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ABSTRACT 

With regard to the human exploration of Mars, low energy transfer trajectory is designed for Mars exploration based on 
the combination of invariant manifolds, differential correction and aerobraking methods. The whole transfer trajectory 
is composed of four stages: 1) from the Earth parking orbit to the Lyapunov orbit around Lagrange point L2 in the Sun- 
Earth system; 2) from the Lyapunov orbit around L2 to the Lyapunov orbit around L1 in the Sun-Mars system; 3) from 
the Lyapunov orbit around L1 in the Sun-Mars system to the large elliptical orbit around Mars; and 4) from the large 
elliptical orbit around Mars to the near-Mars parking orbit. In the first three stages, the circular restricted three-body 
problem is considered, and the trajectory is designed by using invariant manifolds and the differential correction method. 
The simulation results show that the transfer trajectory designed by means of the invariant manifolds of the Lyapunov 
orbit costs lower energy and shorter time of flight than that designed by means of the invariant manifold of the Halo 
orbit. In the fourth stage, the two-body problem is considered, and the aerobraking method is applied. A comparative 
performance analysis of static and rotating atmospheric models is carried out by using the details of duration, aerody-
namic loading of the Mars vehicle, and other orbital parameters. It is shown that, on the low periareon where the influ-
ence of the atmospheric density increases, the changes of orbit parameters between rotating and static atmospheric en-
vironments are in large difference, such as orbital semimajor axis, orbital eccentricity, and so on. The influence of Mar-
tian rotating atmospheric environment should be considered. 
 
Keywords: Invariant Manifolds; Differential Correction Method; Lyapunov Orbit; Aerobraking; Rotating and Static 

Atmospheric Environments 

1. Introduction 

Beginning in the 1960s, the former Soviet Union and the 
United States have both repeatedly carried out successful 
launches of Mars vehicles and, thus, obtained an enrich-
ing experience in deep space exploration. However, China’s 
advent to the technological exploration of Mars is still in 
a developmental stage, with preliminary proposals that 
engineering research of deep space exploration would 
materialize within the next ten years. With the smooth 
progress of China’s exploration of the Moon, it is ex-
pected that exploration of Mars will also make it to the 
research agenda. Traditionally, the dynamical basis of the 
two-body problem, through the patched conic method, 
has been used for preliminary design of interplanetary 
trajectories, but this method consumes large energy. To 
satisfy rendezvous constraints and reduce maneuever costs 
to acceptable levels, techniques such as gravity assists 
and, more recently, low thrust trajectories are now being 
investigated. In addition, in the past few decades, mission 
scenarios have increased in complexity and science goals  

require an expansion of the solution space. For example, 
trajectory designers have explored three-body techniques 
to develop missions to the vicinity of the Lagrange points, 
such mission scenarios are impossible to model accu-
rately in the two-body problem. 

The circular restricted three-body problem (CR3BP) is 
known to have five equilibrium points. It was Lagrange, 
in 1772, who first identified all five equilibrium points in 
the CR3BP, the three collinear points (also described by 
Euler in 1772) and two equilateral points, hence, they are 
usually denoted the Lagrange points [1]. Research during 
the early part of the twentieth century in the determina-
tion of periodic orbits and the advent of modern com-
puters led to the launch of the ISEE-3 spacecraft in1978. 
The vehicle was subsequently inserted into a halo orbit in 
the vicinity of L1 Sun-Earth Lagrange point [2,3]. Since 
ISEE-3, a number of other missions to the vicinity of the 
Lagrange points have successfully been completed [4-9]. 
The most recent major advancement in the use of CR3BP 
trajectory design tools, Martin Lo et al. proposed a concept  
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that Interplanetary Superhighway(IPS) [10-14], in 1995- 
1998. Their works evidenced the importance of the in-
variant manifolds associated to the periodic orbits around 
Lagrange points, that using these invariant manifolds 
design the transfer trajectories between two planets can 
save a lot of energy. Howell designed the transfer trajec-
tories from Earth parking orbits to L1 or L2 halo orbits 
by using the manifolds of halo orbits [15]. Belbruno de-
signed the transfer trajectories from Sun-perturbed earth- 
to-moon by using manifolds of halo orbits [16]. German 
and Frabcesco designed the transfer trajectories for plan-
ets by using the invariant manifolds of halo orbits [17,18]. 
Xuming applied the invariant manifolds of Lyapunov 
orbit to achieve the quick transfer to the distant retro-
grade orbit in Earth-Moon system [19]. MJ Capinski fo-
cused on Lyapunov orbits at L2 and transversal intersec-
tions of invariant manifolds in the Jupiter-Sun CR3BP 
[20]. Llibre J found out homoclinic orbits using trans-
versality of the invariant manifolds associated to the 
Lyapunov family of periodic orbits near L2 in CR3BP 
[21]. Baoyin focused on trajectories from the Lagrange 
points and their Lyapunov orbits that can access the en-
tire surfaces of the primary bodies for the sun-Earth and 
Earth-moon systems [22]. Gong designed the low-energy 
lunar landing trajectory using the invariant manifolds of 
halo orbits [23]. From the above, the invariant manifolds 
of halo orbits and Lyapunov orbits are applied to design 
the transfer trajectories for planets, and the invariant 
manifolds of halo orbits have been used to transfer from 
a Sun-Earth halo orbit to a Sun-Mars halo orbit in the 
literature. For Earth and Mars are almost coplanar planets, 
the invariant manifolds of Lyapunov orbits are used to 
design the transfer trajectories for Mars exploration in 
this paper, and the four-body problem consisted of Sun- 
Earth-Mars-vehicle is decomposed into two coplanar 
circular restricted three-body problem, Sun-Earth-vehicle 
and Sun-Mars-vehicle. 

