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ABSTRACT 

In the present study, an oscillatory model of the universe is proposed wherein the universe undergoes a sequence of big 
bang, expansion, contraction, big bang—repeated ad infinitum. The universe comprises of a “World” and an “Anti- 
world” in both of which matter operates in the positive time zone and antimatter in the negative time zone. Big bang is 
predicted as the violent encounter between matter and antimatter. It is suggested that antimatter has negative mass and 
is hugely abundant. It is also shown why it is extremely rare in spite of its abundance. It is predicted that a built in trans- 
formation converts matter to antimatter and vice versa. Finally, it is established that symmetry between matter and anti- 
matter in the universe is maintained throughout. 
 
Keywords: Cosmology 

1. Introduction 

1.1. Methodology 

This paper presents a study of the universe using a new 
method, to be named as the “Method of Indices”. It is 
named so, because it defines and evaluates the “Growth 
Indices” (briefly, “Indices”) of scalars, at play in the uni- 
verse, links these indices to the Hubble’s Constant, and 
subjects various equations of Physics and Cosmology to 
unveil new cosmological truths. 

The index of any scalar, X , appearing in an equation 
of physics or cosmology, is denoted by X   and given 
by 

X
X

X
 


                  (1) 

where 
d

d

X
X

t
 , t denoting time. X  in the denominator  

ensures that X   has the same sign as that of X . 
So,  and  indicate respectively the 

growth and decay of 
0X   0X  

X  with advancing time. 0X    
marks X  as a universal constant, a constant over the 
eons. 

The method is now described briefly. Using rules, 
given in Section 1.3, of operations involving indices, an 
equation of physics or cosmology can be transformed 

into a linear equation in the indices of scalars, which 
constitute the former equation. Any carefully chosen set 
of such linear equations, with at least one among them 
involving the Hubble’s constant, is solvable for the un- 
known indices. Indices, thus obtained, reflect the effect 
only of the Hubble’s expansion. Each of these indices 
promotes an equation, which links the corresponding sca- 
lar to time. The promoted equation will enable scientists 
to evaluate the scalar for any chosen time, provided its 
value for any other time is known. 

Next, the known constants of physics and cosmology 
are constants for the present epoch, but may or may not 
be so over the eons. So, a prerequisite for the application 
of the method of indices is set up as follows. 

“Each scalar except the velocity of light  c , be it a 
constant or not, is to be regarded from the outset of the 
analysis as varying with time till the analysis marks it as 
a constant for all eons. For a scalar X  to be so, X   
must be zero.” 

Though the Hubble’s law plays a pivotal role in this 
method, it itself is subjected to analysis by this method. 
And for this, 0H , the Hubble’s Constant of this law, is 
replaced by H , which is considered as varying with 
time, 0H  being the value of H  at the present epoch. 

1.2. Definitions and Notations 

1) A spatial sphere will be referred to as a “3-sphere”. *Corresponding author. 

Copyright © 2013 SciRes.                                                                                 IJAA 



S. K. BASU THAKUR, S. MUKERJI 138 

2)  will denote the radius of the three sphere of the 
universe. 

S

3) M  and  will denote the mass of matter and an- 
timatter respectively. 

m

4) The generalised scalar, denoted by X , will re- 
present all scalars individually, when such situation 
arises. 

5) The constants of integration in all equations will be 
denoted by A  without suffices and must not be con- 
sidered as equal dimensionally or otherwise. 

6) Scalars at  and 00t  t t  (present epoch) will 
have suffices “i” and “0” respectively. 

7) 

0c                      (2) 

8) The Hubble’s Law states that galaxies move away 
from an observer with speeds , directly proportional 
to their respective distances  from the observer i.e. 

