Heterostructure Solar Cells Based on Sol-Gel Deposited SnO₂ and Electrochemically Deposited Cu₂O #### Akito Fukuda, Masaya Ichimura Department of Engineering Physics, Electronics and Mechanics, Nagoya Institute of Technology, Nagoya, Japan. Email: ichimura.masaya@nitech.ac.jp Received April 8th, 2013; revised May 11th, 2013; accepted May 20th, 2013 Copyright © 2013 Akito Fukuda, Masaya Ichimura. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. #### **ABSTRACT** To fabricate a heterostructure solar cell using environmentally friendly materials and low cost techniques, tin oxide (SnO₂) and cuprous oxide (Cu₂O) were deposited by the sol-gel method and the electrochemical deposition, respectively. The SnO₂ films were deposited from a SnCl₂ solution containing ethanol and acetic acid. The Cu₂O films were deposited using a galvanostatic method from an aqueous bath containing CuSO₄ and lactic acid at a temperature of 40°C. The Cu₂O/SnO₂ heterostructure solar cells showed rectification and photovoltaic properties, and the best cell showed a conversion efficiency of 6.6×10^{-2} % with an open-circuit voltage of 0.29 V, a short-circuit current of 0.58 mA/cm², and a fill factor of 0.39. **Keywords:** Sol-Gel Deposition; Electrochemical Deposition; Cu₂O; SnO₂; Solar Cell #### 1. Introduction The production of silicon solar cells is expanding, but not sufficiently fast, because of high cost and large energy consumption for the material purification and cell manufacturing. Thus extensive researches are going on, aiming the development of solar cells using cost-effective and environmentally benign materials prepared by simple low-cost techniques. In this work, we attempt to use tin oxide (SnO₂) deposited by a sol-gel technique for the n-type semiconductor of a solar cell. SnO2 thin films have been attracting interest since they have many important applications such as gas sensors [1,2] and transparent electrodes [3,4]. SnO₂ films have been fabricated by a number of techniques, including spray pyrolysis [5-6], sputtering [7-9], chemical vapor deposition (CVD) [10-12], and sol-gel deposition [3,13,14]. The sol-gel technique has several advantages, such as easy control of film thickness, ability to coat large area, and cost-effectiveness. In this work, we fabricate heterostructure solar cell based on sol-gel deposited SnO₂. It should be noted here that there are very few reports of application of SnO₂ for n-type layer of a heterostructure solar cell [15-18] although SnO₂ is often used as an electrode material. On the other hand, cuprous oxide (Cu₂O) has gathered much attention as a p-type absorption layer of solar cells owing to its suitable band gap around 2 eV, material abundance, and non-toxicity. The solar cells based on electrochemically deposited Cu₂O have been fabricated with pn heterojunction with ZnO [19-21], TiO₂ [22,23], and indium-tin-oxide (ITO) [24]. The highest solar conversion efficiency of 1.28% was obtained from ZnO/Cu₂O solar cell [19]. In this work, we attempt fabrication of heterostructure solar cells based on electrochemically deposited Cu₂O and sol-gel deposited SnO₂. One paper has been published on Cu₂O/SnO₂ heterostructure solar cells based on sputtered SnO₂ [16], but to our best knowledge, there are no reports on fabrication of heterostructure cells by a combination of sol-gel deposition of SnO₂ and electrochemical deposition (ECD) of Cu₂O. #### 2. Experimentals ### 2.1. SnO₂ Deposition and Characterization SnO₂ films were deposited by the sol-gel method on ITO coated glass substrates. (For the XRD measurement, we used a glass substrate.) 