r  and 1
44

2
1

m
2

8π

3
g r

r
  r r  if  ;  i .e . ,  

inside the ball, the space is described by the de Sitter 
metric [6], and outside the ball, it is described by the 
Schwarzschild-de Sitter metric. Formulas (22) and (23) 
for the acceleration and velocity outside the ball take the 
form  

2
21 1

2 22 2 2

2 21
2

2 2d 1 16π 8π
1

3 3d

3 3
4π ,

2

m mr
r r

rt E r

m
r E

r

 



     
 

     
 





 (24) 

1

22 2 21 1
2 2

2 2d 1 8π 8π
1 1

d 3 3

m mr
r r E

t E r r
         

 
,



(25) 

and inside the ball, they take the form  

   

 

2
2

1 2 1 22 2

2 2
1 2

d 16π 8π
1

3d 3

3
4π ,

2

r r
r

t E

r E

   

 

      
 

     
 

   (26) 

 

 

2
1 2

1

22 2
1 2

d 1 8π
1

d 3

8π
1 .

3

r
r

t E

r E

 

 

     
 

     
 

       (27) 

The radial geodesics can be divided into the two classes 
of trajectories determined by the conditions 1E   and 

. We conventionally refer to the trajectories from 
the first class as bounded and to those from the second 
class as unbounded [7]. In the next section, we consider 
these cases in more detail. 

1E 

6.1. Bounded Radial Geodesics 

Consider the radial trajectories of particles whose motion 
starts from a rest state at some finite distance outside the  

ball determined by 
d

0
d

r

t
  under the condition 1E  .  
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According to (25), we have either  

21
2

2 8π
1

3

m
r

r
   0           (28) 

or 

2 21
2

28π
1 0

3

m
r E

r
            (29) 

Since 
 1 2

1

2
1

m m

r


 , where 3

2

4
π

3
m 2 1r , it follows  

that Equation (28) has two positive roots 1  and 4 , and 
. Equation (27) has two positive roots only if  

r̂ r̂

1 1ˆ ˆr r r  4

 
2 1

2 23 3
1 2 11 4π 2 .E r    

We denote the roots of Equation (29) by 2  and 3 ; 
these roots are arranged with respect to the roots 1  and 

 as 1 2 3 4  (this follows from the condition 
). Let us find the values of the radial parameter  

at which the acceleration vanishes. According to (24), 
these values are determined by the equations  

r̂ r̂

r

r̂

4̂r
2E

ˆ ˆ ˆ ˆr r r r  
1

1
22

2 16π
0

3

m
r

r
             (30) 

21
2

2 8π
1

3

m
r

r
   0           (31) 

2 21
2

3 3
4π 0

2

m
r E

r
             (32) 

We are interested in the case where the root 0  of 
Equation (30) satisfies the inequality 0 1 . This 
happens if 

r̂
r̂ r

1 2 2  . Equation (32) has positive roots if  

 
2 1

2 23 3
1 2 1

3
6π 2 .

2
E r    

We denote these roots by  and . It follows from  2
ˆ̂r 3

ˆ̂r

the inequality 2 23 3
1

2 2
E E     that the positive roots  

of Equations (29)-(32) (if they exist) are arranged as 
 1 2 2 0 3 3 4

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ .r r r r r r r     
Consider the possible patterns of behavior of the radial 

geodesics. 
(a1) Suppose that  

 
2 1

2 23 3
1 2 11 4π 2E r   .          (33) 

Then (33) implies  

 

2
1 2 1

1 2 3 3
1 2

3 1 1
min ,

8π
4π 2

r
 

 

 
    
 

. Suppose also that  

1r  belongs to the interval . Then the inequality  1 1
ˆˆ ˆr r r  2

 2 2
1 2 1

3
4π

2
E     r           (34) 

must hold. Relations (33) and (34) imply  

 

 

2 1
3 3

1 2 1 2

2
1 2 1

1 2 3 3
1 2

1

8π 2

3 1 1
min , .

8π
4π 2

r

   

 
 

 
   

 

 
     
 

    (35) 

Condition (35) holds if  
2 1
3 3

1 2 1 2

3
2 .

2
      

The motion starts at the rest position characterized by 
the parameter 2  toward the ball if the sign in (25) is 
“

r̂
 .” The acceleration of the particle on the interval 

2 2
ˆ̂ ˆr r r   is negative, i.e., the particle experiences the 

action of the attractive force. On the interval 1 2
ˆ̂r r r  , 

the acceleration is positive, i.e., the particle is repelled. 
According to (24)-(27), on the surface of the ball, the 
acceleration jumps, while the velocity remains continu-
ous. The acceleration inside the ball vanishes at those 
points where the radial parameter r  takes the values  

 
2

1 2

3 2
ˆ

8πex

E
r

 





 and , and the velocity van-

ishes when r takes the value 

0r 


 


2

1 2

3 1
ˆ

8πs

E
r

 





. The  

acceleration of a test body inside the ball remains 
negative on the interval 1 , while on the interval êxr r r 

ˆ0 exr r  , it becomes positive, i.e., the particle slows 
down until it stops in the position characterized by the 
radial parameter ŝr . 

Consider another motion from the rest state, which 
starts at the position determined by the radial parameter 

3 . In this position, the initial velocity vanishes, and the 
acceleration is positive. The sign in (25) is “+.” On the 
interval 3 3

r̂

ˆˆ ˆr r r  , acceleration (24) is positive, and the 
particle experiences repulsion. On the interval 3 4

ˆ̂ ˆr r r 

ˆ̂ ˆr r r

, 
the acceleration becomes negative, while the velocity 
remains positive. As the particle approaches the position 
characterized by the radial parameter 4 , the accelera-
tion and the velocity tend to zero. The particle cannot 
reach the boundary characterized by  in finite time t. 

r̂

4

(a2) Suppose that condition (33) holds and 
r̂

2 1 2  .  