Aerobraking method is always adopted when design-
ing the transfer trajectory from the large elliptical orbit 
around the Mars to near-Mars parking orbit. Aerocapture 
can be classified into single and multiple crossings. Be-
cause a single crossing through the atmosphere requires a 
more precise angle of incidence and greater energy, in 
engineering practice, there is a tendency to generally em- 
ploy multiple crossings through the atmosphere. The re- 
search results present resulted in the published literature 
[24,25]. On exploration and orbit capture for Mars have 
all been based on premise that the Martian atmosphere is 
static. In fact, the Martian atmosphere is rotating. When 
studying the influence of the Earth’s external rotation 
atmosphere on the orbit of Earth’s satellites, the rota- 
tional angular velocity of the atmosphere is considered to 
be equal to the angular velocity of Earth’s rotation.  

With increased proximity to Earth, the satellite would be 
more apparently affected by the rotating atmosphere [26]. 
So, the influence of the Martian external rotation atmos-
phere will be studied in this paper. 

In this paper, low energy transfer trajectory is designed 
for Mars exploration based on combination of invariant 
manifolds, differential correction and aerobraking meth- 
ods. The whole transfer trajectory is divided into four 
stages. The first three stages, the part of transfer trajec-
tory from Earth parking orbit to L2 Lyapunov orbit in 
Sun-Earth system, the part of transfer trajectory from L2 
Lyapunov orbit in Sun-Earth system to L1 Lyapunov 
orbit in Sun-Mars system and the part of transfer trajec-
tory from L1 Lyapunov orbit in Sun-Earth system to the 
large elliptical orbit around the Mars, are designed ap-
plying invariant manifolds of Lyapunov orbit and differ-
ential correction method. The fourth stage, the part of 
transfer trajectory from the large elliptical orbit around 
the Mars to near-Mars parking orbit, is designed by the 
aerobraking method, and the effect of Martian rotating 
atmosphere is considered. Moreover, the premise in the 
second stage is the same as the work of German [17], 
which is that the Sun-Earth-Mars-vehicle four-body prob-
lem is decomposed into two coplanar circular restricted 
three-body problems. To compare with German’s work, 
transfer trajectory designed using the invariant manifolds 
of Lyapunov orbit costs lower energy and shorter time of 
flight than the one which is designed using the invariant 
manifold of Halo orbit. The premise in the fourth stage is 
that the rotational angular velocity of the external rota-
tional atmosphere of Mars is equal to the rotation angular 
velocity of Mars. The results indicate that the influence 
of the rotating atmosphere should be taken into full con-
sideration when the periareon is low. 

2. Transfer Trajectory Design Based on  
Invariant Manifolds and Differential 
Correction Method 

Figure 1 shows the whole transfer trajectory from Earth 
to Mars, which is divided into four stages: 1) the part of  

 

 

Figure1. Earth-to-Mars transfer concept. 

Copyright © 2013 SciRes.                                                                                 IJAA 



J. LÜ  ET  AL. 7

transfer trajectory from Earth parking orbit to L2 Lyapunov 
orbit in Sun-Earth system; 2) the part of transfer trajec-
tory from L2 Lyapunov orbit in Sun-Earth system to L1 
Lyapunov orbit in Sun-Mars system; 3) the part of trans-
fer trajectory from L1 Lyapunov orbit in Sun-Earth sys-
tem to the large elliptical orbit around the Mars; 4) and 
the part of transfer trajectory from the large elliptical 
orbit around the Mars to near-Mars parking orbit. In this 
section, the circular restricted three-body problem is con-
sidered. Using invariant manifolds of Lyapunov orbits 
around Lagrange points in Sun-Earth system and Sun- 
Mars system, the first three steps of low energy transfer 
trajectory are designed. 

