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ABSTRACT 

We reexamine the charged AdS domain wall solution to the Einstein-Abelian-Higgs model proposed by Gubser et al. as 
holographic superconductors at quantum critical points and comment on their statement about the uniqueness of gravity 
solutions. We generalize their explorations from 3 + 1 dimensions to arbitrary n + 1 Ds and find that the 1 5Dn    
charged AdS domain walls are unstable against electric perturbations. 
 
Keywords: Quantum Critical Superconductors; Gauge/Gravity Duality 

1. Introduction 

The charged AdS domain walls are spaces interpolating 
two copies of anti-de Sitter space, one of which preserves 
the abelian gauge symmetry while the other one breaks it. 
The two sides of the domain walls have different AdS 
radius. 0Similar neutral domain walls (see [1,2] for ref-
erences), are believed to have been formed in the early 
universe. also be observed in condensed matter systems, 
including in superconductors [3-6]. In references [7,8], S. 
S. Gubser and collaborators proposed that the quantum 
critical behavior and the emergent relativistic conformal 
symmetry in superfluids or superconductivities in strongly 
coupled gauge theories can be described by charged AdS 
domain wall solutions in several Einstein-Abelian-Higgs 
models. These works are mainly concerned with 3 + 1 
dimension gravity theories and provide solutions they 
think be uniquely determined by the scalar field potential 
form and double boundary conditions. 

The purpose of this paper is to generalize these discus- 
sions to arbitrary space-time dimensions and study prop- 
erties of the charged AdS domain-wall. We will first in 
Section 2 point out that the double boundary conditions 
quotient by [7,8] are questionable and probably exclude 
the existence of solution families to the relevant dynamic 
equations. We then in Section 3 provide a new ansatz for 
the AdS domain walls and the corresponding equations 
of motion. The solution families in both 3 and 4 dimen-
sions are provided also in this Section. While in Section 
5 we study the electric perturbations to the solution and 
calculate the related electric-transporting coefficients. 

The last Section contains our main conclusions. 

2. About the Unique Solution of Domain 
Wall 

This Section has two purposes. The first is to provide 
basic ingredients to study the charged AdS domain walls. 
The second is to discuss the questionable aspects of ref- 
erence [7,8] about the uniqueness of charged AdS do- 
main wall solutions to the relevant equation of motion. 
The “uniqueness” of this two references states that, for 
an Einstein-Abelian-Higgs model system with given po-
tential form such the following (1) and (2), when speci- 
fying the ultraviolet asymptotical behavior of the scalar 
field, the domain wall solution to the system is unique. 
Our analysis in the following is mainly from technical 
aspects. For readers who are more willing to catch phys- 
ics by intuitions, we provide here a reason supporting 

First let us provide the basic ingredients of charged 
AdS-domain wall studyings. Taking the model of refer- 
ence [7] as an example 
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where we have adapted the dimension from 3 to arbitrary 
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n  and used   instead of reference [7]’s  to denote 
the scalar field self-coupling constant. Aiming at solu-
tions dual to emergent infrared (IR) conformal symme- 
tries, authors of reference [7] set ansatz 

u

 1 2d h dr x x2 2 2e Ads hdt d          (3) 

   dx r dt  , r A              (4) 

and require that in the infrared limit   sits on the 
global minimal of  V  , i.e. 2m  

1
 and 

, h  ir . While the ultraviolet limit of the solu-
tion is constrained by the dual field theory to be some 
specific AdS featured 
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Of these equations, the last one is looked as a con-
straint and the former 4 second order differential equa-
tions are solved numerically. The authors state that 
among the 8 integration constants: 1) one is used up by 
the constraint (9), 2) six are used up by the infra-
red-boundary conditions, i.e. as , (a)   ,  
(b) , (c) 0  irA r  h, (d) , (e) 1

    ir1

0er   r      , (f) ir ir3

ir e
r


  

r a   , 

3) the last one is determined by ultraviolet boundary 
condition that . So the solution to Equa-
tions (5)-(9) is unique, as long as the ultraviolet scaling 
dimension of the operator 

e
A
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a

 is fixed. There is no so- 
lution family parameterized by  . 

