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ABSTRACT 

The supposedly missing dark energy of the cosmos is found quantitatively in a direct analysis without involving ordi- 
nary energy. The analysis relies on five dimensional Kaluza-Klein spacetime and a Lagrangian constrained by an auxil- 
iary condition. Employing the Lagrangian multiplier method, it is found that this multiplier is equal to the dark energy 

of the cosmos and is given by          2 2 2 21 22mc2 21 22 5 2E D mc k k mc          where E is energy, m 

is mass, c is the speed of light,  5 1 2    and   is the Lagrangian multiplier. The result is in full agreement 

with cosmic measurements which were awarded the 2011 Nobel Prize in Physics as well as with the interpretation that 
dark energy is the energy of the quantum wave while ordinary energy is the energy of the quantum particle. Conse- 
quently dark energy could not be found directly using our current measurement methods because measurement leads to 
wave collapse leaving only the quantum particle and its ordinary energy intact. 
 
Keywords: Dark Energy of the Schrödinger Wave; Quantum Measurement and the Missing Energy of the Cosmos; 

Revising Einstein’s Relativity; Kaluza-Klein Dark Energy; Lagrangian Multiplier as Dark Energy; 
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1. Introduction 

The present work proposes a resolution for the missing 
dark energy of the cosmos [1-3], which according to the 
latest highly sophisticated cosmic measurements and 
analyses, constitutes one of, if not the most important 
problems facing not only cosmology but also theoretical 
physics at large [1-13]. 

There are in the meantime very strong founded feel- 
ings that the discrepancy between theory and measure- 
ment is due to the pressing need for a theory of quantum 
relativity [14] or if you want quantum gravity [13-19] 
which takes into consideration not only relativistic effect 
but also quantum mechanical non-locality [20] and quan- 
tum entanglement [21-25]. More general the discrepancy 
may be a blessing in disguise motivating and amply jus- 
tifying a reappraisal of not only relativity [7-9] but also 
quantum mechanical foundational problems and in par- 
ticular the deep meaning of the concept and reality of 
energy within the framework of the wave-particle duality 
[5,8,9] leading to dark energy-ordinary energy comple-
mentarity [15-30]. 

There are several strategies and corresponding theories 
and methods to tackle the problems of computing the 
density of the dark energy of the cosmos [1-12,31,32]. 
Roughly speaking, these could be divided globally into 
two categories. Either one attempts to calculate the ordi- 
nary energy and then subtract it from the total theoretical 
value given by Einstein’s theory [1-12] or one could try 
to determine the dark energy density directly without 
determining the corresponding magnitude of ordinary 
energy first. At the end the final result must of course 
remain the same [32]. 

In earlier work [9,16,31] it was established that ordi- 
nary energy density is given by   2 5 2E O mc   
where  2 5 1  which is approximately equal to  

2 22mc  in excellent agreement with measurements 
[1-4]. Consequently dark energy must be given by 

      
   

2 5

5 2

Einstein 2

5 2 .

E D E mc

mc





 


        (1) 

where  2EinstienE mc . This is approximately equal 
to [32]. 
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   2 21 22mc

 

.           (2) E D 

In the present work we proceed directly to calculating 
E(D) from first principles without any reference to ordi- 
nary energy: 

2 22.mc

 

D O  

We mention in anticipation of the following sections 
that our main tools which we use to achieve our goal will 
be a combination of Noether’s theorem [5], the symmetry 
groups of the standard model [5] and a simple Lagran- 
gian (£) endowed with a multiplier   to account for 
certain auxiliary conditions (G) connected to symmetry 
and dimensions constraining the variation of the Lagran- 
gian [9,33]. In anticipation of the main conclusion of the 
present work we stress that our failure to measure the 
dark energy is unambiguously linked to the act of meas- 
urement itself which leads to the collapse of the quantum 
wave which is the reason for the existence of dark energy 
and we are left with the ordinary energy of the quantum 
particle only i.e. the measured 4.5 percent of the total 
energy of the cosmos [1-4,16,32]. 