2.1. Equations of Motion 

Consider a vehicle P of negligible mass move under the 
gravitational influence of two masses P1 and P2, referred 
to as the primary masses, or simply the primaries. P1 and 
P2 have masses m1 and 2m m1 , with a unique pa-
rameter  2 1 2m m m  



0,1 2 . Assume that P1 and 
P2 have circular orbits about their common center of 
mass. The vehicle P is free to move in the plane defined 
by the circular orbits of the primaries, but cannot affect 
their motion. In the usual rotating coordinate system, the 
origin is located at the mass center of primaries P1 and P2. 
The x-axis is always directed from the larger toward the 
smaller primary. The y-axis is 90˚ from the x-axis in the 
primary plane of motion. The z-axis completes the right 
handed system, defining the out of plane direction. To 
simplify the equations of motion, let us take the units of 
mass, length, and time, such that the sum of the masses 
of primaries P1 and P2, the distance between the prima-
ries, the gravitational constant, and the period of the pri-
maries are 1, 1, 1, and 2π, respectively. 

Let  , ,x y z  be the position of the vehicle, the equa-
tions of motion can be written as 

 x f x                   (1) 

where   1 2 3, , , , , , , ,x y z x y z f x f y f z  x      ,  

4 2 xf y U  , 5 2 yf x U   , 6 zf U  . 
In the equations above, U can be written as follows 

 2 2

1 2

1 1

2
U

r r
x y

 
              (2) 

where  

   2 2 2 2
1 2, 1r x y z r x y z          . 

2.2. Lyapunov Orbit 

In accordance with the Lindstedt-Poincare method, Ri- 
chardson got third-order approximation of periodic or 
quasi-periodic orbits as [27] 
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(3) 

where Ax and Az represent the amplitudes in x direction 
and z direction respectively, in addition, 1    , 

2 nn   , where σ represents the phase angle of xy, λ 
represents frequency factor, τ represents the time of pe-
riodic orbit, other parameters can be seen in literature 
[27]. Since Lyapunov orbits are located on the x-y plane, 
third-order expansions of Lyapunov orbit can be obtained 
after substituting Az = 0 into the Equation (3). 

For third-order approximations are insufficient for se-
rious study of accurate motion, analytical approximations 
must be combined with differential correction process to 
generate a Lyapunov orbit accurate enough for mission 
design. Initial conditions are chosen on the x-axis, and 
can be written as  0 0 0,0,0,0, ,0x yx  . The equations of 
motion are integrated until the trajectory crosses the xy- 
plane, then the time when crossing occurs are expressed 
as ε,  0; x denotes the trajectory. To produce a 
Lyapunov orbit, a perpendicular crossing is needed, and 
so the target state vector needs to have the form 

,0,0,0,f fx ,0y f    . By adjusting the initial variables x 
0 x  and  , the final values fx  and yf can be driven 

to zero. 
The difference of final states is written as following 

  0 0 0;f       x x x ; x

0

       (4) 

Using the Taylor expansion Method and ignoring the 
higher-order term 

 0;f t    x g x            (5) 

where 
 0;t






g


 and    0

0
0

;
;

t
t







x



. So, the  

differential variables fx   and fy  can be expressed 
as 

45 4 0

25 2

f

f

x g y

y g

 
 

    
        

  
           (6) 

The state transition matrix can be computed numeri-
cally by integrating simultaneously the following equa-
tions 

  D x f x f x             (7) 

with initial conditions 
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   0 60 , 0  x x I 6  

where Df(x) represents the Jacobian matrix, 6 6I  repre-
sents the 6 × 6 identity matrix. 

The iteration process will be continue until  
, within some acceptable tolerance. Then, 

combining third order approximation and differential cor-
rection, we can get sufficient accurate Lyapunov orbits 
around L1 in Sun-Earth system and L2 in Sun-Mars sys-
tem. 

