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ABSTRACT 

Hilbert transform (HT) is an important tool in constructing analytic signals for various purposes, such as envelope and 
instantaneous frequency analysis, amplitude modulation, shift invariant wavelet analysis and Hilbert-Huang decompo-
sition. In this work we introduce a method for computation of HT based on the discrete cosine transform (DCT). We 
show that the Hilbert transformed signal can be obtained by replacing the cosine kernel in inverse DCT by the sine 
kernel. We describe a FFT-based method for the computation of HT and the analytic signal. We show the usefulness of 
the proposed method in mechanical vibration and ultrasonic echo and transmission measurements. 
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1. Introduction 

Hilbert transform (HT) plays an essential role in con- 
structing analytic signals for a variety of signal and im- 
age processing applications. Conventionally, the HT has 
been used in envelope and instantaneous frequency 
analysis and as a core part in amplitude demodulators. 
The recent HT applications include Hilbert-Huang de- 
composition [1] and the computation of the shift invari- 
ant wavelet transform [2-5]. The applications of HT ex- 
tend from geophysical [6], seismic, ultrasonic and radar 
to biomedical signals [7-10] and speech recognition sys- 
tems [11]. The theoretical basis of HT is well established, 
but the computational procedures are still being devel- 
oped. The most frequently used methods are based on the 
fast Fourier transform (FFT) [12], but many other meth- 
ods have been proposed, such as digital filtering [12,13], 
the parametric modelling approach [14,15] and the dis-
crete Hartley transform [16]. 

In this work we introduce a new method for computa- 
tion of HT, which is based on the discrete cosine trans- 
form (DCT) [17-21]. The DCT has become the industry 
standard in signal processing society (digital filtering, 
data compression, image coding, HDTV etc.). The prop- 
erties of the DCT are very close to the statistically opti- 
mal Karhunen-Loeve transform (KLT) for a large num- 
ber of signal families. The KLT decomposes the signal 

into uncorrelated signal vectors and minimizes the mean 
square error between a truncated representation and the 
actual signal. First, we consider the properties of HT and 
the related analytic signal. Then we review the 
FFT-based method for computation of the analytic signal. 
Finally, we introduce the DCT based method for compu- 
tation of HT and describe some experimental results. 

2. Theoretical Considerations 

2.1 Hilbert Transform 

Hilbert transform has been frequently used to obtain an 
analytic signal defined as  

     ax n x n jx n             (1) 

where  x n  denotes the Hilbert transform of  the dis-
crete time signal  x n , n = 0, 1,  , N-1 and 1j   . 
The discrete time signal  x n  is obtained by sampling 
the continuous time signal at T intervals. In this work we 
use the normalization T = 1. 

The Fourier transform of the analytic signal has the 
following property 

   2 0

0 0.a

X j
X j
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       (2) 

On the other hand, Fourier transform of  x n  is of 
the form 
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A common use of the Hilbert transform is to recover 
the amplitude information of the modulated sinusoidal 
waveforms. As an example let us consider a complex 
sinusoidal signal 

      .j nx n a n e               (4) 

The time dependent amplitude  a n  may be recon-
structed from 

       
22
.aA n x n x n x n          (5) 

2.2. FFT Based Computation of the Analytic 
Signal 

The discrete Fourier transform (DFT) of the signal  x n , 
n = 0, 1, , N-1 is defined as 

   
1

0

0, , 1 ,
N

kn
N

n

X k x n W k N




         (6) 

where 2 /ekn jkn N
NW  . The inverse transform (IDFT) is 

defined as 
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The computational complexity of the DFT via the FFT 
is only O(NlogN) for even N. We use a short notation 

    NX k FFT x n  for FFT of the signal  x n . The 
computation of analytic signal using the FFT- based 
method is based on the property (2) of the Fourier spec-
trum of the analytic signal. If X[k] (k=0, , N-1) denotes 
the DFT coefficients of the original signal, the X[k] 
(k=N/2, , N-1) represent the values in the negative 
frequency band  ( 0)    . By zeroing those coeffi-
cients the inverse FFT yields the analytic signal. A more 
precise result is obtained by weighting the DFT coeffi-
cients by a windowing function given by [12] 
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
        (8) 

The analytic signal is then computed from 

      .a Nx n IFFT w k X k           (9) 

The weighting sequence based algorithm (9) is used in 
the Matlab built-in routine hilbert.m for computation of 
the analytic signal. 

