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ABSTRACT 

This theoretical study reports results on acoustic wave propagation along the interface of two half-spaces representing 
cubic crystals of both piezoelectric classes 43m and 23 with strong piezoelectric effect. In similar configurations, the 
interfacial Maerfeld-Tournois waves can propagate along the interface of two transversely-isotropic materials of class 
6 mm, in which the shear-horizontal surface acoustic waves (SH-SAWs) called the Bleustein-Gulyaev (BG) waves can 
also exist. Cubic piezoelectrics cannot support existence of the surface BG-waves, according to the recent report by 
Gulyaev and Hickernell. Hence, new interfacial SH-waves are studied in this paper concerning unique direction [101] 
of wave propagation in cubic crystals using different electrical boundary conditions (EBCs) of both metallized and 
non-metallized interfaces. The new interfacial SH-waves can always propagate along the interface of two identical 
piezoelectric crystals with opposite polarization. In this case, the calculated velocities for both EBCs coincide with the 
velocity of the ultrasonic surface Zakharenko wave (USZW) propagating in direction [101] on the metallized surface of 
a cubic piezoelectrics. It was also found that the new interfacial SH-waves can exist when wave propagation is along 
the interface of two dissimilar half-spaces, for instance, the piezoelectric cubic crystals Bi12SiO20 and Bi12GeO20. 
Several calculations are also carried out as examples. PACS: 51.40.+p, 62.65.+k, 68.35.Gy, 68.35.Iv, 68.60.Bs, 
74.25.Ld. 
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for “Latent” Waves 

1. Introduction 

The theoretical investigations carried out in 1971 by 
Maerfeld and Tournois [1] introduced an acoustic 
shear-horizontal (SH) wave guided by the common inter-
face of two semi-infinite media, if at least one of the me-
dia is a piezoelectric material. Maerfeld and Tournois 
have stated the existence conditions for such waves 
called the interfacial Maerfeld-Tournois (MT) waves, 
which can also propagate along the interface of two iden-
tical transversely-isotropic crystals of class 6 mm, when 
the C-axes of the crystals are in opposite directions, sat-
isfying the perpendicularity condition of the wave 
propagation direction to an even-order symmetry axis. 
This is similar to the other shear-horizontal surface 
acoustic waves (SH-SAWs) simultaneously discovered 
by Bleustein [2] and by Gulyaev [3] in the late 1960s, 
which possess a hybridization between the mechanical 
displacement U2 and electrical potential φ = U4. These 

two types of SH-waves, namely the interfacial MT-waves 
and surface Bleustein-Gulyaev (BG) waves, can only 
propagate along surfaces of suitable crystal cuts of trans-
versely-isotropic crystals of the hexagonal and tetragonal 
classes 6 mm and 4 mm. It is thought that these surface 
SH-waves have deeper penetration length and lower en-
ergy loss than do surface Rayleigh waves [4]. Therefore, 
they can be easily excited and detected.  

The recent work [5] by Gulyaev and Hickernell noted 
impossibility of SH-SAW existence in piezoelectric cubic 
crystals. In addition, Ref. [6] discussed that SH-SAWs on 
electrically open or shorted surfaces of piezoelectric 
crystals of classes 622 and 422 cannot exist if the propa-
gation direction is perpendicular to six or four-fold axes. 
However, the surface BG-waves can be found as soon as 
the transversely-isotropic symmetry decreases from class 
622 to 6 or from class 422 to 4. It is noted that both the 
surface BG-wave and interfacial electro-acoustic MT- 
wave may be caused by interfacial crack propagation 
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between two dissimilar piezoelectric crystals.  
The purpose of this report is to introduce theoretical 

