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ABSTRACT 

The aim of this study is to fuse high resolution optical and microwave images and classify urban land cover types using 
a refined Mahalanobis distance classifier. For the data fusion, multiplicative method, Brovey transform, intensity-hue- 
saturation method and principal component analysis are used and the results are compared. The refined method uses 
spatial thresholds defined from local knowledge and the bands defined from multiple sources. The result of the refined 
Mahalanobis distance method is compared with the result of a standard technique and it demonstrates a higher accuracy. 
Overall, the research indicates that the combined use of optical and microwave images can notably improve the inter- 
pretation and classification of land cover types and the refined Mahalanobis classification is a powerful tool to increase 
classification accuracy. 
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1. Introduction 

Over the years, the image data fusion has become a very 
valuable approach for the integration of multisource sat- 
ellite data sets. It is well known that optical data contains 
information on the reflective and emissive characteristics 
of the Earth surface features, while the synthetic aperture 
radar (SAR) data contains information on the surface 
roughness, texture and dielectric properties of natural and 
man-made objects. In the past years, the integrated fea- 
tures of these multisource data sets have been efficiently 
used for an improved land cover analysis. It has been 
found that the images acquired at optical and microwave 
ranges of electro-magnetic spectrum provide unique in- 
formation when they are integrated. Many authors have 
proposed and applied different techniques to combine 
passive sensor and microwave images in order to en- 
hance various features and they all judged that the results 
from the fused images were better than the results ob- 
tained from the individual images [1-7]. 

In general, high resolution optical RS data sets taken 
from different Earth observation satellites such as Land- 
sat and SPOT have been successfully used for a land- 
cover mapping since the operation of the first Landsat  

launched in 1972, whereas high resolution SAR images 
taken fromspace platforms have been widely used for 
different thematic applications since the launch of the 
ERS-1/2, JERS-1 and RADARSAT satellites [8]. As the 
very high resolution TerraSAR data has become avail- 
able since 2006, radar images could be efficiently used 
for a very accurate mapping and analysis. It is clear that 
the combined application of optical and SAR data set- 
scan provide unique information for different thematic 
studies, because passive sensor images will represent 
spectral variations of various surface features, whereas 
microwave data with their penetrating capabilities can 
provide some additional information. For example, in 
urban environment the optical images provide the infor- 
mation about the spectral variations of the different urban 
features, whereas the radar images provide structural 
information about buildings and street alignment owing 
to the double bounce scattering [9]. 

Traditionally, multispectral RS data sets have been 
widely used for a land cover mapping and for the genera- 
tion of land cover information, different supervised and 
unsupervised classification methods have been applied. 
However, the emergence of microwave images has given  
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new opportunities for the users and researchers dealing 
with processing and analysis of remotely sensed data sets. 
Unlike single-source data, data sets from multiple 
sources have proved to offer better potential for dis- 
criminating between different land cover types. Many 
authors have assessed the potential of multisource images 
for the classification of different land cover classes 
[10-15]. In RS applications, the most widely used multi- 
source classification techniques are statistical methods, 
Dempster-Shafer theory of evidence, neural networks, 
decision tree classifier, and knowledge-based methods 
[10,16,17]. 

In recent years, mapping of urban areas, specifically at 
regional and global scales has become an important task 
due to the increasing pressures from rapid urbanization 
and associated environmental and social problems [18]. 
However, in most cases urban areas are complex and 
diverse in nature and many features have similar spectral 
characteristics and it is not easy to separate them by the 
use of common feature combinations or by applying or- 
dinary techniques. In order to successfully extract urban 
land cover classes, reliable features derived from multi- 
ple sources and an efficient classification technique 
should be used. The aim of this study is a) to investigate 
different data fusion techniques for the enhancement of 
spectral variations of urban features, later to be used for 
training sample selection, and b) to classify the features 
composed by the fusion techniques using a refined Ma- 
halanobis distance classifier. Thus, a fusion of high reso- 
lution optical and microwave images will help in defin- 
ing the sites with the most appropriate training samples 
and refined Mahalanobis distance classifier will be used 
for deriving an improved land cover map. For the final 
analysis, multisource data sets of the urban area in Mon-
golia have been used. The analysis was carried out using 
PC-based ERDAS Imagine 10.1 and ENVI 4.8. 

