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ABSTRACT 

This work investigates the dynamics of modulated waves in a coupled nonlinear LC transmission line. By means of a 
method based on the semi-discrete limit and in suitably scaled coordinates, we derive the two-dimensional NLS equa- 
tion governing the propagation of slowly modulated waves in the network. The exact transverse solution is found and 
the analytical criteria of stability of this solution are derived. The condition for which the network can exhibit modula- 
tional instability is also determined. The exactness of this analytical analysis is confirmed by numerical simulations 
performed on the exact equation of the network. 
 
Keywords: Two-Dimensional Nonlinear Schrödinger Equation; Exact Transverse Solution; Stability; Modulational 

Instability 

1. Introduction 

Nonlinear dissipative waves have attracted considerable 
attention in recent years as a result of their multiple ap- 
plications in many systems. These applications can be 
observed in different fields of the research. Among these 
domains, we can list biology, chemistry and physics to 
mention a few. In physics precisely, nonlinear electrical 
transmission lines (NETLs) are good examples to pro- 
vide a useful way to check how the nonlinear excitations 
behave inside the nonlinear medium. In particular, one of 
their importance lies on the easy and rapid technique to 
investigate the behavior of nonlinear excitations through- 
out the waveguide. Moreover, it allows investigations of 
new erotic designs. Following these introductive studies 
longtime after, a great number of works have been done 
on NETLs. Thus, the first nonlinear and dissipative 
transmission line was built by Hirota and Suzuki [1]. 
Several investigations have been done to improve this 
first line due to the fact that electrical transmission lines 
are very convenient tools to study the fascinating proper- 
ties of nonlinear waves [2,3]. Distributed electrical 
transmission lines that consist of a large number of iden- 
tical sections have been used for the experimental study 

of the propagation of Korteweg-de Vries (KdV) solitons  
which satisfy the famous KdV equation. It has been 
shown that the equation governing the physics of non- 
linear electrical line can be reduced to a cubic nonlinear 
Schrödinger equation or a pair of coupled nonlinear 
Schrödinger equations, the complex Ginzburg-Landau 
equation or the coupled complex Ginzburg-Landau equa- 
tions [4-6]. Recently, many works were done on NETLs 
by Tala and coworkers and by Togueu et al. [4,7]. The 
first authors show how to solve the crucial problem of 
mixing waves in coupled nonlinear LC transmission lines 
by using only half of the total number of additive linear 
inductors compared to that found in the literature; they 
also exploit the features of the modulational instability 
(MI) of each of two modes through the network. The 
second authors study the supratransmission phenomenon 
in a discrete electrical lattice with nonlinear dispersion; 
they introduce the driven Salerno equation describing the 
dynamics of modulated waves in a discrete nonlinear 
electrical transmission lattice submitted to a periodic 
driving source with constant amplitude and show that the 
driving amplitude must be slightly above the threshold to 
achieve a good supratransmission. 

MI leads to a self-induced modulation of an input *Corresponding author. 
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plane wave with the subsequent generation of localized 
pulses; it is responsible for many interesting physical 
effects such as the formation of envelope solitons [8]. A 
soliton can be viewed as the result of an instability that 
leads to a self-induced modulation of the steady state 
produced by the interaction between nonlinear and dis- 
persive effects. Marquié et al. [8,9] presented a careful 
and quantitative experimental analysis of modulational 
instability and the generation of either envelope or hole 
solitons, depending on an appropriate choice of the car-
rier wave frequency. The field of solitons in general and 
the field of Telecommunications solitons in particular 
have grown enormously since the word soliton was 
coined. Most of this growth occurred over the last 10 
years or so, during which many new kinds of Telecom-
munications solitons were identified. 