investigations of new interfacial SH-waves in piezoelec-
tric cubic crystals with the strong piezoelectric effect. 
The Chalcogenide family crystals (Tl3VS4 and Tl3TaSe4 
[7]) belonging to the cubic class 43m and possessing 
both zero temperature coefficients and strong piezoelec-
tric coupling, are examined. In spite of their very large 
potential interest, especially for moderate frequency and 
large bandwidth, such ternary thallium Chalcogenides 
Tl3TaSe4 are not commercially available, probably due to 
their mechanical softness and fabrication difficulties. 
However, the piezoelectric ceramics of the point group 
symmetry 23 (Bi12SiO20 and Bi12GeO20 [8] and Bi12TiO20 
[9]) can be used in piezoelectronics. Recently, new 
SH-SAWs [10] called the ultrasonic surface Zakharenko 
waves (USZWs) were discovered in such cubic piezo-
electrics with the strong piezoelectric effect. Note that 
some piezoelectrics display colossal enhancement of 
piezoelectricity [11]. It is noted that over several hundred 
piezoelectric materials, particularly piezoelectric ceram-
ics or composites, are known, for example see Ref. [12], 
having their intrinsic electromechanical coupling behav-
iors. They are widely used today for different applica-
tions such as filters and sensors, as well as actuators and 
ultrasonic generators.  

Concerning fabrication of a structure consisting of two 
dissimilar crystals, a process called wafer bonding is 
utilized in the semiconductor industry, allowing two dif-
ferent materials to be rigidly and permanently bonded 
along a plane interface, thus producing a composite 
bi-material [13]. It is noted that several hundred wafer 
bonding patents are annually deposited [14]. In addition, 
a similar second process called fusion bonding is used by 
the polymer industry to bring together two parts of dif-
ferent solid polymers, thus enabling the manufacture of a 
heterogeneous bi-material with specific properties 
[15,16]. In the first process, wafers of two different crys-
tals are stuck together through Van der Waals forces, 
after their surface has been mirror-polished. In the second, 
however, a fusion process followed by a cooling and 
consolidating period takes place at the interface. It is ob-
vious that it is important to be able to inspect the strength 
of the bonding, possibly through non-destructive ultra-
sonic evaluation. However, very few simple numerical 
investigations exist to compute the speed, etc., of interfa-
cial waves when they exist. 

2. Theory  

Figure 1 introduces a rectangular coordinate system (x1, 
x2, x3) so that the x1Ox3 sagittal plane is perpendicular to 
the even-order symmetry axis of a piezoelectric cubic 
crystal and the x1-axis demonstrates wave propagation in  

 

Monocrystal I 

x1
[101]

x3 

x2 0 

Interface

Monocrystal II 

 

Figure 1. The rectangular coordinate system with the 
x2-axis directed along the interface of two half-spaces 
where the x1-axis is directed perpendicular to the fig-
ure plane. 
 
direction [101]. It is necessary to write governing equa-
tions of linear piezoelasticity. Constitutive relations are 
written as follows:  

E
ij ijkl kl ijm mT C S e E      (1) 

m mij ij mn nD e S g E      (2) 

in which Tij and Sij are the stress and strain tensors, re-
spectively; Dm and Em are components of the electrical 
displacement and electrical field (Em = – ∂φ/∂xm where φ 
is the electrical potential); the indices i, j, k, l , m, and n 
run from 1 to 3. According to the Voigt notation, Cijkl, eijm, 
and gmn can be written as 6 × 6, 3 × 6, and 3 × 3 matrices 
standing for the elasticity, piezoelectricity, and dielectricity 
tensors, respectively. It is assumed that studied materials 
are free of body forces and inertial effects as well as body 
electric charge. The equilibrium equations are as follows: 
∂Tij/∂xj = 0 and ∂Di/∂xi = 0.  

