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ABSTRACT 

Classical simulation of a quantum system is a hard problem. It’s known that these problems can be solved efficiently by 
using quantum computers. This study demonstrates the simulation of the molecular Hamiltonian of 2p-π electrons of 
ethylene in order to calculate the ground state energy. The ground state energy is estimated by an iterative phase estima- 
tion algorithm. The ground state is prepared by the adiabatic state preparation and the implementation of the procedure 
is carried out by numerical simulation of two-qubit NMR quantum simulator. The readout scheme of the simulator is 
performed by extracting binary bits via NMR interferometer. 
 
Keywords: NMR Quantum Computer; Quantum Simulation; Molecular Ethylene; ASP; IPEA 

1. Introduction 

Quantum information processing has become one of the 
most interesting fields in science and technology [1]. It 
has a potential to change the technology towards to 
quantum technology [2]. In 1982, Feynman proposed that 
simulation of quantum systems can be efficiently achiev- 
ed by using computers working with the quantum me- 
chanical principles [3]. First David Deutsch considered a 
computer device based on quantum mechanical princi- 
ples [4]. Then other experimental and theoretical studies 
are performed on quantum information processing [5,6]. 
Seth Lloyd defined quantum computers as universal 
quantum simulators by recalling Feynman’s original mo- 
tivation for introducing quantum computers [7]. The clas- 
sification of quantum simulation is separated into two 
main lines. One of them is simulating a target quantum 
system by using another quantum system and the latter is 
simulating the target quantum system by constructing the 
elements of the target Hamiltonian with unitary and uni- 
versal quantum logic gates [8]. 

With mature quantum control methods, NMR is an 
excellent test bed of physical implementations of quan- 
tum computing. Some physical systems examined by 
quantum simulations in the framework of NMR methods 
are reported elsewhere [9-13]. For quantum chemistry 

problems many approximation methods and software 
packages are developed since the difficulty of the prob- 
lem scales exponentially with the system size. But it’s 
known that quantum computers promise efficient algo- 
rithms in order to simulate and prepare quantum states 
and find eigenvalues in polynomial time [14,15]. In order 
to calculate molecular energies, phase estimation algo- 
rithm is used by Guzik et al. [16]. In this algorithm the 
energy information can be extracted by phase kick-backs. 
For eigenstate preparations, Adiabatic State Preparation 
(ASP) is also proposed by Guzik et al. [16]. ASP exploits 
the quantum adiabatic theory in order to simulate the 
ground state of the desired system. Once the ground state 
is prepared, the ground state energy information can be 
extracted via relative phases by the phase estimation 
procedure. Recent studies about quantum simulations of 
quantum chemistry problems can be found elsewhere 
[18-23]. For experimental implementations, iterative phase 
estimation algorithm (IPEA) is developed in order to 
reduce the number of qubits [24]. NMR techniques pro- 
vide efficient ways to optimize the adiabatic procedure 
for ground state preparation [25]. 

This study performs a numerical simulation of the 
quantum simulation of 2p- electronic Hamiltonian in 
molecular ethylene on an NMR quantum computer. In 
quantum simulation an iterative phase estimation algo- 
rithm (IPEA) is used for the calculation of the ground *Corresponding author. 
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state energy [24]. Ground state is prepared by ASP [25]. 
The goal of this study is to present a quantum simulation 
procedure for a better understanding of IPEA and ASP 
algorithms with NMR techniques. This manuscript is 
organized as follows. Section 2 explains a brief introduc-
tion to the theory about the problem Hamiltonian and the 
ground state energy calculation process. Definition of the 
problem and it’s solution methods can be found in Sec-
tion 3. Results and discussion are presented in Section 4. 
Conclusion of the study is given in Section 5.  

2. Theory 

The aim of classical simulation of a system is to obtain 
the final state by solving the differential equations which 
governs the dynamical behaviors of the system with 
known initial conditions. Since the number of differential 
equations increase exponentially with the system size, 
it’s inefficient to simulate quantum systems with classi- 
cal computers. 