2. Test Site and Data Sources 

As a test site, Ulaanbaatar, the capital city of Mongolia 
has been selected. Ulaanbaatar is situated in the central 
part of Mongolia, on the Tuul River, at an average height 
of 1350 m above sea level and currently has about 1.28 
million inhabitants. Although, the city is extended from 
the west to the east about 30 km, and from the north to 
the south about 20 km, the study area chosen for the pre- 
sent study covers an area of 11.3 km long and 8.7 km 
wide). In the selected image frame, it is possible to de- 
fine such classes as built-up area, ger area (Mongolian 
traditional dwelling), forest, grass, soil and water. The 
built-up area includes buildings of different sizes, while 
ger area includes mainly gers surrounded by fences. 
Figure 1 shows a Landsat image of the test site, and 
some examples of its land cover. 

 

Figure 1. 2010 Landsat image of the selected part of Ulaan- 
baatar. 1: built-up area; 2: ger area; 3: forest; 4: grass; 5: 
soil; 6: water. 
 

In the present study, for the urban land cover studies, a 
Landsat TM image of 31 July 2010 and an Envisat 
C-band image of 25 May 2010 have been used. The 
Landsat ETM+ data has seven multispectral bands (B1: 
0.45 - 0.52 μm, B2: 0.52 - 0.60 μm, B3: 0.63 - 0.69 μm, 
B4: 0.76 - 0.90 μm, B5: 1.55 - 1.75 μm, B6: 10.40 - 
12.50 μm and B7: 2.08 - 2.35 μm). The spatial resolution 
is 30 m for the reflective bands, while it is 120 m for the 
thermal band. In the current study, channels 2, 3, 4, 5, 7 
have been used. The Envisat is a European Earth-ob- 
serving satellite carrying a cloud-piercing, all weather 
free polarimetric radar which is designed to monitor the 
Earth from a distance of about 790km. The characteris- 
tics of the Envisat data used in the current study are 
shown in Table 1. 

3. Co-Registration of Optical and SAR 
Images 

In order to perform accurate data fusion, good geometric 
correlation between the images is needed. As a first step, 
the Landsat image was georeferenced to a Gauss-Kruger 
map projection using 12 ground control points (GCPs) 
defined from a topographic map of the study area. The 
GCPs have been selected on clearly delineated crossings 
of roads, streets and city building corners. For the trans- 
formation, a second-order transformation and nearest- 
neighbour resampling approach were applied and the 
related root mean square (RMS) error was 0.83 pixel. 
Then, the Envisat image was geometrically corrected and 
its coordinates were transformed to the coordinates of the 
georeferenced Landsat image. In order to correct the 
SAR image, 18 more regularly distributed GCPs were 
selected from different parts of the image. For the actual 
transformation, a second-order transformation was used. 
As a resampling technique, the nearest-neighbour resam-  
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Table 1.The characteristics of the Envisat data. 

Parameter C-band 

Polarization HH 

Frequency 5.36 GHz 

Wavelength 5.6 cm 

Spatial resolution 30 m 

 
pling approach was applied and the related RMS error 
was 1.16 pixel. 

4. Speckle Suppression of the Envisat Image 

As microwave images have a granular appearance due to 
the speckle formed as a result of the coherent radiation 
used for radar systems; the reduction of the speckle is a 
very important step in further analysis. The analysis of 
the radar images must be based on the techniques that 
remove the speckle effects while considering the intrinsic 
texture of the image frame [1,19]. In this study, four dif- 
ferent speckle suppression techniques such as local re- 
gion, lee-sigma, frost and gamma map filters [11] of 3 × 
3 and 5 × 5 sizes were compared in terms of delineation 
of urban features and texture information. After visual 
inspection of each image, it was found that the 3 × 3 
gamma map filter created the best image in terms of de- 
lineation of different features as well as preserving con- 
tent of texture information. In the output image, speckle 
noise was reduced with very low degradation of the tex- 
tural information. 

5. Image Fusion 

The image fusion is a technique used to combine images 
of different spatial and spectral resolutions. Very often a 
high resolution panchromatic image is integrated with a 
low resolution multispectral image thus improving inter- 
pretation and analysis of the natural and man-made ob- 
jects. In other words, the image fusion is the integration 
of different digital images in order to create a new image 
and obtain more information than can be separately de- 
rived from any of them [9,20,21]. 