The equation of motion of an elastic medium is written 
as follows:  

2

2
ik i

k

T

x t


 


 
U

     (3) 

where ρ and Ui denote the mass density and mechanical 
displacement components; t is time. Using equations 
from (1) to (3), the coupled equations of motion for a 
piezoelectric medium are written in the following forms:  
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l i
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 
 

   

   (4) 

with U4 = φ. Solutions of the homogeneous partial dif-
ferential Equation (4) of the second order are found in the 
following plane wave form:  
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 0
1 1 2 2 3 3expi iU U jk n x n x n x j t     

where the index i runs from 1 to 4; Ui
0 is an initial am-

plitude. The imaginary unity is defined as j = (–1)1/2 and 
ω is the angular frequency. k is the wavenumber in the 
k-space with the following components {k1, k2, k3} = k{n1, 
n2, n3} and {n1, n2, n3} are the directional cosines. {x1, x2, 
x3} are the components of real space.  

Leaving only equations for waves with polarization 
perpendicular to the sagittal plane and non-zero compo-
nents of the material tensors, the coupled equations of 
motion in Equation (4) can then be written in the follow-
ing convenient forms:  

2 2 2 2 2
2 2 4 4

44 16 342 2 2 2
1 3 1 3

U U U U U
C e e 2

2x x x x


     
    

      t
 

2 2 2 2
2 2 4 4

16 34 112 2 2 2
1 3 1 3

0
U U U U

e e g
x x x x

    
  

    




   (5) 

where the mechanical displacement component U2 is di-
rected along the x2-axis shown in Figure 1:  

 0
2,4 2,4 1 1 3 3exp phU U jk n x n x V t         (6) 

In Equation (6), the phase velocity is defined as vph = 
/k. Equation (5) describes wave propagation in direction 
[101] with e14 = e36 = 0 and the non-zero piezoelectric 
constants {e16, e34}. It is thought that such cuts of cubic 
crystals can be readily done. Note that all propagation 
directions perpendicular to direction [010] can exist giv-
ing C44 = C66 and g11 = g33 concerning piezoelectric cubic 
crystals. 

Using Equations (5) and (6), the tensor form of equa-
tions of motion can be written with corresponding 
GL-components in the Green-Christoffel equations: 

,  and 

 where n3 = k3/k. Therefore, the fol-

lowing system of two homogeneous equations must be 
resolved:  

 2
22 44 31GL C n 

 2
44 11 31GL g n  

2
24 42 16 34 34 3GL GL e e e n   



 2 0
222 44 4 24
0
442 44

0

0
ph t UGL C V V GL

UGL GL

          

  



    (7) 

The directional cosines in Equation (7) are defined as 
follows: n1 ≡ 1, n2 ≡ 0 and n3 = n3. Setting the determi-
nant of the coefficient matrix in Equation (7) equal to 
zero, several characteristics can be found such as a suit-
able phase velocity Vph satisfying boundary conditions 
discussed in the following section and four polynomial 
roots n3

(p)(Vph), as well as the functions U2
0(Vph) and 

U4
0(Vph). It is thought that it is convenient to utilize the 

functions U2
0(Vph) and U4

0(Vph) in the following forms: 

 and . 0
4U GL 42 4

Using the piezoelectric constants 16 34  for direc-
tion [101], the following polynomial can be introduced 
from Equation (7):  

0
2 4U GL 

e e 

 2 2 2
3 31 4e eK m Bm K 0     with 2

4

4ph
e

t

V
B K

V

 
  
 

(8) 

where m3 = 1 + n3
2. In Equation (8), Ke

2 is the static coef-
ficient of the electromechanical coupling (CEMC): 

 2 2
16 44 11eK e C g . Note that the speed VSH of the bulk 

SH-wave reads:  

 1 22
4 1SH t eV V K      (9) 

It is obvious that Equation (8) has two roots:  

   
 

2 2

1,2
3 2

16 1

2 1

e e

e

B B K K
m

K

  




2



   (10) 

Hence, four polynomial roots (eigenvalues) of Equation 
(7) are as follows:  

  1,2,3,4 1,2
3 1n     3m            (11) 

It is noted that the eigenvector {U2
0, U4

0} in Equation (7) 
can be obtained for each eigenvalue n3.  