The goal of quantum simulation is to use quantum 
systems to simulate other quantum systems in order to 
achieve the simulation process efficiently. The evolutions 
of quantum systems are expressed by the second postu- 
late of quantum mechanics as  

   ie 0Htt   .      (1) 

Where H  is the  system Hamiltonian. The challenge 
of quantum simulation is to discrete the system hamilto-
nian H  by a set of unitary operators as  

   exp i .k k
k

H t U    t      (2) 

Where  is the total time of simulation process. Gen-
erally 

t
H  is hard to exponentiate and first, second or 

higher orders of approximations are possible for splitting 
the operator [1].The energy for  state which is pre- 
pared by a universal quantum computer can be obtained 
by a phase estimation algorithm [14,16]. The unitary 
operator ie HtU  is applied as a controlled fashion to 
  in the target register: 

i 2πe e .Ht i            (3)  

Where   is an eigenstate of U . In the eigenvalue 
equation above, energy is encoded in phase as 

2π
.E

t


              (4) 

Where t can be chosen arbitrarily in which   ranges 
from 0 to 1. Finally an inverse quantum Fourier trans-
form is applied the first register before the measurement 
process [16]. 

2.1. The Hamiltonian 

For the molecular Hamiltonian of ethylene 2p-π electrons, 

we adopt the notation used elsewhere [26]: 

    1
1 2 121 2O O h h r     .

j




       (5) 

Where  is the core Hamiltonian for   
2 2

1 1
i i

i J

h i T V
 

 
 

 
1thi  electron and 12r  is the coulomb potential energy 

between two electrons. 
To obtain the Hamiltonian and calculate electronic en- 

ergies as functions of configuration, we choose a trun-
cated basis set which is a standard approach for quantum 
chemistry calculations. In our simple case we don’t need 
Hartree-Fock procedure to determine spin orbitals be-
cause we obtain four spin orbitals by symmetry as 

           
           

1 1 2 1

3 2 4 2

,

, .

x r x r

x r x r

       

       

 

 
   (6) 

Where  r  is the spatial function and   
 

and 
    are spin functions. By using 4 spin orbitals and 2  

electrons, there are 
4

6
2

 
 

 
 different configurations. By 

evaluating the symmetry, just two determinants, ground 
state 1 2o    and doubly excited state 

3 4dub    appear in the calculations. As the first 
step of the simulation process the ground and the doubly 
exited states are mapped to computational basis as 

0 0 , 1db   . By these considerations a Full 
Configuration Interaction (FCI) Hamiltonian matrix is 
[26] 

1 2 1 2 1 2 3 4

3 4 1 4 3 4 3 4

11 11 12

12 22 22

2
.

2

H

h J K

K h J

       
       

 
  
 

 
   

 
 

    (7) 

Where  and ii,ii ijh K J  are one electron integrals, ex-
change integrals and coulomb integrals respectively.  

2.2. IPEA and the State Preparation 

IPEA is used to reduce the number of qubits and opera-
tions in obtaining the eigenvalues. The form of an IPEA 
is presented in Figure 1 [24]. The information will be 
extracted by the top qubit which is prepared as 0

 
and 

the lower one prepared as   which is the eigenstate 
wave function of . The unitary operatio i U n e Ht

 
is applied as controlled operation and it obeys Equation 
(1). For a two qubit example after hadamard and con-
trolled operations, the state becom

U 

es 

 12 1, 2πi 21
0 0 e 1

2

k kH I CU  .
       (8) 

Where H I  implies the hadamard operation in the 
first qubit and the phase   is defined in the binary ex- 
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Figure 1. The kth iteration in IPEA. Iteration starts with k = 
m backwards to k = 1 [24]. 
 
pansion as 0.   1 2 3 m     with no more than m bits. 
In the first iteration  k m , the 

1

 gate is ap- 
plied and  bit is extracted deterministically. Then 

 bit is extracted by the next iteration 

2m

CU


thm
 1

th
m 
 1k m  . This iteration is performed by the previous 
bit information and a conjugated Z rotation with the an- 
gle of  1m m2π 0.0 . 


  Information is transferred 

through this 
 

z kR   rotation which is called a feedback 
operation. So the less significant bits are extracted first 
and then by evaluating the extracted information more 
significant bits are obtained.  