In the present study, for the urban areas, the SAR im- 
age provides structural information about buildings and 
street alignment due to the double bounce effect, while 
the optical image provides the information about the 
spectral variations of different urban features. Image fu- 
sion can be performed at pixel, feature and decision lev- 
els [22]. In this study, data fusion has been performed at 
a pixel level and the following techniques were applied: 
(a) multiplicative method, (b) Brovey transform, (c) in- 
tensity-hue-saturation (IHS) method, (d) principal com- 
ponent analysis (PCA). Of these methods, the first two 
are considered as the ordinary methods, while the last 
two are regarded as the complex techniques. 

The fused images enhance the natural and man-made 
objects in different ways. Therefore, it is not necessary 
that the performance of the complex techniques is better 
than the ordinary methods. In most cases, the judgements 
are made on the basis of an interpretation. Each of the 
selected techniques is briefly discussed below. 

Multiplicative method: This is the most simple image 
fusion technique. It takes two digital images, for example, 
high resolution panchromatic and low resolution multi- 
spectral data, and multiplies them pixel by pixel to get a 
new image [23]. It can be formulated as follows: 

 1 1

Red

Low Resolution Band High Resolution Band

 2 2

Green

Low Resolution Band High Resolution Band

 3 3

Blue

Low Resolution Band High Resolution Band

 
(1a) 

(1b) 

 

(1c) 

In the present study, the Envisat image was considered 
as a low resolution band, while bands 3, 4 and 5 of 
Landsat were considered as high resolution bands. 

Brovey transform: This is a numerical method used 
to merge different digital data sets. The algorithm based 
on a Brovey transform uses a formula that normalises 
multispectral bands used for a red, green, blue colour 
display and multiplies the result by high resolution data 
to add the intensity or brightness component of the image 
[24]. The formulae used for the Brovey transform can be 
described as follows: 

1

1

Band
Red High Resolution Band

Band
n
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 (2b) 

3

1

Band
Blue High Resolution Band

Band
n

n
i

 


The saturation represents the purity of color and varies 

 (2c) 

For the Brovey transform, bands 3, 4 and 5 of Landsat 
have been used and the SAR band was considered as a 
high resolution band. 

IHS method: The IHS method is the most widely used 
data fusion technique. The intensity is the overall bright- 
ness of the scene and it varies from 0 (black) to 1 (white). 
The hue is representative of the color or dominant wave- 
length of the pixel and varies from 0 at the red midpoint 
through green and blue back to the red midpoint at 360. 

Copyright © 2013 SciRes.                                                                                  ARS 



V. BATTSENGEL  ET  AL. 105

linearly from 0 to 1 [25]. This method assumes that the H 
and S components contain the spectral information, while 
the I component represents the spatial information. The 
formulae used for the RGB to IHS transform can be de- 
scribed as follows: 

1 3 1 3
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2 1 2 1 2

1 3

2 6
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M B
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where: 

For the IHS transform GB image created by 
nds 3 and 4 of Landsat as well as the Envisat band, 

have been used. Here, the SAR band was considered as 
the I. When the IHS image was transformed back to the 
RGB colour space, contrast stretching has been per- 
formed to the I channel. 

PCA: The most comm
at it is a data compression technique used to reduce the 

dimensionality of the multidimensional datasets or bands. 
The bands of the PCA data are non-correlated and are 
often more interpretable than the source data. In n di- 
mensions, there are n principal components. Each suc- 
cessive principal component is the widest transect of the 
ellipse that is orthogonal to the previous components in 
the n-dimensional space, and accounts for a decreasing 
amount of the variation in the data which is not already 
accounted for by previous principal components. Al- 
though there are n output bands in a PCA, the first few 
bands account for a high proportion of the variance in the 
data. Sometimes, useful information can be gathered 
from the principal component bands with the least vari- 
ances and these bands can show subtle details in the im- 
age that were obscured by higher contrast in the original 
image [25]. 