Here comes our standpoint against unique but sup- 
porting family of solutions. We have two reasons for our 
standpoint. The first is from physical analogue. Just as 
pointed out by reference [9] and we will emphasize in 
this paper, the charged AdS domain wall looks on many 
aspects very like charged extremal black branes [10]. 
Obviously, the charge density of extremal black branes 
can be changed freely as long as its mass density is 
changed synchronously. For the case of charged AdS 
domain walls, this is also the case. Changing the charge 

density of an AdS domain wall just corresponds to 
changing its chemical potential height and its wall- 
thickness, see the middle part of Figure 1, where the 
thickness of the wall can be defined as the characteristic 
width of the range of r  coordinate over which the  
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Figure 1. Domain wall solutions to Equations (5)-(9), rele-
vant parameters are chosen the same as [7], i.e.  1
q

, 
3 2 m,  2 2 ,  . In each figures, the lines labeled r, 

g, b represent three typical members from a solution family 
featured by a ; the unlabeled black lines represent the 

‘unique’ solution of reference [7], which is obtained by ap-
plying shooting method to a double boundary value prob-
lem. In obtaining the three non-unique solutions, we only 
solve a single boundary value problem where a  are set as 

1 ,  0.5 0.5

 a

,  freely. On the contrary, in obtaining the 
“unique’ solution by Mathematica’s NDSolve[ ,Method 

“Shooting”] command,  ’s initial guess is set as 

0.3126 with output a  1.62 . 

Copyright © 2013 SciRes.                                                                                 JMP 



D. F. ZENG, K. ZHAO 740 

scalar field varies ir  from  to uv . While all these  
things are implemented by changing the parameter a  
of the previous paragraph without changing the asym
totical behavior(equivalence of the conformal dimension 
of 

p-

 ) of the scalar field  . This implies that a  is a 
free tunable parameters i tead of fixed number deter-
mined by the form of scalar field potentials and the con-
formal dimension of the corresponding field theory op-
erators. This is our first, and probably the most strong 
reason supporting family instead of unique solutions to 
the Einstein-Abelian-Higgs model under the AdS-domain 
wall ansatz. 

Our secon

ly ns

d reason is from technique analysis. In the 
counting of integration constants consummation of ref- 
erence [7], re-expressed in the second paragraph of this 
paper, the conditions (a) and (f) are counted repeatedly. 
Because in the case (b), (c), (d), (e) are all satisfied, the 
field   becomes effectively a scalar field in an AdS 
space. In this case as long as the value of   is set to be 

ir , its asymptotic behavior    ir ir3

ir e
r

r a 
     

 
r   with aas   being  

be ed excl ively, with no other possibilities. 
This means that only one of the two conditions (a) and (f) 
is independent to construct a consistent boundary value 
problem. Of course, in computer code implementations, 
to assure that the number of boundary conditions be 
equal to the number of variables, we still need to write 
the boundary conditions as 
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tting me (1) accept   is an arbitrary 
in mtegration constant, while the setting ethod (1) intro-
duces no any tunable integration constant and try to de-
termine the value of a  through consistences of the 
double boundary value p blems. We do not know if the 
author of reference [7] used setting method (1) but we 
find that in Mathematica software which uses shooting 
method to solve double boundary conditions, this setting 
method can output results indeed! However, when we try 
to use other algorithms such as relaxations [11], whose 
principle is translating the double boundary value prob-
lem into problem of finding roots to a very large (the size 

is of the same order as the number of integration steps in 
solving differential equations) algebraic matrix equations, 
the boundary setting method (1) always yields singular 
results. The singularity occurs just due to the fact that 
two conditions of (12) and (13) are repeatedly used, so 
the relevant matrix has two columns proportional to each 
other and not-invertible. 

For further supporting

ro

 the above reasonings, we si- 
multaneously solved the double boundary value problem 
of [7] using shooting method and the single(infrared only, 
let a  vary freely) boundary-value problem by the 
usua ntegration method. To make comparisons, we 
choose totally the same parameters as [7] and reproduce 
its results faithfully. Our result is illustrated in Figure 1. 
From numerical investigations, we observed the follow-
ing fact, 1) in reproducing the unique solution of [7], we 
used the NDSolve[ ,Method “Shooting”] command 
of Mathematica soft re, which equires us to provide an 
initial guess for parameter a

l i

wa  r

 . By general wisdom, its 
output should not depend on his guess too sensitively. 
But we find that, this is not the case. For example, as we 
vary a

 t

  from 0.3126 to 0.312, warmings appear which 
tell us that the shooting results may not converge prop-
erly; 2) substituting the output of “Shooting” method, 

1.62a   into the single-boundary-value problem and 
 the differential equation, we expect the result-

ing functions 
re-solving

 A r ,  h r ,  r ,  r  satisfy all 
differential Equ s ( ) a int (9). But 
the fact is not, the resulting functions infinitely violate 
the constraint (9), the degree cannot be explained as nu-
merical precision limits; 3) taking the constraint Equation 
(9) as the measure of abstract precisions, we see that the 
“unique” solution following from the double value prob-
lem is not the one mostly satisfying the constraint equa-
tion, instead all members from the solution families with 