0f fx y 

2.3. Invariant Manifolds of Lyapunov Orbit 

The computation of the stable and unstable manifolds 
associated with a Lyapunov orbit can be accomplished 
numerically. The procedure is based on the monodromy 
matrix  which is the state transition matrix after one 
period of a Lyapunov orbit. The characteristics of the 
local geometry of the phase space can be determined 
from the eigenvalues and eigenvectors of the monodromy 
matrix [14]. The eigenvectors can then be used in ap-
proximating the local invariant manifolds near any point 
along the Lyapunov orbit. Let Ys and Yu denotes the sta-
ble and unstable eigenvector of the monodromy matrix at 
a point X0 respectively. The initial values of the stable 
manifold and unstable manifold can be written as fol-
lowing, 



respectively. The initial guess of the stable mani-
fold and unstable manifold can be written as following 

0 0 0 0
s s ud    udX X Y X X Y          (8) 

where  represents a micro constants. d
By integrating the motion Equation (1) forward with 

the initial conditions of the stable manifold, we generate 
the stable manifold tube. By integrating the motion Equa-
tion (1) backward with the initial conditions of the unsta-
ble manifold, we generate the unstable manifold tube. 
The results are shown in Figures 2-5. 

From the simulation results in Figures 2-5, it can be 
seen that the expand direction of stable or unstable mani-
fold is different if the positive and negative sign of the 
micro constant  is changed. d

2.4. Trajectory Design from Earth Parking  
Orbit to Large Elliptical Orbit around Mars 

Based on invariant manifolds and differential correction 
method, we can design the transfer trajectories from Earth 
parking orbit to large elliptical orbit around Mars. To 
link two specific points, a differential correction method 
is usually employed in designing intermediate transfer 
orbit [28]. The initial position and velocity, the time of 
flight (TOF), and the final position are specified, the ini-
tial position and velocity are the numerically propagated 
for the given TOF and a state transition matrix relating 
the initial and final positions and velocities is computed. 
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(a) Lyapunov orbit and left part of stable manifold (d < 0) 
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(b) Lyapunov orbit and right part of stable manifold (d > 0) 

Figure 2. Stable manifold associated with Lyapunov orbit 
around L2 in Sun-Earth system. 
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(a) Lyapunov orbit and left part of stable manifold (d < 0) 
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(b) Lyapunov orbit and right part of stable manifold (d > 0) 

Figure 3. Unstable manifold associated with Lyapunov orbit 
around L2 in Sun-Earth system. 
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(a) Lyapunov orbit and left part of stable manifold (d < 0) 
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Figure 4. Stable manifold associated with Lyapunov orbit 
around L1 in Sun-Mars system. 

 

0.994 0.996 0.998 1 1.002 1.004
-3

-2

-1

0

1

2

3

4x 10
-3

x

y 

Ax=0.0004

L1

 
(a) Lyapunov orbit and left part of unstable manifold (d < 0) 
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(b) Lyapunov orbit and right part of unstable manifold (d > 0) 

Figure 5. Unstable manifold associated with Lyapunov orbit 
around L1 in Sun-Mars system. 

 0 0 0,X x v  and ,f f f  X x v  denote the initial 
state and the target state respectively. Since Lyapunov 
orbits locate on the x-y plane,  , ,0x yx  and  

 , ,0x yv   . ,f f x v  can be obtained from the fol-
lowing equation 

  0 011 12
0

0 021 22

,f
f

f

t t
  
  
     
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x x xφ φ
v v vφ φ




   (9) 

where the 6 × 6 matrix 6 6  has been decomposed into 
four 3 × 3 submatrices, tf and t0 represents the final TOF 
and the initial TOF respectively. 

Note that, for the Equation (9), 0 x  is assumed to be 
equal to zero because the initial position is fixed. Then it 
is used with the 3 × 3 matrix 12  to update the initial 
velocity to reach the desired final location, that is 

φ

 12 0 0,f ft t x φ v            (10) 

Usually, convergence to a solution is achieved within a 
few iterations. 

2.4.1. Transfer Trajectory from Earth Parking Orbit 
to Lyapunov Orbit around L2 in Sun-Earth 
System 

In this paper, the amplitude of L2 Lyapunov orbit in 
Sun-Earth system is 0.0008xA  . It can be seen that the 
expand directions of invariant manifolds depend on the 
value of d, as illustrated in Figure 2. So, the stable 
manifold of L2 Lyapunov orbit in the Sun-Earth System 
which corresponds to the condition of  is selected. 
Afterwards, the manifold which is nearest to earth park-
ing orbit is chosen as the standard manifold (as shown in 
Figure 6). According to the literatures [28,29], it indi-
cates that the vehicle can enter the glide status earlier, 
which is advantageous to continuous working for pay-
load, when a certain point on the manifold is picked as 
the initial point, therefore, we choose point A on the 
standard manifold as the initial point of the transfer tra-
jectory, and a point on the parking orbit which orbit alti-
tude is 200 km is selected as the target point B, in the end, 
we connect the orbits using the differential correction 
method. During this process, the integration should pro-
ceed backwards with respect to time. The simulation re-
sults is shown in the Figure 7, to minimize the energy 
consumption that from the Earth parking orbit to the sta-
ble manifold, we should make the angle between the ve-
hicle’s velocity vector on the intermediate transfer tra-
jectory at point B and the vehicle’s velocity vector on the 
Earth parking orbit at point B equal to zero, so we choose 
the 1857th point (point A) on stable manifold as the ini-
tial point, the flight time from the earth parking orbit to 
the stable manifold is 23.35 d, and the energy consump-
tion is 4.223 km/s. 