R
R

0

R
H

R



                 (3) 

where 0H  i.e. the Hubble’s Constant. Now, as 
0R R   R  and 0H  is to be replaced by H  (as  

proposed in Section 1.0.1), then 
R

H
R




 is the Hub- 

ble’s Law which can now be written in the following 
new form: 

R H                    (4) 

9) In all numerical calculations, following values of 
the Gravitational Constant (G), the Hubble’s Constant 
(H) and the velocity (c) of light for the present epoch will 
be used 

11 2 2
0 6.672 10 Nm KgG      

1 9
0 13.7 10 yrs. 4.320432 10 sH      17



 

8 12.99792458 10 m sc    

1.3. Rules of Operations for the Indices 

Rules of operations for indices of two positive scalars, 
A  and , with respect to positive time, are provided 

below. Whenever used,  will denote a positive real 
number. The rules can be extended to any number of 
positive scalars. Higher order indices also exist, an 
example will be provided in Subsection 4.2. 

B
a

1) If A  and  are of the same type, B

A B                      (5) 

But,  c v 
2)  

 aA A                  (6) 

3)  

 aA A                    (7) 

4)  

 aA aA                  (8) 

5) 

 aA aA                   (9) 

6) 

 aA aA                 (10) 

7) 

   a aA A a       A            (11) 

8) 

   1A A   A               (12) 

9) 

 AB A B                 (13) 

10) 
A

A B
B

     
 

              (14) 

11) 

 
A B

A B A
A B A B

                 
B      (15) 

12) For A B , 

 
A B

A B A
A B A B

                 
B     (16) 

2. Analysis 

2.1. Hubble’s Law 

Since  and  are of the same type, both being 
lengths, by rule 1 of Subsection 1.3, Equation (4) is writ- 
ten as [1] 

R S

H S                    (17) 

As , 0S  S S ; and so, 
S

S
S

 


, whence 
Equation (17) becomes 

S
H

S



                 (18) 

So, 

2S
H H

S
 
  
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If 

2S
qH

S
 


                (19) 

then 

  21H q H                (20) 

0 , the value of q  at the present epoch, is the 
‘deceleration parameter’. As , 
q

0H  H H , and so  

by Equation (20),  1
H

q H
H

   , whence 

 1H q H                  (21) 

Next, as the universe is expanding, , and so,  0S 

S S  . Then, 
2

S
S qSS

H

HS S

S

   



  , whence 

S qH                     (22) 

Also, 

d

d

t

tt
t

  , 

1
t

t
                       (23) 

2.2. Friedmann’s Equations 

The Friedmann’s equations for  complete with the 
“Cosmological Constant” 

0k 
  , are [2] 

  21 2q H c   2              (24) 

32
2 0 0

3

8

3 3

G Sc
H

S


             (25) 

where 0  is the rest mass density of the universe st 
. Let 0t t

2

2
0S


                    (26) 

where   is a parameter, that sets the level of  . Then, 

2 2 2
2

2
0 0

c
c

S t2

 
                 (27) 

So, the Friedmann’s equations are rewritten as: 

 
2

2
2
0

1 2q H
t


               (28) 

32
2 0 0

2 3
0

8

3 3

G S
H

t S

 
            (29) 

2.3. The Nature of  q
Differentiation of Equation (28) with respect to time 
yields: 

 1 2q q   H                (30) 

Then, by Equation (21) this becomes: 

  1 2 1q q q    H             (31) 

So, 

  1 2 1q q H
q

q

  
             (32) 

q  is non-zero except for 
1

2
q   and . So,  

varies with time; in fact, it decreases from 

1q   q

1

2
q   to 

1q   . 

2.4. More about the Friedmann’s Equations 

Let two quantities,   and , be introduced below [2]: 
2 2 2 2

2 2 2 2
0 03 3 3

c c
2H S H t H

  
              (33) 

3
0 0

2 3 2

8 8

3 3

G S G

H S H

  
               (34) 

It will be proved in this very subsection that they vary 
with time. Their values, 0  and 0 , at 0  are the 
well known “Cosmological Constant Parameter” 

 t t
   

and “Density Parameter”  0  respectively. 