0a

ation 5)-(8 nd the constra

  satisfies the constraint equation more well, see 
vant part of Figure 1; 4) in the unique solution of 

[7], from infrared to ultraviolet region, 
the rele

  field first 
climbs up to the more deeper side of poten al well then 
falls down and then climbs backward to the flatter center 
extremal, see the last subfigure of Figure 1 for intuitions. 
While in the solutions to the single boundary-value 
problem, as long as a

ti

  is set less than zero, this fact 
will not occur. Obviously, the climbing-falling-climbing- 
backward configuration is a more-expensive configura- 
tion in field spaces. 

Summarizing reasons in this section, we conclude that, 
given the form of scalar field potentials and the ultravio-
let conformal dimension of the corresponding operator 

 , there is still a family of charged AdS-domain wall 
utions. The members in this family are distinguished 

from each other by their charged density or wall-thick- 
ness. Numerically, it is the parameter a

sol

  that deter-
mines this features. 
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3. New Ansatz for the Charged AdS Domain 
Wall and Solutions 

do ctly construct the family of 

2 2
2

ir
ir

4
e , 

2 4
bu n n m

m a b

In this Section, we introduce a new ansatz for the AdS 
main wall and more dire

solutions. The new ansatz has the advantage of reducing 
the order of differential equations which follows from 
minimizing the action of the system, 
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ads irl f and 1  uv1 f . This ansatz can more explic-
itly express the asymptotical AdS features of the geome-

ordinate, we can always set 
1uh   , then the value of uh   will be determined 

by the equations of motion. As h  varies from the infra-
 to the ultraviolet regio the speed of light in 

the two regions will change natu lly. By the ansatz (14), 
the equation of motion reads 
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We checked that in these 5 e
be derived out from its four pred
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ast one can 

tiations and combinations. So it is not independent and 
can be looked as a constraint completely. Comparing 
with the equation of motion under the ansatz of reference 
[7,8], among our four other independent equations, two 
are first order, while the other two are second order. So 
essentially have only 6 equivalent first order equations, 
while the reference [7,8] need to solve 8 equivalent first 
order equations. Obviously, 6 first order differential equa- 
tions need, and only needs 6 boundary conditions. 

   
4

ir
ir ir 2

1
1, 

1 1 2

V m
h f

n n n n 
    

 
     (21) 

f           (22) 

 2 2 2
ir

ir
ir

2 22
e , 

2 4
ku

o

n qn
k


f

 


      

,  can vary indepently, but one of them

can be set to 1 by shifting redefinition of 

oa

u



   (23) 


    (24) 

The exponent indices k  and b  involved i
expressions are determined from the infrared
Equations (18) and (19). Note Equation (22) contains 
in ts

n these 
 limit of 

formation on two aspec ,   and    as u  , 
so it should be counted as two boundary conditions. The 
same is true for Equation (23). The above equations of 
motion and boundary condition obvious  defin - 
parameter family of solutions featured by either a

ly es a one

  or 

o  (our choice is setting 1o   while let a  to 
feature solutions). 

Although, the above boundary conditions only eci-
s the IR behavior of the solu  in the UV li , as 

long as 0

sp
fie tion, mit

  , i.e. as long as   approaches the 
meta-stable point of the potential, the fate of other fields, 
including the asymptotical behavior of   itself, are 
destined. It e easily proven that 
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  . 
So the key question is, if for va

family we declared previously, uv

rious solutions in the 
  goes to zero in the 

ultraviolet limit. Numerics tell us that, this is indeed th
ca

e 
se, see Figure 2. Different a  in the infrared limit 

only leads to different uv  in t ultraviolet limit and 
different rate the scalar field 

he 
  evolves from ir  to 

uv . They have no effects on t e ultraviolet value of 

uv

h
 . In the case ir  is set to zero, the value of uv  is 
directly proportional to the char  density of the d ain 

l. While the rate of 
ge om

wal  ’s evolution from ir  to uv  
obviously be related to the width of the domain all. 