Note that all complex roots can be calculated when the 
expression B2 – 16Ke

2(1 + Ke
2) under square root in 

Equation (10) is negative. This fulfills for Vph < VK ob-
tained from the following equation B2 – 16Ke

2(1 + Ke
2) = 

0 and defined by the following formula: 

4K K tV V  with 2 22 1K e e eK K K       (12) 

It is clearly seen that both the factor αK in Equation (12) 
and the function f(Ke

2) = (1 + Ke
2)1/2 in Equation (9) are 

functions of the CEMC Ke
2. Discussions about behavior 

of polynomial roots and the function αk can be found in 
Ref. [10]. However, it is necessary to briefly discuss that 
only complex polynomial roots can exist for Vph < VK and 
that for Ke

2 < K0
2 (K0

2 = 1/3) there are all imaginary roots 
for Vph > VK, but a very large Ke

2 > K0
2 gives real roots 

for Vph > VK. It is noted that only complex/imaginary 
roots with negative/positive imaginary parts for medium 
I/II in Figure 1 are chosen in order to have wave damp-
ing towards the each half-space depth from the common 
interface. Probably, surface waves cannot be found in the 
cubic crystals with a large Ke

2 > 1/3 in the Vph-range: VK 
< Vph < VSH. It is thought that a large Ke

2 can be observed 
in complex compounds, as well as in simple materials 
including piezoelectric cubic crystals. For instance, a 
single ferroelectric tetragonal (T) to paraelectric cubic 
phase transition is observed in the classic ferroelectric 
PbTiO3 with increase in temperature or pressure, accord-

Copyright © 2010 SciRes.                                                                               JEMAA 
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ing to the recent results obtained in Ref. [11].           І І І І ІІ І І
32 44 3 2 34 3 4

1,2

p p p p

p

T F C k U e k U


p     

3. Boundary Conditions for Interfacial 
SH-Waves          ІІ ІІ ІІ ІІ ІІІІ ІІ ІІ

32 44 3 2 34 3 4
1,2

p p p p

p

T F C k U e k U


p      (14) 

There is single boundary at x3 = 0 in Figure 1 represent-
ing the interface between two half-spaces, at which suit-
able requirements can be chosen. These several require-
ments called boundary conditions must be satisfied for 
propagation of the interfacial SH-waves, which must 
damp from the common interface towards depth of each 
half-space. Using the coordinate system in Figure 1, only 
eigenvalues with negative imaginary parts must be cho-
sen for the medium with negative values of the x3-axis. 
Also, only eigenvalues with positive imaginary parts 
must be chosen for the medium with x3 > 0. There are 
two mechanical boundary condition such as equality of 
the mechanical displacements U2 (U2

I = U2
II) where  

Note that the superscripts “I” and “II” are for the first and 
second media, respectively. There are two electrical 
boundary conditions at x3 = 0: continuity of the normal 
component D3 of the electrical displacements, where  

         І І І І ІІ І І
32 34 3 2 33 3 4

1,2

p p p p

p

D F e k U g k U


p     

         ІІ ІІ ІІ ІІ ІІІІ ІІ ІІ
32 34 3 2 33 3 4

1,2

p p p p

p

D F e k U g k U


p      (15) 

and continuity of the electrical potential U4 =  ( I =  II) 
where  

I I( )

1,2

I( )p p

p

F 


   and II II( ) II( )

1,2

p p

p

F


    І ІІ
2 2

1,2

p p

p

U F U


   and    ІІ ІІІІ
2

1,2
2

p p

p

U F U


    (13) 

and equality of the normal components of the stress ten-
sor, TI

32 = TII
32, where  



t  

2

   (16) 

Therefore, the boundary-condition determinant (BCD4) 
of fourth-order for the interfacial waves can be written 
using the following four homogeneous equations:  