0d 
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Figure 6. Standard manifold in Sun-Earth system. 
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Figure 7. Transfer trajectory designed by differential cor-
rection process. 

2.4.2. Transfer Trajectory between the Sun-Earth L2 
Lyapunov Orbit and the Sun-Mars L1 
Lyapunov Orbit 

German and Frabcesco indicated that two-Circular Re-
stricted three-body problems (CR3BP), having small 
mass parameters, do not allow the manifolds to develop 
for enough in order to approach each other, in more re-
fined models contemplating the full solar system dynam-
ics, a closer approach or even an intersection, after thou-
sands of years, may occur [17,18]. Because mass pa-
rameters of Sun-Earth system and Sun-Mars system are 
equal to 3.036 ×10−6 and 3.229 ×10−7 respectively, un-
stable manifolds of L2  of the Sun-Earth system 
will not intersects with stable manifolds of L1 

 2
u

LW 
 1

s
LW  in 

the Sun-Mars system. To accomplish the L2 in Sun-Earth 
system to L1 in the Sun-Mars system transfer, an inter-
mediate transfer orbit should be designed. 

In this paper, the amplitude of L2 Lyapunov orbit of 
Sun-Earth system is , and the amplitude of 0.0008xA 
L1 Lyapunov orbit of Sun-Mars system is 0.0004xA  . 
First, we should attempt to determine the two trajectories, 
which are on unstable manifold of L2 Lyapunov orbit of 
Sun-Earth system and stable manifold of L1 Lyapunov 
orbit of Sun-Mars system respectively, most closely ap-
proach each other, called the standard manifolds. Then 

we selected the appropriate initial angle of location the 
earth relative to Mars, here the angle is . 60

Case 1: Design of transfer trajectory in Sun-Earth 
system 

First, we convert the stable manifold associated with 
the Sun-Mars L1 Lyapunov orbit to the Sun-Earth rotat-
ing coordinate system. Then, we connect the initial point 
A on the unstable manifold of the Sun-Earth L2 Lyapunov 
orbit and the target point B on the stable manifold of the 
Sun-Mars L1 Lyapunov orbit using the differential cor-
rection method, as shown in Figure 8. To minimize the 
energy consumption that from the unstable manifold of 
the Sun-Earth L2 Lyapunov orbit to the stable manifold 
of the Sun-Mars L1 Lyapunov orbit, we should make the 
angle between the vehicle’s velocity vector on the inter-
mediate transfer trajectory at point B and the vehicle’s 
velocity vector on the stable manifold at point B should 
equal to zero, so we select the 1857th point (point B) on 
the stable manifold of L1 Lyapunov orbit in Sun-Mars 
system as the target point, in this process the fight time is 
181.5 d. Table 1 shows the comparison results of inter-
mediate transfer trajectory for Mars exploration, one is 
designed using invariant manifold of Lyapunov orbit, 
and the other is designed using invariant manifold of 
Halo orbit. From the comparison result, it can be seen 
that the costs in terms of ΔV using invariant manifold of 
Lyapunov orbit to design transfer trajectory is 3.78% less 
than the ones using halo orbit, and the time of flight us-
ing invariant manifold of Lyapunov orbit to design trans-
fer trajectory is 23.02% less than the one using halo or-
bit. 
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Figure 8. Transfer trajectory designed in Sun-Earth rotat-
ing coordinate system. 

 
Table 1. Cost comparison for design transfer trajectorybe-
tween L2 in the Sun-Earth system and L1 in the Sun-Earth 
system. 