The purpose of this work is to conduct the linear sta- 
bility analysis of solitary waves propagating in coupled 
nonlinear LC transmission lines with respect to long- 
wavelength transverse perturbations on the basis of the 
nonlinear Schrödinger (NLS) equation. Therefore, our 
investigation of the transverse perturbations to the two- 
dimensional NLS equation of the NETLs may be helpful 
in other fields of physics. The paper is organized as fol-
lows: in Section 2, we present the basic characteristics of 
the coupled NETL under consideration; in the semi-dis- 
crete limit, we derive the amplitude equations and the 
two-dimensional NLS equation governing the propaga-
tion of slowly modulated waves in the network. The so-
lution of NLS, the stability and the condition for which 
our network can support the pulse solution are determined 
in Section 3. In Section 4, numerical experiments are done 
in order to verify the validity of the theoretical predictions. 
Finally, concluding remarks are presented in Section 5. 

2. Main Characteristics of the Coupled 
NETLs and Dynamic Equation 

The standard nonlinear discrete LC line is a structure 
made of elementary cells which consist of an inductance 
L and a nonlinear capacitor C(V) [10]. Many schematic 
electrical lattices have already been considered in the 
literature [4]. The model used in this work consists of a 
nonlinear network with many coupled nonlinear LC dis- 
persive transmission lines. We imagine that there are 
many identical dispersive lines which are coupled by 
means of inductance L3 at each node, as shown in Figure 
1. Each section of line consists of a constant inductor L1 
in the series branch and a nonlinear capacitor of capaci- 
tance C(Vn,m) in parallel with a constant inductor L2 in the 
shunt branch. The nodes in the system are labeled with 
two discrete coordinates n and m, where n specifies the 
nodes in the direction of propagation of the pulse, and m 
labels the lines in the transverse direction. 

 

Figure 1. Schematic representation of the NETL. 
 

In the network, nonlinearity is introduced by a varicap 
diode which admits that the capacitance varies with the 
applied voltage. The voltage dependence relation is as-
sumed to have a polynomial form given by 

  2 3
, 0 , , ,n m n m n m n mQ V C V V V   

0 , andC

          (1) 

where  
1 20.21V and 0.0197 V 
 are constants. In the present work, 

we set      . Applying Kir- 
choff’s laws to this system leads to the following set of 
propagation equations:  
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2
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Equation (2) is the differential equation governing the 
wave propagation in the network under consideration. As 
one can see, all of the lines have the same characteristic 
frequency. This is due to the fact that all of the lines are 
identical. 0  is the coupling frequency. The properties 
of the network can be studied by using a solution of the 
form 

   
   

i
,
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where      is the phase and “cc” stands for 
the complex conjugated of the preceding expression; k 
and q are the wave numbers respectively in the n and m 
direction;   is the angular frequency;   is a small 
parameter. For the semi-discrete approximation, we set  

 
 

2

g

g

t

x n v t

y m u t

 





   


 

                  (4) 

to obtain the short wavelength envelope solitons; vg and 
ug are the group velocities respectively in the n and m 
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direction. Substituting Equation (3) into Equation (2), we 
obtain different equations as power series of  . 

1) The coefficient of  , proportional to exp(iθ), gives 
the dispersion relation 

2 2 2
04 sin 4 s

k
U 2 2 2

0 0in
2 2

q    
 

πq 

 

   
 

     (5) 

This dispersion relation shows that our network is a 
band-pass filter. Figure 2 represents the evolution of the 
angular frequency in the first Brillouin zone for the n 
direction. To plot Equation (5), we fix . The group 
velocity is taken to be 

2
0 sinU k




2

gv                  (6) 

This group velocity is represented in Figure 3. 
2) The coefficient of  , proportional to exp(2iθ) 

leads to the following relation: 

   
2

2 2 2 2
0 0sin sin

B
U k





 

2
2 2

0 4
A

q 
3

   (7) 

3) From the coefficient of  , proportional to exp(iθ), 
 

 

Figure 2. Dispersion graph obtained with L1 = L2 = L3 = 0.22 
mH; C0 = 320 pF. 
 