I(1) I(2) II(1) II(2)
2 2 2 2

I I(1) I(1) I I(2) I(2) II II(1) II(1) II II(2) II(2)
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0

0

0

0

 
 
 
 
 
 

             (17) 

Using the mechanical and electrical boundary conditions at 
x3 = 0 such as U2

I = U2
II, σ32

I = σ32
II,  I = 0 and  II = 0, the 

BCD4 of the coefficient matrix for the case of metallized 
interface can be obtained from the following equations:  

I(1) I(2) II(1) II(2)
2 2 2 2

I I(1) I(1) I I(2) I(2) II II(1) II(1) II II(2) II(2)
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0

0

0

F

F

F

F

 
    

    
        
          

 

             (18) 

The complete mechanical displacement U2
Σ and elec-

trical potential φΣ = U4
Σ are written for each half-space as 

follows:  

     0
2,4 2.4 1 1 3 3

1,2

expp p p
ph

p

U F U jk n x n x V



    (19) 

The corresponding weight functions F(p) are found 
from Equations (17) and (18), which can give the same 
eigenvectors (U2

0(1), U4
0(1)) and (U2

0(2), U4
0(2)) for two 

equal eigenvalues n3
(1) = n3

(2) in each half-space and 
hence    1F F 

 1 2
. It is obvious that the weight factors 

 F F   will zero the complete mechanical dis-
placement U2

Σ and electrical potential φΣ in Equations (17) 

and (18). That can mean that they are “latent” character-
istics. On the other hand, eigenvalues n3

(1) ≠ n3
(2) give 

corresponding eigenvectors (U2
0(1), U4

0(1)) and (U2
0(2), 

U4
0(2)) as well as    1 2F F   resulting in non-zero dis-

placements, which must be equal at the interface damping 
towards the depth of both media.  

4. Results and Discussions  

Acoustic wave propagation along the common interface 
between two dissimilar piezoelectric materials has pecu-
liarities concerning choice of suitable materials to support 
the SH-waves. Maerfeld and Tournois in Ref. [1] have 
found that the interfacial SH-waves can always exist in 
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suitable cuts of the transversely-isotropic materials, in 
which the surface BG-waves can also exist. Note that the 
velocity of interfacial Maerfeld-Tournois (MT) wave in 
similar materials with opposite polarization coincides 
with the velocity VBGm of the surface BG-wave propagat-
ing along the metallized surface of transversely-isotropic 
piezoelectrics, VBGm = VSH[1 – (Ke

2/(1 + Ke
2))2]1/2 [2]. This 

can mean that some similarity occurs between the inter-
facial MT-waves and surface BG-waves when the trans-
versely-isotropic materials are treated. The velocity VBG 
of the BG-wave with the non-metallized surface is calcu-
lated with the following formula: VBG = VSH{1 – (Ke

2/[(1 
+ Ke

2)(1 + g11/g0)])
2}1/2. Due to the fact that the surface 

Bg-waves and the interfacial MT-waves cannot exist in 
piezoelectric cubic crystals, the existence of new surface 
SH-waves called the ultrasonic surface Zakharenko 
waves (USZWs) was studied in the cubic crystals (see 
Ref. [10]) and the new interfacial SH-wave existence is 
studied in this paper.  
The material constants and USZW characteristics for 
several cubic crystals with strong piezoelectric effect are 
listed in Tables 1 and Table 2, respectively. It was found 
that the velocities of the new interfacial waves with met-
allized interface are coincide with the VBGm. This is also 
true for the velocities of the interfacial MT-waves and the 
USZWs on the metallized surface. That illuminates 
common wave speed characteristics among the different 