1

-min km ssumV    TOF/d 

Based on manifolds of Lyapunov orbits 5.725 181.5 

Based on manifolds of halo orbits 5.9605 222.7 
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Case 2: Design of transfer trajectory in Sun-Mars 
system 

First, the unstable manifold of the Sun-Earth L2 
Lyapunov orbit is converted to the Sun-Mars rotating 
coordinate system. Let point A on the stable manifold of 
the Sun-Mars L1 Lyapunov orbit is chosen as the initial 
point, and point B on the unstable manifold of the Sun- 
Earth L2 Lyapunov orbit is chosen as the target point. 
The intermediate transfer trajectory is designed to con-
nect the initial point A and the target point B using the 
differential correction method, as shown in Figure 9. 
During this process, the integration should proceed back-
wards with respect to time. To minimize the energy con-
sumption that from the unstable manifold of the Sun- 
Earth L2 Lyapunov orbit to the stable manifold of the 
Sun-Mars L1 Lyapunov orbit, we should make the angle 
between the vehicle’s velocity vector on the intermediate 
transfer trajectory at point B and the vehicle’s velocity 
vector on the unstable manifold at point B should equal 
to zero, so we select the 971th point on the unstable 
manifold of L2 Lyapunov orbit in Sun-Earth system as 
the target point B, and this process the fight time is 
219.4d. Table 2 shows that the costs in terms of ΔV us-
ing invariant manifold of Lyapunov orbit to design trans-
fer trajectory is 9.32% less than the one using halo orbit, 
and the time of flight using invariant manifold of Lyapunov 
orbit to design transfer trajectory is 23.02% less than the 
one using halo orbit. 
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Figure 9. Transfer trajectory designed in Sun-Mars rotat-
ing coordinate system. 

 
Table 2. Cost comparison for design transfer trajectorybe-
tween L2 in the Sun-Earth system and L1 in the Sun-Mars 
system. 

1

-min km ssumV    TOF/d 

Based on manifolds of Lyapunov orbits 5.567 219.4 

Based on manifolds of halo orbits 6.139 285 

2.4.3. Transfer Trajectory from the Sun-Mars L1 
Lyapunov Orbits to the Large Elliptical Orbit 
around the Mars 

As shown in Figure 5, we can see that expansion direc-
tion of the manifold depend on the positive and negative 
sign of d. So, the unstable manifold of the Sun-Mars L1 
Lyapunov orbit which corresponds to  is selected. 0d 
For the amplitude of L1 Lyapunov orbit in Sun-Mars 
system is 0.0004xA  , the closet distance between the 
unstable manifolds of L1 Lyapunov orbit and Mars is 
4107.6 km. 

Note that the aerobraking method will be applied to 
design the transfer trajectory from the large elliptical 
orbit around the Mars to near-Mars parking orbit. In this 
paper, the apareon of the large elliptical selected is 50,000 
km, so the manifolds of L1 Lyapunov orbit whose am-
plitude is 0.0004xA   can reach the apareon of the 
large elliptical orbit around the Mars, and a maneuver is 
needed to adjust the vehicle’s velocity vector on the 
apareon when the manifolds intersect the large elliptical 
orbit to make the vehicle from the manifolds to the large 
elliptical orbit around the Mars, this stage need not to use 
the differential correction method. In the simulation from 
L1 Lyapunov orbits to the Large elliptical orbit around 
the Mars, the flight time is 276.8 d, the energy consump-
tion is 3.246 km/s. 

3. Transfer Trajectory Design Based on 
Aerobraking Method 

In this section, the two-body problem is considered. 
Based on aerobraking, the transfer trajectory from the 
large elliptical orbit around the Mars to near-Mars park-
ing orbit is designed, as shown as Figure 1. This study 
establishes the dynamics equations for the Mars vehicle, 
both in the static and rotating atmospheric environment. 
A comparative performance analysis of atmospheric mod-
els was carried out using details of the duration, aerody-
namic loading of the Mars vehicle, and other orbital pa-
rameters. 

3.1. Equations of Motion 

Let us set the inertial coordinates of Mars as OXYZ. The 
origin O is right at the center of mass of Mars and XY 
plane is the equatorial plane of Mars; the x-axis indicates 
the direction of periareon whereas the z-axis indicates the 
direction of rotation of Mars. The y-axis, x-axis, and 
z-axis form a right-handed system. After the Mars vehi-
cle crosses through the atmosphere, the kinetic vector 
equation can be written as follows 

2

2

d

d
m

t
  
r D L G          (11) 

where D, L and G represent the atmospheric drag vector, 
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the atmospheric lift vector, and the gravity vector acting 
on the Mars vehicle, respectively; r is the distant vector 
from the Mars vehicle to the center of Mars. 