Equation (28) implies: 
2

2 2
0 33

q

t H


1 2
, whence 

1 2

3

q 
                  (35) 

Next, Equation (29) implies: 
2

2 2 2
0

8
1

3 3

G

t H H

 
  ,  

whence 

1                    (36) 

Equations (35) and (36) together imply: 

 2 1

3

q
                 (37) 

Also, Equations (35) and (37) together imply: 

2 2q               (38) 

Now, S ct S c t S t           by Equation (2).  

Since by Equation (23), 
1

H
t

 , then 

1Ht                   (39) 
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Next, by Equation (39), 
1c c

H
S t S
   . Then, 

1
c

SH
                   (40) 

Then, 
2

2 2
0 0

1
c

S H
                 (41) 

Equations (33) and (41) together imply: 
2

03                  (42) 

By Equation (35) this becomes: 

01 2q                 (43) 

Equations (35) and (37) respectively show that   
and  vary with , which has been shown in Section 
2.3 to be varying with time. So, 

 q
  and  also vary 

with time. 


In fact, at , when 0t 
1

2
q  , 0   and 1  .  

And, when , 1q   1 

1

 and .  means 
the universe is empty. So, the condition that the universe 
is empty is , or 

0  0 

0    , or . 1q  

In de Sitter’s universe, 
2 2

2 2

3
1

3

H c

c H


    . So, by  

Equation (33), 1  . So, de Sitter’s universe is empty. 

2.5.  as a Function of Time q
Equation (31) is written as: 

   1 1 2 1 2q q q H     q          (44) 

By Equation (28) this becomes: 

 
  

0 0

3 1 2d
1 d

21 2 1 2

qq q
q t

t tq q

    
     

  


 

 
   2 2

0

d 1 2
d

23 1 2

q
t

tq


 

    

 

Integration of this yields: 

0

3 1 21
 ln

22 3 3 1 2

q t
A

tq

 
 

 
 

where A  is the constant of integration. 
Now, 

1
1 0 1 2 3 3 1 2 0

2
q q          q  

So, 
3 1 2

0
3 1 2

q

q

 


 
; then, 

3 1 2 3 1 2

3 1 2 3 1 2

q q

q q

   


   
 

So, 

0

3 1 2 3
ln 2 3

3 1 2

q t
A

tq

 
 

 
 

At 
1

0  
2

t q  ; so, 0A  . Then, 

0

3
3 1 2

e
3 1 2

t

tq

q

 


 
 

or, 

0 0

3 3

e 1 1 2 3 e 1
t t

t tq
   

  

   

  
  




 

whence 

0

0

2
3

2
3

3 e 1

1 2

e 1

t

t

t

t

q





 
 
 
 
 
 
 
 

              (45) 

Therefore, 

0

0

2
3

2
3

e 1
1 3

2 2
e 1

t

t

t

t

q





 
 
 
 
 
 
 
 

             (46) 

  and  q02.6. Evaluation of 

At 0t t , Equation (45) becomes: 

 
 

2
3

0 2
3

3 e 1
1 2

e 1
q






 


 

By Equation (43), this further changes to: 

 
 

2
3

2
2

3

3 e 1

e 1










 

This equation is satisfied by: 
2 2.211373949               (47) 

Then, by Equation (43), 

0 0.605686974q               (48) 
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2.7. Evaluation of  and t0 S0  

1 9
0 0 13.7 10 yrs. 4.320432 10 s.t H      17    (49) 

25
0 0 12.95232929 10 m.S ct          (50) 

2.8. Indices of Few Scalars from Equations of  
Physics 

1) Index of mass of matter: Angular momentum of a 
body of mass M , revolving in a circular orbit of radius 

 with linear velocity  in a direction tangential to the 
orbit, is constant; i.e. 
r v

Mvr  , where   is the 
constant angular momentum. Using Equation (13) this is 
transformed to:  0r M v  

By Equations (5) and (22), , and by 
Equations (5) and (17), . So,  

v qH  
M qr H  0H H  

 1M q H                  (51) 

2) Index of force: The centripetal force, acting on the  

revolving body, referred to in above, is 
2mv

F
r

 . 