waves. Therefore, they can be calculated with the for 
mula for VBGm written above. It is noted that all the above 
mentioned velocities were calculated using different 
boundary-condition determinants. However, it was found 
that the velocity of the USZWs on the non-metallized 
surface cannot be calculated with the formula for VBG. 
For instance, the formula for VBG gives the value of V1 ~ 
848.6 m/s instead of the Table 2 value of Vnew ~ 848.1 
m/s for Tl3TaSe4. The velocity V1 is significantly closer 
to the velocity vSH of bulk waves (see Table 2) than the 
true velocity Vnew obtained numerically. Therefore, it is 
obvious that the penetration depth of the USZWs in pie-
zoelectric cubic crystals will be smaller than that for the 
surface BG-waves in the transversely-isotropic 
monocrystals. This is an advantage of the USZWs. Note 
that all the wave characteristics were calculated with an 
accuracy of about 1 μm/s. This is useful and allows the 
distinguishing of Vph-solutions when they are close to 
each other.  

Figure 2 shows the phase velocity solutions for the new 
interfacial waves (Vin) in the Chalcogenides Tl3TaSe4 and 
Tl3VS4 pertaining to class 43m, Vin = Vnew,m, using simi-
lar materials for the acoustic systems with opposite po-
larization and both the metallized and non-metallized 
interfaces, Vin = Vin,m. The finding of Vin for the cubic 
crystals Bi12SiO20 and Bi12GeO20 of class 23 is shown in 
Figure 3 using the same configuration consisting of 

 
Table 1. The material constants: the material density ρ, non-zero elastic C44, piezoelectric e14 and dielectric g11 constants for the 
SH-wave propagation in the piezoelectric cubic crystals [7,8,9] with the strong piezoelectric effect. Note that the dielectric con-
stant of a vacuum is g0 = 0.08854 [10–10 F/m]; e16

[101] = – e14
[100] and e34

[101] = e14
[100]. The coefficient of electromechanical coupling 

(CEMC) Ke
2 in the last column was calculated with the following formula: Ke

2 = e14
2/(C44g11).  

Material Density, ρ [kg/m3] C44, 1010 [N/m2] e14
[100] [C/m2] g11/g0 Ke

2 

Tl3TaSe4 (43 m) 7280 0.410 0.320 10.1 0.2793 

Tl3VS4 (43 m) 6140 0.470 0.550 34.8 0.2089 

Bi12TiO20 (23) 11200 2.600 1.100 47.0 0.1118 

Bi12SiO20 (23) 9070 2.451 1.122 41.1 0.1412 

Bi12GaO20 (23) 9300 2.600 1.100 145.7 0.0361 

Bi12GeO20 (23) 9200 2.562 0.983 37.7 0.1131 

 
Table 2. The wave characteristics: the velocities VK, Vt4, and VSH (all in m/s) as well as the velocities Vnew and Vnew,m of the 
new-SH-SAWs (USZWs) on the free and metallized surfaces, respectively, for the piezoelectric cubic crystals with the strong 
piezoelectric effect when the wave propagation is along direction [101]. The last column lists the non-dimensional values of 
the CEMC K2 calculated with formula (20). Note that one can calculate that VBG(Bi12SiO20) = 1756.096654 m/s is larger than 
Vnew(Bi12SiO20) and the same occurs for VBG(Bi12GeO20) = 1760.569112 m/s. 