2. The Standard Model and Kaluza-Klein 
Spacetime 

The main idea behind the present strategy of calculating 
the dark energy is to calculate a density ratio representing 
the degree of emptiness or what is equivalent the sparse- 
ness of elementary messenger particles with respect to 
empty space [5,9]. To do this we have to quantify the 
relevant inherent values of particles and space. It is 
self-evident that the first is given directly by the number 
of elementary messenger particles of the standard model 
[5,34], while the second is slightly more involved and 
requires us to think deeply about the compactified di-
mensions of the bosonic space of the strong interactions 
as well as the Kaluza-Klein D = 5 unification of gravity 
and electromagnetism [26,27,29,30]. We start with the 
messenger particles of the standard model. 

2.1. Lie Symmetry Groups and the Standard 
Model 

At the time when Einstein and others considered the 
problems leading to the special theory of relativity 
around 1905 [5,35-37], nothing was then known about 
the elementary particles except for the electron and the 
photon and Maxwell’s electromagnetic field theory [5]. 
In the meantime we have an almost complete standard 
model which beside the photon (U(1)) consists of an ad-
ditional eleven messenger particles, 8 Gluons for the 
strong force in addition to three weak force massive 
bosons  [5,9]. These particles corre-
spond to the 11 + 1 = 12 generators of the combined Lie 

symmetry group of the standard model [5,9,19] 

     3 2 1 8 3 1 12SU SU U    

     

        (3) 

i.e., twelve massless gauge bosons [9,19]. 

2.2. Bosonic Strings Dimensions and 
Kaluza-Klein Spacetime 

To unify gravity with electromagnetism [5], T. Kaluza 
first and O. Klein later on proposed a curved five dimen-
sional extension of Einstein’s general relativity [26,27]. 
Much later the 26 dimensional bosonic string theory was 
developed and was motivated by the experimental suc-
cess of Veneziano’s dual resonance model and Nambu 
strings [17]. Thus a maximum of 26 dimensions are 
needed and a minimum of five dimensions are required 
for the partial electromagnetic gravity unification [5]. 
The preceding information is reasonably sufficient to 
start our dark energy analysis. 

3. Dark Energy Density in the Universe 

3.1. Messenger Particles Density in D = 5 
Kaluza-Klein Space 

In Heterotic string theory we have 16 extra dimensions 
and 26 running in the opposite direction [17]. Taking out 
the five K-K spacetime dimensions, we are left with 16 – 
5 = 11 and 26 – 5 = 21 dimensions [5,9,17,18]. We note 
that this eleven (11) corresponds to the 12 messenger 
particles of the standard model minus the single photon 
of U(1) involved in special relativity which is indirectly 
included in the Kaluza-Klein unification of gravity with 
electromagnetism [26,27,29]. Seen in this way, the den-
sity of the messenger particles with respect to “non-util- 
ized space” is given approximately by [5,19] 

   

0, andW W Z 

   

26 953 2 1 1

12 1 26 5 11 21

G SU SU U U D D    
   

 (4) 

We note that this G will play a fundamental role in our 
analysis. 

3.2. Noether’s Theorem and Lagrangian in 
Multiplier λ Constraint on the Energy 

Noether’s theorem [5,19] shows us clearly the vital con-
nection between symmetry, quantum particles and the 
conservation of energy. Thus the 12 – 1 = 11 messenger 
particles which are materialized by symmetry breaking 
bifurcation must be taken into account via the Lagran-
gian multiplier method to account for the constraint on 
energy in contrast to freely variating Newton’s kinetic 
energy when we let the velocity v tend to the velocity of 
light c. The same applies to the 26 – 5 = 21 compactified 
bosonic dimensions [17]. 
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3.3. Isoperimetric Variation Function Leading to 
Dark Energy E(D) 

Next we write down a simple energy function playing the 
role of a Lagrangian in terms of a state variable “a” 
which need not be specified for the present purpose [33] 

2 21
v G a  

 
£

2
V m                (5) 

The leading positive term in the bracket is clearly 
nothing more than Newton’s kinetic energy while   is 
a Lagrangian multiplier and G is the constraining auxil- 
iary condition [33]. 