Using Equations (3), (8), and (14) to this : 

 2 1 2F M v r q H qH H            

whence 

 2F q H                 (52) 

3) Index of gravitational constant  : The gravi- 
tational force of attraction between two bodies of mass 

G

1M  and 2M  at a distance  is: R

1 2
2

GM M
F

R
 , whence 

2

1 2

FR
G

M M
 . 

Then, ; or,  
, whence 

2 2G F R M    
  2 2 2G q H H   


H

H

1 q  

 2 3G q                  (53) 

2.9. A Few More Indices 

1) Index of R

R

c




 

 
 0 R S  for : For any  

  0 ,R R S 

R

R H R
R HR R

c c
      

 


S

 

.R RR S H H           

Then, 

0R                     (54) 

2) Index of 21 R : By Equation (16), as 1R  , 

     
2 2

2 2

2 2
1 2

1 1

R R

R R

R R

 
.R  

 

            
       

 

Then, by Equation (54), . Now,   21 R
  0

   2 1
1 1 2

2R R  ,    whence 

 21 R 0                 (55) 

 : 
  

2 1
1

3

q
q

 
3) Index of        

 
 (by 

Equation (6)) 

 d 1

d .
1

q

t
q



  


 

As  and so, 1,1 0,q q    1 1q   q . Then,  

.
1

q

q
 




 So, by Equation (31), 

 1 2q H                (56) 

 : 
 1 2

.
3

q



  

 
4) Index of 






 By Equation (6), 

1 2q    . Then, 

 d 1 2
2d

1 2 1 2

q
qt

q q



  

 


, as  

 1 2 0q  . Then, by Equation (31), 

 2 1 q H                   (57) 

2.10. Why Does the Universe Expand? 

That the mass of matter in the universe is decreasing with 
advancing time is evident from the negative value of 
M  , obtained in Equation (51). In this decreasing 
process, M   is the index of the residual mass, and 
 M   is that of the withdrawn mass (mass that ceases 
to be so). Equation (51) implies: M S S    

S

 . This 
proves that the withdrawn mass creates vacuum energy 
that promotes the accelerative expansion  S    of 
the universe. Next, Equation (34) can be written as: 

2 3

2

M

H S

G

                  (58) 

where M  is the residual mass of the universe. The 
denominator has the dimension of mass. So,   is the  

proportion of M  to 
2 3

2

H S

G
, which represents the total 

rest mass (in nature). Then, the withdrawn rest mass is 
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2 3

2

H S
M

G

 
 

 
. So, the proportion of the withdrawn rest 

mass is: 

2 3
1 1

2

M

H S

G

.     

This shows that another measure of the withdrawn 
mass is  , which is regarded as the driving factor 
behind the accelerative expansion of the universe. 

Thus, the accelerative expansion of the universe is due 
to the vacuum energy created by the withdrawing mass, 
indicated by  M   and  . 

3. Antimatter in the Universe 

3.1. Why Antimatter? 

Antimatter is no less a reality than matter [3,4]. This fact 
alone is reason enough to undertake an investigation into 
the possibility of antimatter, playing a role, similar to that 
played by matter, in the workings of the universe. It’s 
extreme rarity has so long relegated it to insignificance. 

It will be proved in Subsection 3.3 that antimatter is 
hugely abundant. It will also be explained, in the two 
subsequent subsections, why, in spite of its abundance, it 
is rare. 

3.2. Dynamic Relation between  and M m  

If M  is the mass of a number of particles, then the 
mass  of the same number of antiparticles is given 
by [5-7]: 

 m

m M                   (59) 

This implies  

 0 0m M m M mM mM ,              

where  is a constant. Then,  0   mM   , whence 

M m                  (60) 

This is the dynamic relation between particles and  

antiparticles. This is called so, because the ratio 
m

M

 
 
 

 

varies with time, as shown below. 