Material VK Vt4 VSH Vnew Vnew,m K2 

Tl3TaSe4 (43m) 846.9869546 750.4577358 848.8104580 848.125556 828.335498 0.047 

Tl3VS4 (43m) 948.1841318 874.9127458 961.9607843 961.927246 947.491302 0.030 

Bi12TiO20 (23) 1495.282953 1523.62350 1606.562692 1606.556882 1598.414906 0.010 

Bi12SiO20 (23) 1677.148081 1643.872053 1756.104245 1756.089613 1742.609095 0.015 

Bi12GaO20 (23) 1326.112526 1672.034367 1701.927576 1701.927574 1700.895518 0.001 

Bi12GeO20 (23) 1640.769006 1668.766793 1760.575183 1760.565157 1751.469403 0.010 
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Figure 2. The dependence of the boundary-condition deter-
minants (BCD4) on the phase velocity Vph for direction [101] 
of the new interfacial wave (Vin) propagation in the systems 
Tl3TaSe4 (a) and Tl3VS4 (b) with opposite polarization using 
the interface metallization (mBCD4) and non-metallized 
interface (BCD4).  
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Figure 3. The dependence of the boundary-condition deter-
minants (BCD4) on the phase velocity Vph for direction [101] 
of the new interfacial wave (Vin) propagation in the systems 
Bi12SiO20 and Bi12GeO20 with opposite polarization using the 
interface metallization (mBCD4) and non-metallized inter-
face (BCD4). 

 
similar materials. It was thought that the crystals 
Bi12SiO20 and Bi12GeO20 can be used together to support 
propagation of the new interfacial waves in dissimilar 

material, because their bulk SH velocities vSH are rela-
tively close to each other and also true for Vin. The BCD4 
behaviors for the dissimilar materials are shown in 
Figure 4, in which it is clearly seen that there are solu-
tions for the Bi12SiO20/Bi12GeO20 configuration. Using 
the normal polarization for the crystals Bi12SiO20 and 
Bi12GeO20, only the velocity Vin,m for the metallized in-
terface was found having the value of Vin,m  = 
1746.926119 m/s. The Vin,m value is larger than the value 
of Vnew,m for Bi12SiO20 listed in Table 2 and smaller than 
the value of Vnew,m for Bi12GeO20. However, the configu-
ration with the opposite-polarized crystals Bi12SiO20 and 
Bi12GeO20 demonstrates existence of both velocities Vin,m 
and Vin for the metallized and non-metallized interfaces, 
Vin,m = 1746.926119 m/s and Vin = 1747.138149 m/s. It is 
clearly seen that the values of Vin,m and Vin are close to 
each other but distinguishable in the calculations.  

In the case of known values of the Vin,m and Vin, the ex-
istence of the new interfacial waves for both the electrical 
boundary conditions allows evaluation of the coefficient 
of electromechanical coupling (K2): 

,2 2 in in m

in

V V
K

V


     (20) 

The value of K2 calculated with formula (20) is very 
small for the crystals with the strong piezoelectric effect 
(see the tables) and is equal to K2 ~ 0.000243. This is 
only ~ 0.0243% and significantly smaller than ~ 1% for 
Bi12GeO20 listed in Table 2. It is also noted that the in-
terfacial wave propagation can be studied in suitable 
two-layer structures consisting of various cubic piezo-
magnetics [17,18]. Note that a study of interfacial wave 
propagation in non-cubic piezomagnetics was recently 
introduced in Ref. [19].  
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Figure 4. The dependence of the boundary-condition deter-
minants (BCD4) on the phase velocity Vph for direction [101] 
of the new interfacial wave (Vin,m) propagation in the 
Bi12SiO20/Bi12GeO20 systems with normal (bold lines) and 
opposite polarization (normal lines) using the interface met-
allization (mBCD4) and non-metallized interface (BCD4). 
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5. Conclusions 

This theoretical report was concerned with the interfacial 
wave propagation in cubic crystals with strong piezoelec-
tric effect, in which the surface Bleustein-Gulyaev waves 
cannot exist. This was recently mentioned in Ref. [5] by 
Gulyaev and Hickernell. It was illuminated that the new 
interfacial waves can always be found in acoustic systems 
consisting of two half-spaces representing identical mate-
rials with opposite polarization. Also, the new interfacial 
waves can exist in dissimilar materials solidly coupled at 
their interface, for instance, in the Bi12SiO20/Bi12GeO20 sys-
tem, using the electrical boundary conditions of both the 
metallized and non-metallized interfaces. Note that the 
theoretically obtained results can be useful to design ex-
periments for measuring interfacial properties by the mi-
crowave technologies.  
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