Letting the velocity  the energy function of (5) 
becomes 

v c

 2 21
11 22 a 


 

2 0V 

2
V mc            (6) 

where c is the speed of light. 
Finally for a stable steady state solution given by van-

ishing of the second variation  one obtains 

 11 21 0
2

 21
mc                (7) 

Solving for   one finds 

   2 22 E D

2E mc

21mc              (8) 

Thus dark energy is a scaling of Einstein’s famous 
equation  using a Weyl-Nottale scaling [7,19] 
exponent equal to 21 22 

   

. 
Furthermore, we gain a new and marvellous equation 

resulting from summing up ordinary energy E(O) and 
dark energy E(D) and finding Einstein’s energy 

   
 

21 22 21 22

Einstein

E O E D mc   

 

2mc E


 

       (9) 

exactly as we hoped and quite honestly as we expected 
from the outset [9,16]. 

3.4. The Transfinitely Exact Analysis 

To arrive at the exact expression for dark energy density 
which we know from the set-theoretical E-Infinity quan-
tum mechanics to be [16,31] 

  2 25 2 mc

412 2

E D                (10) 

and derive this formula without resorting to our funda- 
mental result, namely that ordinary energy is the energy 
of the quantum particle while dark energy is the energy 
of the quantum wave as per the wave-particle duality, we 
proceed as follows: 

From fractal logic [34] we know that the fractal weight 
of the number of the 12 gauge bosons of the standard 
model is not 12 but the transfinite fuzzy value   

which means [19,34] 

          (11) 012 11.70820393 

In addition the photon is given by the fractal weight 
number  5 1 2 0.618033989     rather than the 
classical unity [19, 34]. Consequently one finds [34] 

  5
012 1 11 11N SM         (12)       

where 0 0137 k   is the inverse theoretical electro-
magnetic fine structure constant,  5 5 1k    
0.082039325 5

0  
 and  is Hardy’s probability of quantum 

entanglement [20,23,25]. Similarly, the 26 bosonic string 
dimensions are actually 26 + k where  3 31k    
0.18033989

 26 26 26.18033989D  

 
 which translate to [33] 

             (13) 
Proceeding as in the integer analysis but using our new 

transfinite fractal weight values, we find the correspond-
ing Lagrangian 

5
21 11

£
2 26 5

V mc
k


 

      
2 0V

         (14) 

  gives Consequently 

   

2
5

2

1 21 1

2 11

21 22

mc

mc k k




 
   
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           (15) 

  

In other words the dark energy density is given by 

    2 2 25 2 21 22E D mc mc         (16) 

in full harmony with our previous integer approximation 
analysis of Section 3.3. The result given by (16) is con-
firmation of the fact that dark energy is the energy of the 
Schrödinger quantum wave [32]. This has considerable 
implications on both the theoretical and experimental 
level. 

4. Conclusions 

A method for determining the dark energy density of the 
cosmos is presented based on the concept of gauge boson 
density in a D = 5 Kaluza-Klein spacetime combined 
with 26 dimensional bosonic string space and using No-
ether’s theorem. It was found that the multiplier   con-
straining the corresponding Lagrangian is equal to the 
dark energy density 

    2 2 25 2 21 22E D mc mc       (17) 

This is the complementary energy of the quantum par-
ticle and refers exclusively to the absolute value of the 
negative energy of the quantum wave [32]. The result is 
in superb agreement with the measurement executed by 
the research teams of the three 2011 Nobel Laureates of 
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dark energy [1,4,11]. Finally it is vital to note that dark 
energy is of opposite sign to ordinary energy. Noting that 
ordinary energy is obviously connected to attracting 
gravity, it follows logically that dark energy is the cause 
of anti-gravity, i.e. it is behind the observed puzzling 
increase in the rate of cosmic expansion [1-4,10-12]. In 
other words   plays the role of a cosmological constant 
without putting anything by hand as in some alternative 
theories [2,3,5]. Finally we should stress that our failure 
to measure dark energy is basically connected to the 
measurement problem of quantum mechanics [5,25]. 
Since measurement collapses the quantum wave [5] there 
is currently no means for a direct measurement of the 
dark energy of the wave unless we find a way for a col- 
lapse free measurement. This maybe the most important 
lesson we could learn from the entire problem of the 
missing dark energy of the cosmos [1-4,9-12,16,32]. 
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