 

Figure 3. Group velocity obtained for the same parameters 
as in Figure 2. 

we obtain the following two-dimensional nonlinear  
Schrödinger equation for A: 

2

1 2 3 0xx yy xyiA P A P A P A Q A A     
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        (8) 

with the following definitions 
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 (9) 

The numbers P1, P2 and P3 are the dispersion coeffi-
cients, while Q is the nonlinearity coefficient of the non-
linear Schrödinger equation. 

3. Solution and Stability of NLS 

The focal point here corresponds to the determination of 
the solution of Equation (8). Before the discovery of 
solitons, mathematicians thought that nonlinear differen-
tial equations could not be solved, at least not exactly. 
However, solitons lead to the recognition that through a 
combination of such diverse subjects as quantum physics 
and algebraic geometry, one can actually solve some 
nonlinear equations exactly. This innovation opens up a 
wide window in the world of nonlinearity [11]. With the 
development of soliton theory, many powerful methods 
for obtaining the exact solutions of NETLs have been 
presented [12-16]. In the present case, we use the varia-
tional method [17]. This method is a powerful solution 
method for the computation of exact traveling wave solu-
tions. Because of the complexity of the nonlinear wave 
equations, there is no unified method to find all solutions 
of these equations. Here, we look for a propagating wave 
under the form: 

            (10) 

where a(z) is the amplitude, g(z) is the phase,   repre-
sents the spectral parameter of the wave and z   

ex y v  
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      
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 the single variable for the amplitude, de-
pending on ve which is the velocity of the wave packet. 
By substituting Equation (10) into the two-dimensional 
NLS Equation (8), and equating real and imaginary parts 
to zero, the following two coupled ordinary differential 
equations are obtained: 

    

P P P P

      (11) 

where the prime stands for derivation with respect to z 
and 2 2 3   . By multiplying the first equation 
of (11) by a(z) and integrating once, it follows that the 
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phase g is related to the amplitude a(z) through the ex-
pression: 

2
1Pg a k

 
 2

ev
             (12) 

where k1 is the constant of integration, which can natu-
rally be taken as k1 = 0 for all continue solution at the 
origin a = 0. Taken then k1 = 0, Equation (12) yields 

2
ev

g
P

                   (13) 

By substituting Equation (13) into the second equation 
of (11), we arrive to the following differential equation 
satisfied by the amplitude a(z): 

2

0e a
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 

a

3

4

v
Pa Qa           (14) 

from which the first integral is obtained by multiplying 
Equation (14) by  and integrating the resulting equa-
tion: 

2
2 4

22 4
evQ
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P

   2 22k
a
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with k2, another constant of integration. Let us mention 
that, Equation (15) can be also derived from the auxiliary 
Hamiltonian H L and lagrangian  defined as follows: 

   
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            (16) 

This Hamiltonian may be viewed as the energy of a 
particle with an effective mass m(a) = 1 moving in the 
effective potential 

 
2
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2
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It is obvious that Equation (14) can be transformed 
into the following equivalent autonomous dynamic sys-
tem: 

2
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          (18) 

where solutions are the fixed points of the system. The 
number of equilibrium points, and consequently the dy-
namic of this system depend on the sign of the quantity 

2 4

4
ev P

PQ

 
0F                (19) 

In fact, when F0 > 0, the system (18) admits only the 

equilibrium point (0, 0) and consequently, no nonlinear 
localized wave (NLW) can be obtained. However, for F0 
< 0, the system admits three equilibrium points: (0, 0) 
and (0, ±Aeq), with 

24

4
e
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P v
A

PQ


               (20) 

From the linear stability analysis, it appears that the 
stability of these equilibrium points depends on the sign 
of the product PQ (the saddle point is obtained if  