2.3. The Discrete Cosine Transform 

For the real-valued data sequence  x n , n = 0, 1,..., N-1 

the DCT [16] is defined as 
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    (10) 

and the corresponding inverse DCT as 

     
1
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cos 2 1 2 ,
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x n a Y k k n N
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where the normalization constant 0 1 /a N  for k = 0, 
and 2 /ka N  for k = 1, 2, ,N-1.  

The fast algorithms for computation of DCT are based 
on the FFT [12] or they are based on the direct factoriza-
tion of the DCT matrix [17]. 

3. Computation of Hilbert Transform 

3.1. Computation of HT Via the DCT 

The key idea of the present work is to write the IDCT 
kernel in (11) as 
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     (12) 

We may consider the variable k in (11) is related to the 
discrete frequency 2 /k k N   (k = 0, 1, , N-1). 
Then we obtain 
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   

, cos 4 cos 2

sin 4 sin 2 .

k k

k k

K n k n

n

 

 




     (13) 

In Appendix I we show that the Hilbert transforms of 
the cosine and sine functions are 
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  (14) 

When k varies from 0 to N-1, the frequency 
/ 2k   in (13) varies between 0    . Applying 

it to (11,12) we receive the Hilbert transform of the IDFT 
kernel as 
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             (15) 

Finally, we obtain The Hilbert transform of the dis- 
crete time signal (11) as  
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3.2. FFT Based Computation of HT from the 
DCT Coefficients 

An interesting relation is obtained from (11,16) for the 
computation of the analytic signal as  
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which yields 
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where /2j k N
k kc a e  . We get the even sequence of the 

analytic signal as  
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and the odd sequence as 
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where /j k N
k kd c e  . However, the odd sequence can 

be computed from the following symmetry relation   

   2 1 2 1 , 0,1, , 2 1,a ax n x N n n N           (21) 

where (  ) denotes complex conjugate. The equation 
(21) can be proved by substituting 1N n   for n  in 
(19). Consequently, even values of the analytic signal 

 2ax n  for n=0, 1, 2, , N/2-1 can be computed from 
the DCT coefficients via one N-point IFFT (18) and the 
odd sequence  2 1ax n   from the symmetry relation 
(21). It is also possible to split (19) and (20) into two 
(N/2)- point IFFTs (see Appendix II). 

4. Experimental Results 

The present algorithm was tested for various signals, 
whose HT could be computed analytically from the 
convolution integral (Appendix I). There was a good 
agreement with the analytically computed HT and the 
results obtained by the DCT-based algorithm. As an 
example, Figure 1 shows the HT of the signal 
     sin 0.10 cos 0.12x t t t  , where the mean error 

between the computed and analytically computed HT 
     cos 0.10 sin 0.12x t t t    was 53 10 . 

The usefulness of the DCT-based algorithm was 
tested in envelope analysis of different experimental 
signals. Figure 2 shows the vibration measurement of 
the running AC motor using an acceleration sensor. 
The signal is relatively highly noised and the computed 
envelope is disturbed by the noise components. Using 
only 1/4 of the DCT coefficients the smoothed version 
of the envelope is obtained. A typical example is the 
measurement of the ultrasonic echo signal from differ- 
ent materials. Figure 3 shows the echo from the rela- 
tively diffuse homogenous material, 30 cm thick cellu- 
lose layer, moisture content (MC 3 %). The exponential 
tail (envelope) computed by the present method fol- 
lows close to the amplitude of the measured curve. 
Figure 4 shows an ultrasonic echo from material, 
which consists of two layers of diffuse material, 5 cm 
cellulose (MC 3 %) and 25 cm cellulose (MC 9 %). 
Also in this case the envelope follows precisely the 
amplitude distribution. 

5. Discussion and Conclusions 

The DCT coefficients  Y k  (10) are high for the low 
values of k and without notable error the rest of the 
coefficients can be zeroed. If the signal is buried by 
noise, the truncation of the DCT coefficients reduces 
noise in the computed HT and the envelope (Figure 2). 
In the FFT-based method (9), in Hartley transform as-
sisted method [16] and in other algorithms described in 
literature [14-15] this usually cannot be made. In this 
context the DCT-based method is more robust to noise. 