To compu
ear transformation is performed on the data meaning 

that the coordinates of each pixel in spectral space are 
recomputed using a linear equation. The result of the 
transformation is that the axes in n-dimensional spectral 
space are shifted and rotated to be relative to the axes of 
the ellipse. To perform the linear transformation, the ei- 
genvectors and eigenvalues of the n principal compo- 
nents must be derived from the covariance matrix, as 
shown below: 

D 

E  m
Cov

atrix of eigenvectors 
 covariance matrix 

T  
D

tra n nsposition functio
diagonal matrix of eigenvalues in which all non- 

diagon

PC2 PC3 PC4 PC5 PC6

al elements are zeros and D is computed so that its 
non-zero elements are ordered from greatest to least, so 
that 1 2 3 nD D D D    . 

In the present study, the PCA has been performed us- 
ing all available bands and the results are shown in Table 
2. 

As can be seen from Table 2, PC1 is totally dominated 
by the variance of HH polarisation of Envisat and other 
bands have almost no influence on it. Although, it con- 
tained 84.69% of the overall variance, a visual inspection 
revealed that it contained less information related to the 
selected classes. The first middle infrared band of Land- 
sat has a high negative loading in PC2. Here, the second 
middle infrared band of Landsat also has the second 
highest negative loading. In PC3, near infrared band has 
a high negative loading and red band has moderately 
high loading. Although PC3 contained only 2.07% of the 
overall variance, visual inspection showed that it con- 
tained some useful information related to the urban tex- 
ture. PC4 is dominated by the variances of the red and 
near infrared bands. However, as it contained only 0.95% 
of the overall variance, visual inspection revealed that it 
had not much significance. The inspection of the PC5 
and PC6 indicated that they mainly contained noise from 
the total data set. 

In order to obtain a good colour image that can illus- 
trate spectral and spatial variations of the classes, differ- 
ent band combinations have been used. As we wanted to 
define the best image used for selection of the appropri- 
ate training sites, the judgements were made through a 
visual interpretation. The preliminary visual inspection 
showed that the image created by the multiplicative 
method gave the worst result compared to all other re- 
sults. On this image, spatial and spectral separations 
among various classes were not easy, because the image 
 
Table 2. Principal component coefficients from Landsat TM 
and Envisat images. 

 PC1 

Band 2 0.06 −0.21 0.27 0.42 −0.06 −0.82

Band 3 0.09 −0.37 0.44 0.53 −0.26 0.54

Band 4 −0.01 −0.14 −0.75 0.58 0.24 0.06

Band 5 0.00 −0.70 −0.32 −0.38 −0.48 −0.08

Band 7 0.04 −0.53 0.20 −0.20 0.79 0.05

SAR 0.99 0.07 −0.07 −0.05 0.00 0.00

Ei e 4

Variance (%) 84.69 12.11 2.07 0.95 0.13 0.05

genvalu 317.7 617.6 105.9 48.7 6.0 2.3 

Copyright © 2013 SciRes.                                                                                  ARS 



V. BATTSENGEL  ET  AL. 106 

co any characteristics of the SAR  
B fo im oo be ha e e 

 signature se- 
lecti ined optical and microwave images, 

ntained m image. The
rovey trans rmed age l ked tter t n th imag

obtained by the multiplicative method. On this image, 
green areas were totally separable from other classes, but 
it also somehow reflected the characteristics of the Envi- 
sat image. 

The IHS transformed image gave a superior result in 
terms of the spectral separation between different objects 
and classes, because it could easily separate almost all 
available classes. In addition, one could observe that the 
built-up areas were texturally separable from the ger ar- 
eas. The image created by the PCA method was good, at 
least it was better than the results obtained by the multi- 
plicative method and Brovey transform. However, on this 
image, it was difficult to see the fuzzy boundaries be- 
tween two urban classes, namely built-up area and ger 
area. Figure 2 shows the comparison of the images ob- 
tained by the used fusion methods. As seen for the figure 
2, the performance of the IHS method was better than all 
other results, because on this image we can clearly see 
the separation of the available classes. Therefore, this 
result was used for further analysis. 

6. Classification of the Images 

6.1. Standard Mahalanobis Distance 
Classification 

Initially, to define the sites for the training
on from the comb

several areas of interest (AOI) representing the available 
six classes (built-up area, ger area, forest, grass, soil and 
water) have been selected through accurate analysis of 
 

 
(a)                          (b) 

 
(c)                         (d) 

Figure 2. Comparison of the fused images: (a) The image
obtained by m  transformed
image; (c) The ; (d) PC im- 

 
 ultiplicative method; (b) Brovey

image obtained by IHS method
age (red = PC2, green = PC3, blue = PC1). 

the fused images. As the data sources included both op- 
tical and SAR features, the fused images were very use- 
ful for the determination of the homogeneous AOI. Es- 
pecially, the image obtained by the IHS method was 
enormously helpful. 