The atmospheric lift acceleration vector, the atmos-
pheric drag acceleration vector, and gravity acceleration 
of the Mars vehicle are expressed, respectively, as 

2 2
3

1 1

2 2D r L r
r

C S v C S v
v rm

     rvD L GE r
m m

(12) 

where CL and CD represent the coefficient of the atmos-
pheric lift and the atmospheric drag, respectively; S and 
m represents the area and the mass of the Mars vehicle, 
respectively; vr represents the velocity vector of the Mars 
vehicle in relation to the atmosphere, where  rv v vg ,

 v is the velocity vector of the Mars vehicle in the inertial 
coordinate of Mars, and vg is the velocity vector of the 
atmosphere in the inertial coordinate of Mars. Moreover, 

 gv r , where   is the angular velocity vector of 
Mars. Otherwise, the atmospheric density of the external 
rotation atmosphere of Mars can be expressed as [24] 

0.000165
0e

H               (13) 

where H stands for the height of the orbit that the Mars 
vehicle occupies. In addition, the E in Equation (12) can 
also be written as following 

 
 

 


 
r

r r

v r v
E

v r v
r              (14) 

By factoring Equations (12)-(14) into Equation (11), 
the motion equation of the Mars vehicle in the inertial 
coordinate of Mars can be obtained. 

3.2. Simulation and Analysis 

The results of this study can be considered on the basis of 
the differences in the results of simulation, shown in the 
dynamics equation, of the Mars vehicle when subjected 
to two types of atmospheres. The initial position of the 
Mars vehicle is the apareon; the other initial parameters 
are shown in Table 3. The initial velocity of the Mars 
vehicle can be written as: 

 
Table 3. Initial parameters. 

Quantity Unit Value 

Mars gravity acceleration 2km s  0.00374 

Windward acreage m2 0.143 × 10-6

Lift coefficient  0.156 

Drag coefficient  1.21 

Mars gravity coefficien 3 2km s  42828.3 

Radius of Mars/km km 3383 

Initial position of vehicle km 40000 

Periareon km 95 

The angular velocity of Mars 1rad s  2π 124642.6

External atmospheric density on Mars 3kg m  1.228 

 
 
1

1

e a
v

e

 



              (15) 

In this equation, e is the orbital eccentricity and a is 
the semimajor axis of the orbit. 

Case 1: Comparison of orbital parameters 
In this case, the orbit inclination is set to 3.9653˚and 

the longitude of the ascending node of the orbit is 0.573˚, 
other initial parameters are presented in Table 3. From 
the simulation results shown in Figures 10 and 11, it can 
be seen that with multiple crossings of the Mars vehicle 
through the atmosphere, the disparity of changes in the 
orbital semimajor axis and the orbital eccentricity in the 
two atmospheric models is small; however, in the rotat-
ing atmosphere model, the change in the cycle of the  
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(c) The third time crossing through the atmosphere 

Figure 10. The curve of semi-major axis changes in differ-
ent time periods. 
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(c) The third time crossing through the atmosphere 

Figure 11. The curve of orbital eccentricity changes in dif-
ferent time periods. 

 
orbital semimajor axis a and the orbital eccentricity e 
becomes longer, compared with that in the static atmos-
pheric model; this marks the emergence of “hysteresis”. 
Thus, it is evident that the rotating atmospheric model 
influences the time that the Mars vehicle reach the target 
orbit. 

The simulation results shown in Figures 12 and 13 
validate the accuracy of the Gaussian perturbation theory 
[25], which holds that the change of the orbital inclina-
tion  and the longitude of the ascending node of the 
orbit  are zero in the static atmosphere model; in the 
rotating atmospheric model, the orbital inclination and 
longitude of the ascending node of the orbit 

i


i
  are 

found to decrease, but the variation of  is so small 
that the orbital plane can be approximated to appear 
without change. 

 ,i 
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Figure 12. Changes of orbital inclination. 
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Figure 13. Changes of the longitude of the ascending node 
of the orbit. 

 
The article described the findings of a study evaluating 

variations in parameters contributing to differences in the 
longitude of the ascending node and the orbital inclina-
tion. The research data show that, when the orbital incli-
nation changes in the range of 0˚ - 9˚ (the longitude of 
the ascending node of the orbit can be obtained from the 
formula provided). In the two atmospheric models, or-
bital parameters (such as the orbital semimajor axis and 
orbital eccentricity) were found to differ by 4% to 10%. 

Case 2: Comparison of time and cost 
In this case, a 400 × 400 target track was provided, and 

some relevant conclusions were obtained through the 
simulation results. In this model, the orbit inclination was 
10˚ and the longitude of the ascending node of the orbit 
was 60˚. The other initial values are shown in Table 3. 

From the simulation results shown in Figure 14, it can 
be seen that, when the height of the periareon is less than 
105 km, the time the Mars vehicle takes to reach the tar-
get orbit under the static atmospheric model is less than 
the time it takes in the rotating atmosphere model. In 
addition, in the two types of atmospheric models, the 
biggest difference in the time taken by the Mars vehicle 
to reach the target orbit is about 6.2 days. Further, if the 
height of the periareon is more than 105 km, the time 
taken by the Mars vehicle to reach the target orbit both 
the atmospheric models will basically be the same. 