This means that  2 2
1 2 1

3
4π

2
E r    . If  

   
2 1

2 23 3
1 2 1 1 2

3
1 4π 2 4π

2
r r       1 , then  

 

2
1 2 1

3 3
1 2 1 2

1
.

8π 2

r

   


 
   

 

 

The least positive root  determines the initial posi- 2̂r
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tion of the motion of a particle from a state of rest toward 
the ball if the sign in (25) is “ .” The acceleration and 
the velocity of the particle on the interval 1 2  are 
negative. On this interval, the particle experiences attrac-
tion. It reaches the surface of the ball in finite time, 
moving with continuous velocity and discontinuous ac-
celeration. The motion of a test body inside the ball is the 
same as in the previous case. 


ˆr r r 

The motion from the state of rest determined by the 
parameter 3  is similar to that considered above. Other 
variants of particle motion are not possible when the dark 
energy density is sufficiently small and for this reason 
will not be considered here. In cases (a1) and (a2), as well 
as in those cases which have not yet been considered 
here, the motion from a state of rest under the condition 

 is bounded by . 

r̂

1E  4̂r

6.2. Unbounded Radial Geodesics 

In this section, we consider several behavior patterns of 
radial geodesics satisfying the condition . 1E 

(a1) Suppose that  

 
2 1

2 23 3
1 2 1

3
1 6π 2

2
E r    .         (36) 

Then 

   
2

1 2 1
1 23 3

1 2

1 3
min ,

8π
12π 2

r
 

 


  








2

.  

Equation (32) has positive roots, and  1 2 0 3 4

Suppose that  (this is possible if  

ˆ ˆˆ ˆ ˆ ˆ ˆ .r r r r r   
1 1

ˆˆ ˆr r r 

 
2

1
1 2

3 2

8π

E
r

 





); then the acceleration is negative on  

the interval 3 4 , positive on the interval 0 3
ˆ̂ ˆr r r  ˆ̂r r r  , 

again negative on the interval 2 0 , and positive on 
the interval 1 2 . Inside the ball, on the interval 

1 , the acceleration is negative. The velocity does 
not change sign on the interval 4 . If the velocity 
is contained in (25) with the sign “ ,” then the motion of 
the particle starts at the unstable equilibrium position 
determined by the radial parameter 4  toward the ball. 
Successively passing through attraction and repulsion 
zones, the particle arrives at the center of the ball with  

ˆ̂ ˆr r r 

ˆ0 r 


r̂

ˆ̂r r  r
0 r r 

r

velocity 
2

2

1E

E


  and continues to move in the same  

direction; now the particle moves away from the center 
of the ball with positive velocity toward the boundary 
characterized by the radial parameter  but does not 
reach it in any finite time . 

4̂r
t

(a2) Suppose that condition (36) holds and 2 1 0
ˆ̂ ˆr r r  . 

Then the acceleration is negative on the interval 

3 4 , positive on the interval 0 3 , and nega-
tive again on the interval 

ˆ̂ ˆr r r  ˆ ˆr r r 
0̂r1r r  . The motion of the  

particle starts from the unstable equilibrium position 
determined by the radial parameter 4  toward the ball if 
the sign in (25) is “

r̂
 .” Successively passing attraction 

and repulsion zones, the particle reaches the boundary at 
the antipodal point characterized by the radial parameter 

4 . Formally, we might also consider motions from the 
unstable equilibrium state determined by 4  with posi-
tive velocity and acceleration in the direction away from 
the ball. However, at 4 , the signature of the space 
changes, which is mathematically inadmissible. Physi-
cally, such a motion would lead to the violation of the 
principle that a material body cannot travel faster than 
light. 

r̂
r̂

ˆr r

(a3) Suppose that  
2 1

2 23 3
1 2 1

3
6π 2 .

2
E r    

Then Equation (32) has no positive roots, and  

1 0 4ˆ ˆ ˆr r r  . The condition 1 22   implies 1 1 0ˆ ˆr r r 
r̂ r̂

. 
The acceleration vanishes at the points 0  and 4  
outside the ball and at the point  inside the ball. 
The velocity vanishes only at the point . The accelera-
tion is negative on the interval 0 4  and positive 
on the interval 1 0

0
r̂

r r 

r

ˆ
4

r̂
ˆr r r  . Inside the ball, on the interval 

10 r r  , the acceleration is negative, i.e., the particle 
experiences attraction. 

The motion of the particle starts from the unstable 
equilibrium state characterized by the parameter 4  
toward the ball if the sign in (25) is “  ”. The particle 
experiences the action of an attractive force, which 
changes for a repulsive force near the surface of the ball. 
Inside the ball, the force is again attractive. Successively 
passing through attraction and repulsion zones, the 
particle approaches the boundary characterized by the 
parameter  but does not reach it in finite time. 

r̂

4̂r

7. Conclusion 

The analysis of properties of the radial geodesics with 
respect to the world time  performed in this paper 
shows that these geodesics do not leave a certain spheri-
cally symmetric domain, provided that the radial motion 
starts at an interior point of this domain. This indirectly 
indicates that the presence of dark energy in a space ren-
ders this space finite and closed. Indeed, if the space was 
filled only with dark energy, i.e., if it had everywhere 
constant positive scalar curvature, then, as de Sitter 
showed in [6], this would be a finite closed elliptic space. 
Apparently, the finiteness and closedness of such a space 
must be preserved when a material body is placed inside 
it. However, the behavior of the radial geodesics with 
respect to the absolute time 

t

s  is alerting. Thus, the 
question on the finiteness and the closedness of the space 
in the model considered above remains open and requires 
additional analysis. 
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