From the dual field theory aspect, the charged domain 
wall describes a finite ut freely variable) sity s
tem, the operators dual to 

can  w

(b den ys-
  have the same conformal 

dimension. But for different density systems, the evolu-
tion of  ’s conformal dimension from ir to uv  is 
different. This is very like e extremal AdS-RN black 
brane case, whose charge/mass ratio is fixed but the 
amount o charge and mass each-self are both tu ble.        

th

f na
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Figure 2. (color online)Three typical charged domain w s in nall solution  1 4  dimensional model. In ea h part of the fig-
ure, from top to bottom, the charge parameters of e a

c
 0.01  (blue),  (green), 0.1each curve decreas 1  (red) 

respectively. For n  1 5  dimensional models, the solutions are similar. The relevant model parameters are chosen as 

  1 ,  0.2 , q 2 0.53 , m  2 4.25 , numerical integration is made from u  10  to u  10 . 

 
ch AdS dom in  also carry variable The arged a walls can

harge densities, but probably fixed charge/mass ratios. 

, 
se

c
It is worth pointing out that, the difference between 
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dinate to make ir 1h  . The second is, if the electro-po- 
tential height (height in the ultraviolet region relative to 
that in the infrare ion) of a charged domain wall can 
be changed only through a general coordinate transfor-
mation, then we can change the electro-potential height 
of any such charged domain walls to zero. Obviously, for 
a charged AdS domain walls, such a fact should not be 
possible. This discussion suggests us a more closer simi- 
larity between the charged AdS domain wall and the ex- 
tremal AdS-RN black brane. That is, we can change a 
charged AdS domain wall into a neutral domain wall, 
just as we change an extremal AdS-RN black brane into 
a pure AdS-space by reducing their charge and mass 
density simultaneously. 

If we use these charged AdS domain wall systems as 
models of holographic s

e explanation is that, domain walls with different a  
corresponding materials with different charge densities 
which implement superconductions, i.e. the density  
superconductive electrons. The existence of charged do- 
main wall families provides very good examples for the 
Criticality Paring Conjecture of [8], i.e. 1) in the ultra-

since the finite density deformation in the ultraviolet re-
gion, a renormalization flow appears and lead to the bro-
ken of continuous symmetries in the infrared region. 

4. Electric Perturbations and 
Transportations in the Dual Field Theory 

Let us in this Section consider the electric perturbatio

of

is a we fined field theory with the con-
formal symmetry broken by the finite charge density, 2) 

ns 
tions. This consid- 
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of the charged AdS domain wall solu
eration will give us information on two aspects. One is

 stability of the domain wall configuration itself, the 
other is the transportation properties of the dual field 
system. 
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Equation, we can derive out that, see reference [12

2 2 2 21
e 2 , uds hdt d d g dtdx du     x x

] 

222 2 2 2

2 2

e e
0

u u

h f

q
a

  

 
 
 

2
h f

a n a

hf f h

       

   

        (30) 

 
 
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a ’s evolution, Expanding the solution in the ultraviolet limit in the 
form 

 
 2

0 1 e n ua        

and using the AdS/CFT dictionary which says that,  0a  
is

tivity 

 a a          (31) 

 proportional to the perturbing source while  1a  to the 
response i.e. currents in the CFT, we directly get the 
electric conduc

 

 

 

 
2n u

1 ex
aj i i a

(32)
0 2xE a a n


 

    
 

        

Imposing infalling boundary conditions in the infrared 
limit region and solve Equation (30), we will get the 
   relation directly. Figure 3 displays our numerical 

he 1 4n    charged AdS dom
 the figure we easil that,

results for t
tions. From

ain wall solu-
 as y see a  de- 

creases, the real part of   de correspondingly creases 
while the imaginary part increases contrarily. Noting the 
fact that, smaller a  implies higher superconductive- 

 density, this is easy to understand from the aspect 
of two-current m f superconductors. Since in such 
models, it is the normal electrons (deconfined oper 
pairs) that contribute to th finite part of conductivities 

charge
odel o

 Co
e 

 . In any given materials, the larger is the density of 
superconductive electrons, the smaller is the normal ones, 
and so the smaller is the real part of the conductivities. 

By totally the same method of [7,13], we can verify 
the scaling law of [7] which says that   in small   
limit is proportional to the simple power of  , 

irRe  ,  2 1 2 1k
                 (33) 

When considering the effects of a  on this scaling 
law, we find that it only modulates the pr portional con-
stant in the above relation—makes it proportional  

o
to  

2
uvh



. This means 

 
0

Re , a a uvC C h a
 




 

         (34) 

The last proportionality is also easy to understand, be- 

cause in the equation governing 2 h

T

T

T

a

 
always appears as a whole. By reference [7], this scaling 
law is an indication of quantum criticalities of dual field 
system. As is well known, strict quantum critical points 
are transition points occurring at zero temperatures. At 
such points, the materials manifest two features, confor- 
mal symmetry and universal power law correlations. For 
high c  superconductor materials, peoples observed 
that [14] there is an optimized doping rate, across which 
the system manifests obvious power law optical conduc-
tivities, which is by definition the two point correlation 
of electromagnetic currents. Although practical experi-
ments are carried out at finite temperatures, peoples be-
lieve that when cooled down to zero temperatures, the 
high c  superconducting materials will exhibit strict 
quantum critical behavior at the optimized doping ratios. 
So, in high temperature superconductor studies, the value 
of exploring quantum critical points is, some laws of the 
high temperature superconductors could probably be 
results of some expansion around the quantum critical 
points. 