 2

2

d
lim 0

deqa A
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a
 and the center point else). In fact,  

when PQ > 0, the equilibrium point (0, 0) is a saddle 
while the two others, (0, ±Aeq), are the centers. This 
analysis is confirmed by the phase plane plot of the sys-
tem sketched in Figure 4. (1) obtained for the numerical 
values of parameters: P = Q = 1.0, ve = 0.0 and Ω = 1.0; 
that is PQ > 0 and e

24 0P v  , in which closed tra-
jectories are presented. These trajectories indicate that 
small oscillations of the system as well as periodic solu-
tions are possible and are separated by the homoclinic 
orbit known as the separatrix characterizing the existence 
of pulse soliton or bright solitary waves (BSW) in the 
context of the NLS system. These BSW are nonlinear 
solutions of Equation (18) with the vanishing boundary 
conditions  
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where A0 is the maximum amplitude of the envelope 
wave. The condition (21) leads to the following con-
straint to be satisfied by the integrating constant k2 and 
the spectral parameter Ω 

2

2 00 and
4 2

ev Q
k A

P
   

24 0P v

         (22) 

However, when PQ < 0, there is a change in the prop-
erties of the above equilibrium points; (0, 0) becomes a 
center while (0, ±Aeq) are the saddle points. The phase 
plane plot sketched in Figure 4. (2), obtained for P = −Q 
= 1.0, ve = 0.0 and Ω = −1.0; that is PQ < 0 and 

e   show a changes in the behavior of the 
system. The closed and open orbits are now separated by 
the heteroclinic orbits which evidence the existence of 
dark solitary waves (DSW) which satisfying the non 
vanishing boundary conditions 

0 0

d
lim , 0 for , 1,2,

d

n
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a
a A a A n

z
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from which the following expressions of the spectral 
arameter and the integration constant are obtained: p    
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Figure 4. Phase plane plot (a), and the effective potential U(a) (b) of the system described by the NLS equation. The homo-
clinic orbit (a1) and the heteroclinic orbit (a2) are plotted in bolt lines. 
 

As for the particular case of solution with stationary 
phase in time (vp = 0), we have: 

2
4 2

0and
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evQ
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P
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2 0           (24) 

yright © 2013 Sci

The plot of the effective potential U(a) indicates the 
presence of a double wells when PQ > 0 and a single 
well for PQ < 0 which are in agreement with results of 
the phase plane plots. 

Now we focus our attention on the derivation of bright 
solution of the NLS. For this end, the integration constant 
k1 = 0, while k2 and the spectral parameter Ω will be tak-
ing as given in Equation (22); thus, Equation (15) can be 
rearranged as 

            (25) 

with 0

Q
A 

2P
;   is a parameter describing the  

pulse width. From Equation (13), the phase g(z) is given 
by 

 02
ev

g z z
P

 
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                 (26) 

where z0 is the initial position of the wave which can be 
equal to zero. Hence the solution of the NLS equation 
can explicitly be rewritten as: 
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
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vp is the carrier velocity, with the following expression 
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                 (28) 

2
0 02 andev A PQ QA   

2dN a z
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 
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          (29) 

Having found this solution, we then check its stability. 
The stability of the BSW is determined here by the de-
pendence of the norm (the power) on the velocity ve. 
Solitons are stable if dN/dve > 0 and unstable otherwise 
[18]. For the model considered here, N(ve) can be found  

analytically as , leading to: 

2
2 0
0 2

2d

cosh

Az
N A

z 



             (30) 

Substituting the ve obtained in Equation (29) into (30), 
one obtains  

2
ev

N
PQ



   i

0, , e
kx qy

A x y A

                (31) 

which is an increasing function of the envelope velocity 
for PQ > 0 and then pulse soliton is stable. 