0.7 M SnCl₂·2H₂O, 10 mL ethanol and 0.25 mL acetic acid were used as a starting source material, solvent and catalyst, respectively. The coating solution was stirred at 70°C for 30 min and aged at 40°C for 3 hours, and then dropped on the ITO substrate, which was rotated at 3000 rpm for 20 sec. Then, the films were dried at 150°C for 5 min. The procedures from the spin coating to the drying were repeated 2 - 5 times, and then the film was annealed in air at 300°C for 1 hour. The compositional analysis was carried out by Auger electron spectroscopy (AES) using the model JEOL JA-MP 7800. Profile meter Accretech Surfcom-1400D was used to measure the thickness of the film. The X-ray diffraction (XRD) measurement was carried out by the Rigaku SmartLab X-ray diffractometer using CuK α₁ radiation. The optical transmission measurement was performed using a JASCO-570 spectrometer with the ITO substrate as the reference. In addition, the conduction type and photosensitivity of the films were examined by means of the photoelectrochemical (PEC) measurements. The PEC measurement was carried out using the threeelectrode cell with saturated calomel electrode (SCE) as the reference electrode. The deposited film was used as the working electrode, and 100 mM of Na₂SO₃ was used for the electrolyte. The backside of the sample was illuminated by pulsed light coming from a Xe lamp (about 100 mW/cm²). The incident light was turned off and on mechanically every five seconds. A ramp voltage was applied between the working and the reference electrodes, and the released current was monitored. ## 2.2. Cu₂O/SnO₂ Heterostructure Fabrication and Characterization The heterostructure solar cells were fabricated by depositing Cu_2O by ECD on the SnO_2 film. We used a solution containing 0.2 M $CuSO_4$ and 1.6 M lactic acid. pH of the solution was adjusted to 12.5 by adding KOH. Cu_2O was deposited galvanostatically at $40^{\circ}C$ with a current density of -1.0 mA/cm². All samples were deposited for 10 min. Indium metal electrodes were deposited by thermal evaporation on the Cu_2O layer. The electrode size is 1 mm². Photovoltaic properties were characterized using an AM 1.5 solar simulator. The radiation power of light was about 100 mW/cm². The light was illuminated on the ITO side (SnO_2 side) of the sample. #### 3. Results and Discussion #### 3.1. SnO₂ and Cu₂O Films The thickness of the SnO₂ film was about 0.6 μm when the coating-drying cycle was repeated 3 times. The film is transparent in the visible range, and the band gap obtained from the optical transmission spectrum is 3.9 eV. The differential AES spectrum of the prepared film is shown in **Figure 1**. The O/Sn composition ratio obtained from it is about 2, *i.e.*, the film is almost stoichiometric. A weak chlorine signal was observed near 190 eV. The XRD pattern of the film deposited on the glass substrate is shown in **Figure 2**. The pattern shows three characteristic XRD peaks of SnO₂ with a broad background signal due to glass. The SnO₂ peaks are broad, which indicates that the SnO₂ film consists of nano crystallites. The PEC results for the SnO₂ film are shown in **Figure 3**. The current was not changed by illumination for the cathodic scan, while during the anodic scan, the current was changed due to the light chopping. When the junction of the semiconductor-electrolyte is illuminated, photogenerated electrons/holes are separated in the space charge region. The photogenerated minority carriers Figure 1. AES spectrum for sol-gel deposited SnO₂. Figure 2. X-ray diffraction pattern of sol-gel deposited SnO_2 . Figure 3. Photoelectrochemical measurement results for SnO_2 . arrive at the interface of the semiconductor-electrolyte to participate in the electrochemical reaction at the film/electrolyte interface. The current becomes more positive under the light illumination during the anodic scan. This implies that the minority carriers generated here are holes. Thus, the prepared film is n-type semiconductor. The film thickness of ECD-Cu₂O was about $0.7~\mu m$ and the direct band gap obtained from the optical transmission was about 2.5~eV. The PEC results for the Cu₂O film are shown in **Figure 4**. The current was not changed by illumination for the anodic scan, and thus only the results for the cathodic scan are shown there. Negative photo current was observed, which implies that the minority carriers generated here are electrons. Thus, the prepared film is a p-type semiconductor with a good photosensitivity. #### 3.2. Cu₂O/SnO₂ Heterostructures The heterostructures were fabricated with SnO_2 as a window layer and