The separability of the training signatures was firstly 
checked in feature space and then evaluated using 
Jeffries-Matusita distance (Table 3). The values of 
Jeffries-Matusita distance range from 0 to 2.0 and indi- 
cate how well the selected pairs are statistically separate. 
The values greater than 1.9 indicate that the pairs have 
good separability [25,26]. After the investigation, the 
samples that demonstrated the greatest separability were 
chosen to form the final signatures. 

The final signatures included about 80 - 827 pixels. 
For the classification, the following feature combinations 
were used: 

1) All original spectral bands of the Landsat TM im- 
age; 

2) Red, near infrared and first middle infrared (i.e., 3, 
4 and 5) bands of the Landsat TM image; 

3) The PC1, PC2, PC3 and PC4 of the PCA (the first 
four PCs contained 98.87% of the overall variance); 

4) The Envisat and original spectral bands of the Land- 
sat TM data. 

For the actual classification, a Mahalanobis distance 
classifier has been used. The Mahalanobis distance clas- 
sifier is a parametric method, in which the criterion to 
determine the class membership of a pixel is the mini- 
mum Mahalanobis distance between the pixel and the 
class centre. The Mahalanobis distance  kMD  is ex- 
pressed as follows: 

  1t

k i k k i kMD x m V x m       (6) 

where xi is the vec

   

tor representing the pixel, mk is the 
sample mean vector for class k, and Vk is the sample 
variance-covariance matrix of the given class. 

The sample mean vectors and variance-covariance 
matrices for each class are estimated from the selected 
training signatures. Then, every pixel in the dataset is 
evaluated using the minimum Mahalanobis distance and 
the class label of the closest centroid is assigned to the 
pixel [27]. 
 
Table 3. The separabilities measured by Jeffries-Matusita 
distance. 

 
Builtup 

area 
Ger area Forest Grass Soil Water

Builtup area 0.000 1.319 1.999 1.999 1.998 1.968

Ger rea  a 1.319 0.000 2.000 2.000 1.999 1.999

Forest 1.999 2.000 0.000 1.914 2.000 1.999

Grass 1.999 2.000 1.914 0.000 2.000 1.999

Soil 1.

Water 1.

998

968

1.999

1.999

2.000 

1.999 

2.000 

1.999 

0.000

1.999

1.999

0.000
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ich reference 
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a sets 

he fi class ied im ges a  shown in igure
-(d). seen om Fi ures 3 a)-(d) he cl sifica

n resu  all b nds of Lands  TM gives th  wors
sult, because there are high overlaps among two urban 

classes: built-up area and ger area. However, these over- 
laps decrease on the classified image of red and infrared 
bands. It can be explained by a fact that a fewer bands 
with statistically separable features can produce a better 
result than many bands with high overlaps. The PC bands 
as well as the combined use of optical and microwave 
data sets produced better results than the results of the 
Landsat TM bands, but they still contain many mixed 
areas of different classes. As could be seen, although 
multisource images give some improvement, is still very 
difficult to obtain a reliable land cover map by the use of 
the standard technique, specifically on decision bounda- 
ries of the statistically overlapping classes. 

For the accuracy assessment of the classification re- 
sults, the overall performance has been used. This ap- 
proach creates a confusion matrix in wh

xels are compared with the classified pixels and as a 
result an accuracy report is generated indicating the per- 
centages of the overall accuracy [26]. As ground truth 
information, different AOIs containing 1239 purest pix- 
els have been selected. AOIs were selected on a principle 
that more pixels to be selected for the evaluation of the 
larger classes such as ger area and soil than the smaller 
classes such as water. The overall classification accura- 
cies for the selected classes are shown in Table 4. 

6.2. The Refined Classification Method 

For many years, single-source multispectral dat
 

 

Figure 3. Comparison of the standard classification results 
for the selected classes (1: built-up area; 2: ger area; 3: forest; 
4: grass; 5: soil; 6: water). Classified images (a) using Land- 

 (%)

sat TM bands; (b) using bands 3, 4 and 5 of the Landsat 
TM image; (c) using PCs; (d) using multisource bands. 