To determine the conditions of instability of the modu-
lated waves in the network, we use the plane wave solu-
tion given below: 

  
 

2 2 2
1 2 3 0k P q P kqP QA      

         (32) 

By inserting Equation (32) into Equation (8), we have 
the following dispersion relation: 

          (33) 
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    0 1 cos 2π cos 2πm pV t V m f t f t   

m
1%m

The linear stability of this continuous wave can be in-
vestigated by looking for a solution of the form 
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 are small perturba-
tions for the amplitude and for the phase respectively; 
they can be writen as follow: 
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Substituting (34) and (35) into Equation (8), one ob-
tains a system for the perturbations. For the nontrivial 
solutions of this system, we then have: 
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It appears that the behavior of   depends on the  

quantity 
2 2

1 2 3

Q

P P P   

  2

3q k P    


. On one hand, if this quan-  

tity is negative, the plane wave solution of NLS equation 
is stable. On the other hand, if this quantity is positive,  

1 22 2k P q P       could be negative  

under certain conditions and the consequence is that the 
plane wave solution of NLS equation is unstable; hence, 
it appears MI phenomenon in the line. This instability 
induces the formation of small wave packets or envelope 
pulse solitons train, solution of the NLS equation (8).  

4. Numerical Experiments 

We present in this section the numerical experiments on 
the propagation of slowly modulated waves in the net-
work, this to check the analytical calculations presented 
in the previous sections. The numerical experiments are 
carried out in Equation (2) describing the propagation of 
waves in the NETL of Figure 1. The wave is introduced 
in the following form 

      (37) 

where fm is the modulation frequency, V0 is the amplitude 
of the wave and  is the modulation rate. We take fm = 
54 kHz, V0 = 0.2 V and 

32 10t

. A fourth-order Runge- 
Kutta algorithm has been used and a normalized integra-
tion time step     is used for numerical simu-
lations. Similarly, the number of cells N in the n direction 
is chosen to be equal to 3000 and we have used periodic 
boundary conditions so that we do not encounter the 
wave reflection at the end of the line. In the m direction, 
we have taken M = 18. The parameters of the network 
are the same as in Figure 2. This simulation is made in 
the case where k q  ,   2 2 3P P P P   that is . 
We take the carrier frequency fp = 1752 kHz. 

Figure 5 shows the evolution of the plane wave in the 
network. On this figure, we observe examples of the MI 
exhibited by the network. As time goes on, the wave ex-
hibits a modulation of its amplitude, which leads to the 
formation of wave packets which is in agreement with 
the analytical calculations. In the view to consolidate the 
validity of preceding results, we propagate the solution of 
the NLS since the above observed Benjamin-Feir insta-
bility constitutes the proof that the network can support 
envelope solitons. For this purpose, we take as input 
voltage the profile of a modulated soliton given by 

    sech cos 2πm g pV t V v t f t          (38) 

In Figure 6, we depict the time evolution of relation 
(38) in the line characterized by equation (2) for the same 
frequency as in Figure 5. This result confirms the fact 
that our network can support the pulse soliton. 

In this last figure the, we can observe the fission of 
two-bound solitons; this can be explained by the addi-
tional terms in the NLS equation. A similar phenomenon 
has been already obtained in the context of higher-order 
NLS by David Yemélé et al. [10]. 

5. Conclusion 

In this work, we have considered a system of coupled 
nonlinear dispersive transmission lines and we have 

 

cell 700, m = 10 cell 1000, m = 18

 
(a)                            (b) 

Figure 5. Propagation of waves through the network at the cell 700 for m = 10 (a) and at the cell 1000 for m = 18 (b). 
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Figure 6. Propagation of envelope soliton signal voltage as a function of cell number n at different times. The left column is 
obtained for t1 = 450 μs while the right is obtained for t2 = 850 μs. The parameters are the same as in Figure 5. 
 
shown that the voltage for the transmission lines is de-
scribed by a two-dimensional nonlinear Schrödinger 
equation. The exact transverse solution has been found 
and its stability has been studied. The condition for 
which the network can exhibit modulational instability is 
also determined and we observe a good agreement be-
tween analytical calculations and numerical simulations. 
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