The DCT-based computation of HT requires the 
computation of the DCT coefficients, which needs 
about half of the multiplications compared with the 
FFT implementation using e.g., the DCT algorithm  
 

 

Figure 1. The envelope (slowly varying amplitude) and 
the real and imaginary parts of the Hilbert transform of 
the signal x(t) = sin(0.10t) + cos(0.12t).  
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based on the discrete Hartley transform [21]. The 
computation of the HT from the DCT coefficients 
given by (17-19) requires computation of one N-point 
IFFT.  Hence, the proposed algorithm needs about 3/4 
multiplications compared with the FFT-based approach 
(9). An alternative algorithm (Appendix II) requires 
two (N/2)-point IFFTs, which makes it slightly faster 
compared with the N-point IFFT. However, in 
hardware implementation the speed can be doubled by 
using two parallel (N/2)-point IFFT chips for com- 
putation of (31). 

The distinct difference between the proposed method 
and the FFT-based method is in the Fourier spectrum 
of the computed analytic signal. Due to window 
weighting given by (8,9), the negative frequency com- 
ponents in the FFT-based method are zero. In the  

 

Figure 2. The measurement of the vibration of the AC 
motor using the acceleration sensor (top). The envelope of 
the signal and the smoothed envelope using only 1/4 of the 
DCT coefficients (bottom). 
 

 

Figure 3. Envelope analysis of the ultrasonic echo from 
the homogenous material. 

 

Figure 4. Envelope analysis of the ultrasonic echo from 
two layers of homogenous material with different mois-
ture contents. 
 
present algorithm the negative frequency components 
are very small (typically of the order of 410 ), but not 
precisely zero. The reason is that our approach is based 
on the convolution property (22) (see Appendix I), and 
not on the properties of the Fourier spectrum of the 
analytic signal (2). 

The usefulness of the present method was tested in 
connection with the ultrasonic echo measurements. The 
primary aim in our experiments was to develop a 
method for non-destructive characterization of the in-
sulating materials (thickness, humidity distribution 
etc.). The Hilbert transformed echo signal seems highly 
promising in this context (Figures 3,4). 

In conclusion, this work proposes a new DCT-based 
method for computation of HT and the analytical signal. 
Preliminary experimental studies showed that the 
method is faster and more robust to noise than the 
FFT-based method. The present method can be easily 
extended to the computation of HT of 2D signals via 
2D DCT algorithm. 
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Appendices  

1. Hilbert Transform of the Cosine Function 

The Hilbert transform of the continuous time signal x(t) 
can be defined by the convolution as 
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For the discrete time signal x[n] we may write 

   1
, 0,1, , 1.

x t
x n dt n N

n t





  
       (23) 

Now we may calculate the Hilbert transform of 
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                                          (24) 

The last result is due to the general property of the 
convolution integral 

        .x t y d x y t d               (25) 

By expanding 
          cos cos cos sin sinn t n t n t        we 

obtain 

         cos sin
cos cos sin .

t tA A
A n n dt n dt

t t

 
  

 

 

 

    

                                          (26) 
Since we have 
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we obtain the final result 
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In a similar manner we may prove 
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   (29) 

2. Alternative Computational Method for (17) 
and (18) 

We may split (17) into two parts 

       

   

2 11
2 22

2
0 0

2 22
2 1

2 2

2 1 ,

NN
j kn Nj kn N

a k k
k k

j kn Nj n N
k

x n c Y k e c Y k e

c Y k e e







 



 

 

 
 

                                          (30) 

which gives the even values 

    

  

2 2

2
2 2 1

2 2
2

2 1 .
2

a N k

j n N
N k

N
x n IFFT c Y k

N
e IFFT c Y k





 
  (31) 

Correspondingly, the odd values are obtained from 

    

  

2 2

2
2 2 1

2 1 2
2

2 1 .
2

a N k

j n N
N k

N
x n IFFT d Y k

N
e IFFT d Y k



  


  (32) 

If we denote the even values in (28) as 

     1 22 ,ax n x n x n             (33) 

then the odd values are obtained from 

     1 22 1 / 2 1 / 2 1 .ax n x N n x N n          (34) 

The result (34) can be proved by direct substitution of 
/ 2 1N n  for n  in (30). 

 
 

 