Cu_2O as an absorption layer. **Figure 5** shows I-V characteristic of the Cu_2O/SnO_2 heterostructure cell fabricated by repeating the coating-drying cycle 3 times for the SnO_2 deposition. The rectification and photovoltaic behaviors appeared. The heterostructure cells were fabricated with different repetition time of the coating-drying cycle, and the photovoltaic properties of all the samples are shown in **Table 1**. The properties strongly depends on the repetition number of the coat- Figure 4. Photoelectrochemical measurement results for ECD-Cu₂O. Table 1. Photovoltaic properties for the $\text{Cu}_2\text{O/SnO}_2$ heterostructure cells. | Number of coating-drying cycles for SnO ₂ | Open circuit
voltage
[mV] | Short circuit
current
[mA/cm ²] | Fill
factor | Efficiency [%] | |--|---------------------------------|---|----------------|----------------------| | 2 | 20 | 3.2×10^{-1} | 0.25 | 1.6×10^{-3} | | 3 | 290 | 5.8×10^{-1} | 0.39 | 6.6×10^{-2} | | 4 | 75 | 4.9×10^{-1} | 0.27 | 1.0×10^{-2} | | 5 | 10 | 7.8×10^{-2} | 0.27 | 2.3×10^{-4} | Figure 5. I-V characteristic of the heterostructure cell consisting of sol-gel deposited SnO₂ and ECD-Cu₂O. The coating-drying cycle was repeated 3 times in the sol-gel process. The inset is an expanded figure of photovoltaic properties. ing-drying cycle, and the highest efficiency of 6.6×10^{-2} % was obtained with three times repetitions. The reason for dependence on the repetition number is not understood. The film thickness increases in proportion to the repetition number, and too large thickness may results in generation of defects such as crack because of strain. Since each of the layers in the heterostructure showed fairly high photosensitivity as shown in **Figures 3** and **4**, the poor photovoltaic characteristics will be due to some disorder at the interface. Apparently, the SnO₂ layer did not dissolve in the Cu₂O deposition solution, but we cannot exclude possibility that the SnO₂ surface reacted with the Cu₂O deposition solution, to form a thin defective layer. Another possible reason of the poor performance is the Cu₂O/electrode interface. The forward characteristics under the illumination is not a simple diode curve but has a plateau around 0.7 V. This may be due to non-ohmic characteristics of the interface with the electrode. #### 4. Conclusion SnO_2 films have been deposited by the sol-gel method. The films showed clear n-type conduction and photosensitivity. We have fabricated Cu_2O/SnO_2 heterostructure cells by depositing Cu_2O by ECD on the sol-gel deposited SnO_2 layer. Rectification property was observed, and the best cell showed an efficiency of 6.6×10^{-2} % under AM1.5 illumination. #### 5. Acknowledgements We would like to thank Dr. M. Kato for the useful discussion. #### REFERENCES C. Cobianu, C. Savaniu, P. Siciliano, S. Capone, M. Utriainen and L. Niinisto, "SnO₂ Sol-Gel Derived Thin Films for Integrated Gas Sensors," Sensors and Actuators - B: Chemical, Vol. 77, No. 1, 2001, pp. 496-502. - [2] W. Schmid, N. Barsan and U. Weimar, "Sensing of Hydrocarbons with Tin Oxide Sensors: Possible Reaction Path as Revealed by Consumption Measurements," Sensors and Actuators B: Chemical, Vol. 89, No. 3, 2003, pp. 232-236. doi:10.1016/S0925-4005(02)00470-7 - [3] S.-C. Leen, J.-H. Lee, T.-S. Oh and Y.-H. Kim, "Fabrication of Tin Oxide Film by Sol-Gel Method for Photovoltaic Solar Cell System," *Solar Energy Materials and Solar Cells*, Vol. 75, No. 3, 2003, pp. 481-487. - [4] Y. Wang, I. Ramos and J. J. Santiago-Aviles, "Optical Bandgap and Photoconductance of Electrospun Tin Oxide Nanofibers," *Journal of Applied Physics*, Vol. 102, No. 9, 2007, Article ID: 093517. - [5] S. Shanthi, C. Subramanian and P. Ramasamy, "Growth and Characterization of Antimony Doped Tin Oxide Thin Films," *Journal of Crystal Growth*, Vol. 197, No. 4, 1999, pp. 858-864. - [6] E. Shanthi, "Electrical and Optical Properties of Undoped and Antimony-Doped Tin Oxide Films," *Journal of Applied Physics*, Vol. 51, No. 12, 1980, pp. 6243-6251. doi:10.1063/1.327610 - [7] H. W. Lehmann and R. Widmer, "Preparation and Properties of Reactively Co-Sputtered Transparent Conducting Films," *Thin Solid Films*, Vol. 27, No. 2, 1975, pp. 359-368. doi:10.1016/0040-6090(75)90041-3 - [8] K. Suzuki and M. Mizuhashi, "Structural, Electrical and Optical Properties of r.f.