Table 4. The overall classification accuracy of the classified 
images. 

No The used band combinations Overall accuracy

1 All Landsat TM bands 84.12 

2 Bands 3, 4 and 5 of the Landsat TM 86.29 

3 PC 1, 2, 3 and 4 88.68 

4 Optical and SAR bands 89.37 

 
have b  used for a land cove g. 
Sin t  first single polarization mi- 
rowave data sets, multisource images have proved to 

een efficiently r mappin
ce he appearance of the

c
offer better potential for discriminating between different 
land cover types. In general, it is very important to de- 
sign an appropriate image processing procedure in order 
to successfully classify any digital data into a number of 
class labels. The effective use of different features de- 
rived from different sources and the selection of a reli- 
able classification technique can be a key significance for 
the improvement of classification accuracy [28]. In the 
present study, for the classification of urban land cover 
types, a refined Mahalanobis distance algorithm has been 
constructed. As the features, bands 3, 4, 5 and 7 of Land- 
sat TM and Envisat HH polarization images have been 
used. The green band (i.e., band 2) of Landsat was ex- 
cluded, because it had a high correlation with the red 
band (i.e., band 3). 

Unlike the traditional Mahalanobis classification, the 
constructed classification algorithm uses spatial thresh- 
olds defined from the local knowledge. The local know- 
ledge was defined on the basis of the spectral variations 
of the land surface features on the fused images. It is 
clear that a spectral classifier will be ineffective if ap- 
plied to the statistically overlapping classes such as built- 
up area and ger area because they have very similar spec- 
tral characteristics. For such spectrally mixed classes, 
classification accuracies should be improved if the spatial 
properties of the classes of objects could be incorporated 
into the classification decision-making. The idea of the 
spatial threshold is that it uses a polygon boundary to 
separate the overlapping classes and only the pixels fal- 
ling within the threshold boundary are used for the clas- 
sification. In that case, the likelihood of the pixels to be 
correctly classified will significantly increase, because 
the pixels belonging to the class that overlaps with the 
class to be classified using the threshold boundary are 
temporarily excluded from the decision making process. 
In such a way, the image can be classified several times 
using different threshold boundaries and the temporary 
results will be stored as ancillary classification results. 
After applying the last threshold, the ancillary results can 
be merged, thus producing a final improved land cover 
map [29]. 

In the present study, the spatial thresholds have been 
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applied for differentiation of the spectrally similar classes 
such as built-up area and ger area as well as forest and 
grass. The result of the classification using the refined 
m

elected data fusion techniques for 
f different urban features and classify 
ypes using a refined Mahalanobis dis- 

ethod is shown in Figure 4. For the accuracy assess- 
ment of the classification result, the overall performance 
has been used, taking the same number of sample points 
(i.e., 1239 purest pixels) as in the previous standard clas- 
sifications. The confusion matrix produced for the re- 
fined classification method showed overall accuracy of 
91.58%. As could be seen from Figure 4, the result of 
the classification using the refined Mahalanobis classifier 
is much better than results of the standard method. As the 
overall accuracy exceeds 90%, this kind of result can be 
directly used for a spatial decision-making or update a 
thematic layer within a spatial information system. A 
general diagram of the refined Mahalanobis classification 
is shown is Figure 5. 

7. Conclusion 

The main purpose of the research was to compare the 
performances of the s
the enhancement o
urban land cover t
tance classification. For the data fusion, multiplicative 
method, Brovey transform, IHS method and PCA were 
used. When the results of the fusion techniques were 
compared, the IHS transformed image gave a superior 
image in terms of the spectral and spatial separations 
among different urban classes. To extract the reliable 
urban land cover information from the selected optical 
and microwave data sets, a refined Mahalanobis classifi- 
cation algorithm that uses spatial thresholds defined from 
the local knowledge was constructed. Overall, the study 
demonstrated that multisource information can consid- 
 

 

Figure 4. Classification result obtained by the refined me- 
thod (1: built-up area; 2: ger area; 3: forest; 4: grass; 5: soil; 
6: water). 
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Figure 5. A general diagram for the refined classification. 
 
erably improve the interpretation and classification of 
land cover types and the refined Mahalanobis distance 
classifier is a powerful tool to produce a reliable land 
cover map. 
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