2 2

m m
M m

M MM M

 
          

  
 

Then,  2 2 0
m

M M
M

       
 

.  

3.3. Abundance of Antimatter 

Friedmann’s Equation (34) has been rewritten in Equa- 

tion (58), which is now changed below to it’s equivalent 
equation in indices. 

2 3G M H S                   (61) 

As M  is the rest mass of the universe, it is given by: 

21 RM M   , 

where M  is the mass of the universe, and R

R

c
 


, 

 being the average speed of mass. Now, R R RH , 

and 0 R S   ; so, 0 R S  . For such , and 

consequently for , 

R

R  21 R  has been evaluated in 

Equation (55) as  21 0R  . Then 

M M                    (62) 

Equation (61) can be written as: 

2 3M H S G                     (63) 

By Equations (17), (21), (53), and (56), the above 
equation becomes: 

 2 3M q H                  (64) 

This does not agree with Equation (51), which gives 
 1M q H    . So, M  of Equation (64) must have a 

component other than the mass of matter. There can be 
no such component other than the mass of antimatter. 
This prompts replacement of M  by  M m , i.e., by 
 M m  in Equation (64) as given below. 

   2 3M m     q H             (65) 

Now, by Equation (15),  

  M M m m
M m

M m M m

  
 

. 

Equation (60) 0 .M m m  M        So, 

   M m M
M m

M m

 


 

Since during the expansion of the universe, M m , 
M m M m   . Then, 

 M mM m

M m M





 

So, by Equations (65) and (51), we have 

 
 
2 3

1

M m q H

M m q

  


   H
 

Then, at 0t t , 
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0 0 0

0 0 0

2 3

1

M m q

M m q

 


 
 

This, with Equation (48) gives 

0

0

0.407795824
m

M
             (66) 

Now, at any time , let a sphere concentric with 
the 3-sphere of the universe is of radius  
and have the density 

t t
 0R R S 

R . Then the mass of this sphere is 

3
R RM a R , where 

4

3
a


 . 

Let another concentric sphere of radius R dR  be 
considered. The density of this sphere can, for all 
practical purposes, be taken as R , since  is 
infinitesimally small. Then, 

dR

R RM dM
3 3R R 


a 

dR

, the mass of this 
sphere is: R ,  
neglecting higher powers of  than one. So,  

. 

   3 2a R dR R d 

2
R R dR

R

3RdM a
Then, the average speed of the entire mass of the 

3-sphere of the universe is: 

 
0

0

d

d

M

R

M

R

RH M
R

M
 


  

where  is the speed of the galaxies at a distance  
from the observer, or for all practical purposes, the speed 
of matter within the spherical shell, having the outer and 
inner radii  and  respectively. so, 

RH R

R dR R
4

3

0
32

0

3 d 34
43 d

3

S

R

S

R

HS
a H R R HS

R
Sa R R




 


   

So, by Equation (40), 
3

4

c
R  , whence 

3

4R                    (67) 

Therefore, 

2 7
1

4R                (68) 

Now, Equation (58) implies: 
2 3

2

H S
M

G


  

As 21 RM M   , by Equation (68), the above 
becomes:  

2 34

27

H S
M

G

 
  
 

 

Replacement of M  by M m  changes this to: 

2 32

7

H S
M m

G

 
   

 
           (69) 

At 0t t , this becomes: 
2 3

0 0 0
0 0

0

2

7

H S
M m

G

 
   

 
         (70) 

Equations (37) and (48) together give  

0 0.26287535  . Values of 0H  and 0  are taken 
from Subsection 1.2 and 0  from Equation (50). With 
these values, Equation (70) gives 

G
S

52
0 0 3.467081744 10 KgM m    

From this with the help of Equation (66), 0M  and 

0m  are evaluated as given below: 
52

0 5.854537868 10 KgM            (71) 