-Magnetron-Sputtered SnO₂:Sb Film," *Thin Solid Films*, Vol. 97, No. 2, 1982, pp. 119-127. doi:10.1016/0040-6090(82)90221-8 - [9] H. Ahna, J. H. Noha, S.-B. Kima, R. A. Overfelta, Y. S. Yoonb and D.-J. Kim, "Effect of Annealing and Argonto-Oxygen Ratio on Sputtered SnO₂ Thin Film Sensor for Ethylene Gas Detection," *Materials Chemistry and Physics*, Vol. 124, No. 1, 2010, pp. 563-568. doi:10.1016/j.matchemphys.2010.07.012 - [10] D. Davazoglou, "Optical Properties of SnO₂ Thin Films Grown by Atmospheric Pressure Chemical Vapour Deposition Oxiding SnCl₄," *Thin Solid Films*, Vol. 302, No. 1, 1997, pp. 204-213. doi:10.1016/S0040-6090(96)09601-0 - [11] G. Sanon, A. Banerjee and A. Mansingh, "Growth and Characterization of Tin Oxide Films Prepared by Chemical Vapour Deposition," *Thin Solid Films*, Vol. 190, No. 2, 1989, pp. 287-301. doi:10.1016/0040-6090(89)90918-8 - [12] M. Maleki and S. M. Rozati, "Structural, Electrical and Optical Properties of Transparent Conducting SnO₂ Films: Effect of the Oxygen Flow Rate," *Physica Scripta*, Vol. 86, No. 1, 2012, Article ID: 015801. doi:10.1088/0031-8949/86/01/015801 - [13] T. M. Racheva and G. W. Critchlow, "SnO₂ Thin Films Prepared by the Sol-Gel Process," *Thin Solid Films*, Vol. 292, 1997, pp. 299-302. #### doi:10.1016/S0040-6090(96)08956-0 - [14] M. A. Dal Santos, A. C. Antunes, C. Ribeiro, C. P. F. Borges, S. R. M. Antunes, A. J. Zara and S. A. Pianaro, "Electric and Morphologic Properties of SnO₂ Films Prepared by Modified Sol-Gel Process," *Materials Letters*, Vol. 57, 2003, pp. 4378-4381. doi:10.1016/S0167-577X(03)00328-8 - [15] J. Calderer, J. Esta, H. Luquet and M. Savelli, "Preparation and Characterization of SnO₂ (Spray)/CdTe (n or p) Photovoltaic Cells," *Solar Energy Materials*, Vol. 5, 1981, pp. 337-347. doi:10.1016/0165-1633(81)90003-4 - [16] L. Panadimitrious, N. A. Economou and D. Trivich, "Heterojunction Solar Cells on Cuprous Oxide," *Solar Cells*, Vol. 3, 1981, pp. 73-80. doi:10.1016/0379-6787(81)90084-3 - [17] M. Ristov, G. Sinadinovski, M. Mitreski and M. Ristova, "Photovoltaic Cells Based on Chemically Deposited p-Type SnS," *Solar Energy Materials and Solar Cells*, Vol. 69, 2001, pp. 17-24. doi:10.1016/S0927-0248(00)00355-X - [18] J. J. M. Vequizo and M. Ichimura, "Fabrication of Electrodeposited SnS/SnO₂ Heterojunction Solar Cells," *Japanese Journal of Applied Physics*, Vol. 51, 2012, Article ID: 10NC38-1-4. doi:10.1143/JJAP.51.10NC38 - [19] M. Izaki, T. Shinagawa, K. Mizuno, Y. Ida, M. Inaba and A. Tasaka, "Electrochemically Constructed p-Cu₂O/n-ZnO Heterojunction Diode for Photovoltaic Device," *Journal* of Physics D: Applied Physics, Vol. 40, 2007, pp. 3326-3330. doi:10.1088/0022-3727/40/11/010 - [20] K. Akimoto, S. Ishizuka, M. Yanagita, Y. Nawa, G. K. Paul and T. Sakurai, "Thin Film Deposition of Cu₂O and Application for Solar Cells," *Solar Energy*, Vol. 80, No. 6, 2006, pp. 715-722. doi:10.1016/j.solener.2005.10.012 - [21] J. Katayama, K. Ito, M. Matsuoka and J. Tamaki, "Performance of Cu₂O/ZnO Solar Cell Prepared by Two-Step Electrodeposition," *Journal of Applied Electrochemistry*, Vol. 34, No. 7, 2004, pp. 687-692. doi:10.1023/B;JACH.0000031166.73660.c1 - [22] Y. Luo, L. Wang, Y. Zou, X. Sheng, L. Chang and D. Yang, "Electrochemically Deposited Cu₂O on TiO₂ Nanorod Arrays for Photovoltaic Application," *Electrochemical and Solid-State Letters*, Vol. 15, No. 2, 2012, pp. H34-H36. doi:10.1149/2.016202esl - [23] A. R. Zainun, T. Sakamoto, U. M. Noor, M. Rusop and M. Ichimura, "New Approach for Generating Cu₂O/TiO₂ Composite Films for Solar Cell Applications," *Materials Letters*, Vol. 66, 2012, pp. 254-256. doi:10.1016/j.matlet.2011.08.032 - [24] V. Georgieva and M. Ristov, "Electrodeposited Cuprous Oxide on Indium Tin Oxide for Solar Applications," Solar Energy Materials and Solar Cells, Vol. 73, 2002, pp. 67-73. doi:10.1016/S0927-0248(01)00112-X