The ground state wave function   can be prepared 
by some number of operations by exploiting adiabatic 
theorem. According to adiabatic theorem, the system will 
remain in its ground state if the Hamiltonian varies 
slowly enough and if there is a gap between the ground 
state and the first excited state [17]. The adiabatic evolu- 
tion of the Hamiltonian as a function of implementation 
steps (m) can be stated as [25] 

 1 .ad
o m m fH H s s H        (9) 

Where m

m
s

M
  and M is the number of steps, oH  is  

the initial Hamiltonian and fH  is the problem Hamil-
tonian. For a realistic operator implementation of this  

Hamiltonian as , one can use Trotter- Δead iH t
m m

U 
Suzuki Formulato parse the steps as; 

     
Δ

Δi 1 2 i 1i 32e e e
om

m om f

t
H ts s Hs H tad

mU O
       t

 
[1].  

Where 
1

T
t

M
 


,  is the total time of the adiabatic T

evolution and 1M   is the total number of steps.  

3. Ethylene 2p-π Electrons Problem 

The FCI Hamiltonian matrix for ethylene 2p-π electrons 
can be constructed by evaluating the integrals indicated 
above. The elements of the problem matrix can be con-
structed as 11 11 22 22  and 

12  in a.u. [27]. The problem is to present the 
calculation of the ground state energy of the Hamiltonian 
by a two qubit NMR quantum computer. The calculated 
result can be compared with the theoretical one which is 
the lowest eigenvalue of the problem matrix. Chloroform  

2 1.2627,2 0.8198h J h J    
0.1529K 

molecule was chosen as two-qubit NMR quantum regis-
ter and initialized for the experiment [28,29]. Here, pro-
ton  1H  nucleus is assumed to be the probe qubit in 
which the energy information will be extracted. And the 
carbon  13C  nucleus is the system qubit in which the 
simulation will take place.  

The calculation procedure will be carried out by an 
IPEA as seen in Figure 1. Here we see a controlled op-
eration  where CU ie HtU   acts on  .   is the 
ground state of ethylene 2p-π electrons system and H  
is the system hamiltonian. The energy information will  

be encoded by the extracted phase  by 
2π

E
t


 . We 

obtain this phase by 2πie eiHt     eigenvalue 

equation. To justify this equation the ground state of the 
system should be prepared before the controlled opera-
tion. Then the first step of the problem is to prepare the 
ground state of the system. As addressed before, ASP 
procedure will be used to prepare the ground state. The 
ASP process will be carried out by NMR techniques [25]. 
According to the ASP process, the initial Hamiltonian 

oH  should be altered slowly towards target Hamiltonian 

fH  by Equation (9). The target hamiltonian can be ob-

tained easily in terms of pauli operators by substituting 
the integral values given above into the problem matrix 
in Equation (7). On the other hand the initial state of the 
system qubit should be the superposition of the ground 
state o

 
and the doubly excited state db  as 

1
0 1

2
     to fulfill the initialization condition  

of the adiabatic process. This state can be obtained by 

applying a 
π

2yR  
 
 

 NMR pulse to the system qubit 

 13C  which initially has a local natural Hamiltonian  
1

2
s

nt zH  . Thus the initial hamiltonian is o xH  . 

Figure 2 illustrates ground state simulation of the system 
qubit. The evolution of the initial Hamiltonian oH  to the 
final Hamiltonian fH  should not be like a sudden jump 
as shown in Figure 2(a) but it should be a slow variation 
in which the adiabatic condition entails. This slow adia-
batic variation of the system hamiltonian can be carried 
out by composite pulses y m x    yR R R  m     which 
are well known by NMR platform [30].  