One of the motivations leading references [7,8] to de- 
clare the uniqueness of charged domain wall solutions is, 
they hope to use this model as a description for the 
quantum criticalities observed in the high c  supercon- 
ductors [14,15] which occurs only at one optimized dop-
ing rate. If the charged domain wall is non-unique, then 
one must suspect the reasonability of doing this. How- 
ever, just as the previous Section of this work indicates, 
in a family of charged AdS domain wall solutions, dif-
ferences between various members are only their charge 
densities, featured by the parameter  . The observa- 
tions (34) tell us that, changing this charge density does 
not affect the power law feature of the optical conductiv-
ity. This implies that, although the quantum phase transi-
tion in high cT  superconductors is triggered by opti- 
mizing the doping rate of materials, it is not implemented 
through the changing of superconductive charges’ den-
sity. In other words, all members in a family of charged 
AdS domain walls can be used as holographic models of 
quantum critical superconductors. The only thing worthy  

 

 

Figure 3. Conductivi s. frequencie ons of the field system dual to the nty v. s relati  1 4D  charged AdS domain walls. In the 
imaginary part r ge parameters corresponding to each data set decreases, aof the figure, f om top to bottom the char  0.1  

(blue triangle) −  square) and − star) respectively; while in the real part, the order is reversed. 1 (green 10 (red 
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Figure 4. The same as FIG3, but the charged AdS domain walls are n  1 5 lso that, the imaginary part of D . Note a   
becomes negative as   becomes large. 
 
of noticing is that, quantum critical superconductions 
could occur in materials carrying different superconduc-
tive charge densities. 

Calculating the conductivity of general dimensional 
charged AdS domain wall, we will see that the 

1 5Dn    results are drastically different from those of 
1 4Dn    case, see Figure 4 and captions there. This 

difference signifies key properties of higher dimensional 
charged AdS domain walls. That is, they are unstable as 

l
hich says that 

1 5n   . This can also be looked out from the infrared 
limit analysis of the inearized Maxwell Equation (30), 
w

 

 

2

2
2 0 ,  or

e u
a n a a

h fir ir

2
2 2

, ,
ir ir

 3 0,  e u
xx xx a n xa x a x

h f

     

    

   (35) 

where “ , x ” denotes derivatives with respect to x . The 
general solution to this equation reads 

   

ir ir ir ir

1 2

3 : e e

4 :

i x h f i x h fn a c

ir ir ir ir

x x
n a x H c x H

 

 

h f h f
 



      

where  

 

    

   
      



 (36) 

2 2n   . By asymptotic expressions of the 
function, we know Bessel 

 

 

3

2

ir ir

ir ir

1 π
exp

4

n
x nx

a x i i
h f

h f




 
  

  


  

 

Obviously, in the n ≥ 4 case, the perturbation do

converge. Instead it dive

3

2
1 π

exp
4

n nx
c x i i

  
   

   (37) 

es not  

rges in the form 
3

2 2e
n n

x
 

   
as we follow down deep in egion. This 

nce of the per
 4n   charged domain walls 

are unstable. In dual field theory, this means that the 
infrared fixe nt (conformal) is unstable. From the 

gravity side, we know this instability neither depends on 
the hight of the domain wall measured by uv ir   or 

uv irf f , nor on the charge of the domain wall measured 
by uv ir  or uv irh h  

3
u

. It is completely determined by 
the dimension of the wall. Although strange, we think 
this is an interesting result and possibly not being noticed 
by earlier researchers. 

5. Conclusion 

onclusion in
this section. The first is, given the scalar fields’ potential 
form and its ultraviolet scalings, there is still a domain 
wall solution family to the relevant equations of motion. 
Different members of this family carry different charge 
density but probably fixed charge/mass ratios
differences between the charge densities, differ
bers in this domain wall family have different relative 
hight of electrostatic potentials in the ultraviolet and in- 
fra
diffe

e case of ex

mens

in wall 
be chan

black b an be 
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