 The atmospheric drag and atmosphere lift are relative 
to the relative velocity of the Mars vehicle in relation to 
the atmosphere and atmospheric density. In fact, the  
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Table 4. Cost comparison for transfer under two atmos-
pheric models. 
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Transfer from actual orbit 
to target orbit in rotating 
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atmospheric model 
Δν/km·s−1 
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95 0.162 0.185 

100 0.196 0.211 

 
Figure 14. Change of time taken to arrive at the target orbit 
in different periareon heights. 

In the first three stages, the circular restricted three- 
body problem is considered. The four-body problem, 
Sun-Earth-Mars-vehicle, is decomposed into two copla-
nar circular restricted three-body problems, Sun-Earth- 
Vehicle and Sun-Mars-vehicle. In the first stage, the in-
variant manifolds of L2 Lyapunov orbit in Sun-Earth 
system cannot reach the earth parking orbit, so the dif-
ferential correction method is applied accompany with 
invariant manifolds. In the second stage, the unstable 
manifold of L2 Lyapunov orbit in Sun-Earth system will 
not intersect with stable manifold of L1 Lyapunov orbit 
in Sun-Mars system, so the transfer trajectory is designed 
combining the invariant manifold and the differential 
correction method. To compare with the intermediate 
transfer trajectory designed by the invariant manifolds of 
Halo orbit, the results show that using the invariant 
manifold of Lyapunov orbit has advantages in energy 
consumption and time of flight, reducing energy con-
sumption 3.78 percent and reducing flight time 23.02 
percent in Sun-Earth system, and reducing energy con-
sumption 9.32 percent and reducing flight time 23.02 
percent in Sun-Mars system. In the third stage, the in-
variant manifold of L1 Lyapunov orbit in Sun-Mars sys-
tem can reach the apareon of the large elliptical orbit 
around the Mars, so only a maneuver is applied to adjust 
the velocity of the vehicle, and the differential correction 
method is not needed. 

 
lower the height of the periareon selected, the greater the 
atmospheric density becomes. Although the relative ve-
locities of the vehicle in the two atmospheric models are 
different, the gap between them is very small. In addition, 
the effect on the orbit of the Mars vehicle is more obvi-
ous in the rotating atmospheric model. Therefore, when 
the periareon is low, the time taken to reach the target 
orbit in the two atmospheric models is different; however, 
when the height of the periareon is high, the atmospheric 
density become smaller. Although the relative velocity 
value of the Mars vehicle and the atmosphere will in-
crease in the rotating atmospheric model, the difference 
in the time taken to reach the target orbit in the two 
atmospheric models is small because the rotational an-
gular velocity of the external rotation atmosphere of 
Mars is small. 

Table 4 shows the increment in the velocity of transfer 
from actual to target orbit with different periareons of the 
Mars vehicle in two different atmospheric models. From 
the contrast shown in the Table 4, it can be seen that, as 
the height of the periareon increases, the velocity incre-
ment consumption of the Mars vehicle in the two atmos-
pheric models shows a trend to increase. In addition, the 
consumption rate of increment for the detector under the 
rotating atmospheric model is bigger than that under the 
static atmospheric model. The biggest difference between 
these two models is about 10.8%. 

In the fourth stage, the two-body problem is consid-
ered, and the aerobraking method is applied. By com-
parative analysis of the simulation results of the dynam-
ics equations of the Mars vehicle in the static and rotat-
ing atmospheric environments, it can be observed that, in 
the low periareon, because of higher atmospheric density, 
the differences in the orbital parameters between the ro-
tating and static atmospheric environments are higher, 
thus, the time taken by the Mars vehicle to reach the tar-
get orbit is different in the two atmospheric models, and 
the time gap is marked. Moreover, when the periareon in 
two atmospheric environment models is of the same 
height, the inclination and longitude of the ascending 
node of the orbit in the rotating atmospheric environment 
showed a subtle change, whereas that in the static at-
mospheric environment remained unchanged. 

4. Conclusions 

Transfer trajectory design for Mars exploration is apply-
ing combination of invariant manifolds, differential cor-
rection and aerobraking method. The whole transfer tra-
jectory is divided into four stages: the part from Earth 
parking orbit to Lyapunov orbit around Lagrange point 
L2 in Sun-Earth system, the part from Lyapunov orbits 
around L2 in Sun-Earth system to L1 in Sun-Mars system, 
the part from Lyapunov orbit around L1 in Sun-Mars 
system to the large elliptical orbit around Mars, and the 
part from the large elliptical orbit around the Mars to 
near-Mars parking orbit.  
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