Since the algorithm explained in Figure 1 will be im-
plemented by an NMR quantum computer, all unitary 
operators should be carried out by radio frequency (rf) 
pulses. In order to construct the controlled operation in 
terms of rf pulses, the methods are adopted from else-
where [30]. The ground state energy information of the 
system which is encoded in the relative phases should be 
extracted by binary digits since the computational bases  
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Figure 2. Ground state simulation of the system qubit. (a) 
vector illustration of system Hamiltonian. The initial Ham-
iltonian  will be interpolated smoothly by ASP to oH

 f x1 zH c c2 ; (b) ASP process with NMR pulses. Here 


 1

T

M


M

,  is the total time of the adiabatic evolution 

and  is the number of steps. We take 

T

M 10  and 

   m m
1   ms c s c s2 11 mtg  where m

m

M
s  . 

 
are in binary form. The binary phase information will be 
extracted by some number of iterations by IPEA. The 
extracted phase information should be converted to the 
corresponding decimal value. And then the obtained de-
cimal value of the relative phase should be substituted 
into Equation (4) in order to obtain the ground state en-
ergy. The decimal value of the relative phase   should 
be between 0 and 1 and we choose 

π

2
t   for simplicity.  

4. Results and Discussion 

In this study we concern with obtaining ground state en-
ergy by IPEA and simulating the ground state by ASP. 
Extracting the ground state energy information by a pha- 
se estimation algorithm has three main steps: 1) prepar-
ing the ground state wave function into qubits by an ap-
propriate mapping, 2) processing controlled operations to 
extract information and 3) a measurement to readout the 
extracted information. By evaluating the integrals given 
in Equation (7), we have the following Hamiltonian ma-
trix which is written in terms of Pauli operators as [27] 

1 2

1.2627 0.1529
1

0.1529 0.8
.

198 o xH c zc c 
 

    
   (10) 

Here 1  and 20.1529c  0.2215c   . The theoretical 
ground state energy is −1.310 356 879 322 492. This 
value is obtained by diagonalisation of the Hamiltonian 
matrix. The circuit representation of the two qubit IPEA 
for calculating ground state energy of 2p-πelectrons in 
ethylene is shown in Figure 3.The numerical simulation 
of the proposed implementation is performed by Matlab 
program. 

The Hamiltonian of the two qubit liquid state NMR 
quantum register is 

π
.

2
p p s s p

 

Figure 3. The general scheme of calculating ground state 
energy of molecular 2p-π electrons in ethylene by a two 
qubit IPEA. 
 
Where p  and s  are angular frequencies for the 
nuclei of the probe and the system qubits, respectively. 
The scalar coupling J , is chosen as  which 
matches with the value for the Heteronuclear chloroform 
molecule[28]. The experiment starts with an initial de-
viation density matrix 

215 HzJ 

00  which is a pseu- Δ 00 00 

do pure state [29]. A 
π

2yR  
 
 

 rotation is applied by a 

pseudo Hadamard gate. And a conjugated 
π

2yR  
 
 

 rota- 

tion applied to the system qubit to start the ASP process. 
Thus, the initial Hamiltonian is xoH   and the prob-
lem Hamiltonian is 1 2f x zH c c    by omitting o  . 
The implementation of ASP is carried out by an operator 
[30]: 

c

     .ad
m y m x y mU R R R         (12) 

Here,    1
2 1tg 1m m m ms c s c s       and 

1

T

M
 


.The overall time T  of the adiabatic proc-  

ess has its optimum value of 5 a.u. as indicated in Figure 4. 
In our demonstration, extracted information is three bits 
per iteration. Iteration is progressed from more signifi-
cant bits to less significant ones, implying that iterations 
starts at 0k  . Thus is applied as controlled opera- 
tion. NMR pulse sequence of the controlled operator is 
constructed in the operator form as [31] 

8k

U

1 2 1 2
π π π π

i8 i8 i8 i88 4 4 4 4e e e e
k s k s k p s k p s

k x z z x zc c c c
CU

     
 .

z
  (13) 

In order to apply the gate as an NMR pulse sequence 
the third operator in the sequence can be written as [31] 

1 1
π π π

i8 i i8 i
4 4 4e e e e

k p s s k p s sπ

4 .
z x y z zc c     

 y
    (14) 

The last step of the algorithm is the measurement of 
the phases. The phase shifts between two states can be 
read by a phase sensitive NMR spectrum. This readout 
scheme is referred as an NMR interferometer in which 
the bit information can be directly extracted from the 
relative phase measurements of the NMR spectrum [32]. 
The relative phase shifts (in degrees) after some powers 
of controlled operations and the extracted binary bits 
after some iterations are shown in Figure 5. Iterations 
are formulated as 

s
z z zH J z             (11) 
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Figure 4. Simulated spectra of the probe qubit after CU 
operation with respect to different T. T = 5 a.u. is chosen for 
optimum T. 
 

 

Figure 5. (a)-(c) Relative Phases after the CU and some 
powers of CU; (d) The NMR spectrum of pseudo pure state 
which is fixed as the reference phase for all phase meas-
urements; (e)-(f) First three iterations and the extracted 
bits. 
 

    8
1 .

k

z kO k R CU        (15) 

Where 1
3

1 2k k 
    and   is the relative phase 

solely obtained from the powers of controlled operations. 
The relative phase obtained from the operations, which 
carry extracted bit information is depicted as k . We  

choose 
π

2
t   to make  0,1   Extracted binary bits  

were evaluated by Equation (15) and depicted as in Ta-
ble 1. For instance, in the first iteration for 0k   the 
controlled operation is CU  and after this operation 
obtained relative phase 0  is 120 in degrees. And for 

 we applied the controlled operation is  and 
we had 1

1k  8CU
240   in degrees as shown in Figure 5. The 

first extracted bits for the first iteration were obtained via 
Equation (15) such that     8CU1 , where 

1

0 zO R 
   3

1 2z zR R

Table 1. Extracted binary bits per iteration. 3 bits extracted 
per iteration and after 6 iterations 18 binary bits were ex-
tracted via relative phases. 

Iteration Binary Digits 

 0O  0.010  

 1O  0.010100  

 2O  0.010100111  

 3O  0.010100111101  

 4O  0.010100111101110  

 5O  0.010100111101110011  

 

by 
0

π
2π 2e  e  such that 0 1 4   which corresponds 

to 010 in binary digits. Like- wise in the second iteration 
 1O , the extracted bits are 100 and so on. 
After evaluating the extracted binary digits in decimal 

form, the ground state energy can be obtained from Equ- 
ation (4). For instance after six iterations, the extracted 
phase is  2

 which corre-
sponds to 

0.010100111101110011 
 0.327587127685546 

1.310348510742187E

10
 in decimal. By 

substituting this result into Equation (4) one obtains the 
energy value   . This value has 
four bit accuracy with the theoretically calculated ground 
state energy. One can improve the energy value by going 
further iterations. But in a real experimental implementa-
tion, the accuracy of the simulation is limited by the ex-
perimental errors [33]. 

5. Conclusions 

In this study, a quantum simulation algorithm is per- 
formed to calculate the ground state energy for 2p-π 
electrons of molecular planar ethylene with a classically 
simulated two-qubit NMR quantum register. The Hamil- 
tonian of 2p-π electrons in ethylene is written in matrix 
form and the ground state and the doubly excited state 
configurations are mapped in the computational basis. A 
two qubit liquid state NMR Hamiltonian is proposed to 
perform the implementation as system Hamiltonian for 
classical simulation. A slightly modified IPEA algorithm 
is used for the simulation. Adiabatic state preparation is 
used to prepare system qubit as the ground state of the 
Hamiltonian in question. By the algorithm three bits are 
extracted per iteration and the extracted information is 
progressed from more significant bits to less significant 
bits. The corresponding decimal value of the phase which 
is obtained by the extracted bits, yields the energy infor-
mation from Equation (2). The measurement of the probe 
qubit is performed by classically simulated phase sensi-
tive NMR spectrum. The pseudo pure state of NMR 
spectrum is fixed as the reference spectrum throughout 
the experiment. Hence the quantum simulation of the 

   . Concisely the corresponding rela-
tive phase for the first iteration is  in degrees. 
Corresponding phase factor 

 0 90O 
0  can be obtained easily  
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ground state of 2p-π electrons in ethylene molecule is 
achieved by a two-qubit NMR quantum register. Also the 
robustness of the method is examined by comparing ob- 
tained ground state energy with the theoretical ground 
state energy. 
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