52
0 2.387456094 10 Kgm           (72) 

3.4. Static Relation between  and M m  

The static relation between M  and m  is characterised 

by 0
m

M

 
 

 
. This relation is obtained as follows:  

Equation (59) M m   , whence 

M m                  (73) 

This is the static relation. Then, 

M m                   (74) 

This implies 0
m

m M
M

   0    
 

. Thus the  

criterion of static relation is fulfilled by Equation (73). 
Next, Equation (60) 0M m    , whence 

M m                   (75) 

Thus Equations (74) and (75) do not agree, seemingly 
posing a problem. It will be seen in Subsection 3.7 that 
the dynamism of relation (75) originating from the static 
relation (74) is the solution to this problem. 

3.5. Two Time Zones 

The concept of two time zones is necessary to show that 
the dynamism of relation (75) originates from the static 
relation (74). This concept is there in the theory of 
Quantum Electrodynamics also. This theory will come 
up again in Subsection 3.7. 

This concept necessitates introducing a new con- 
vention of denoting the time derivative and the indices of 
scalars as is given below. Suffices  (or, "" "t " ) and 
" "t  (or, " " ) will be used under this convention. 

1) 
d

d

X

t
 and 

 
d

d

X

t
 will respectively be denoted by 
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tX  and tX 
 . 

2) tX

X


 and tX

X



 will respectively be denoted by 

tX   and tX  . 

Also, two relations between tX   and tX   are 
deduced below. 

a) 

 
dd

dd
t

XX
ttX

X X

 
    

whence 

t tX X   

t

               (76) 

b) Equation (76) implies 

tX X                    (77) 

It must be mentioned here that all indices, occurring 
upto Subsection 3.4, are of the type .tX   

Now, the static relation (73) t t tM m m    

t

, 
whence by Equation (76), 

tM m                  (78) 

This is the fundamental relation between matter and 
antimatter. Also, as the natural time zone for matter is the 
Positive Time Zone (PTZ), Equation (78) shows that the 
same for antimatter is the Negative Time Zone (NTZ). 
Time is progressive in the PTZ and regressive in the 
NTZ. 

Next, relation (73)  
,t t t t tt

M m M m m M           

t

 whence by 
Equation (76) 

tm M                  (79) 

3.6. The Time Barrier 

The PTZ is defined as 

0 t                    (80) 

and the NTZ is defined as 

0 t                   (81) 

So, matter and antimatter, when in the PTZ, moves 
forward in time and when they are in the NTZ, they 
move backward in time. The only instant of time com- 
mon to both PTZ and NTZ is: 

0t t    

Since matter and antimatter are trapped in the PTZ and 
the NTZ respectively when Equation (78) rules, matter 
cannot cross over to the NTZ as matter, and antimatter 
cannot cross over to the PTZ antimatter, and so there 
exists a “time barrier” (except ) to prevent 
matter and antimatter from meeting. So, antimatter 

cannot be sighted in the PTZ, when Equation (78) rules. 

0t t  

When Equation (79) rules, antimatter and matter 
appear in the PTZ and NTZ, not in the NTZ and PTZ 
respectively. Since they appear in their unusual time 
zones, their appearances must be extremely rare. So, 
extremely rare are the appearances of antimatter in the 
PTZ. Such rare appearances of antimatter result from 
chance phenomena like cosmic rays striking interstellar 
matter. 

3.7. Conversion 

Equation (78) is the result of the following transfor- 
mation:  

  ,t M t m  ,             (82) 

This transformation means that matter in the PTZ gets 
converted to antimatter in the NTZ. So, antimatter in- 
creases at the cost of matter, that decreases [vide Equa- 
tion (51)]. This is exactly what the dynamic relation (60) 
conveys. As transformation (82) originates from the sta- 
tic relation, the problem, that was faced in Subsection 3.4, 
vanishes. 

Next, Equation (79) is the result of the following 
transformation 

  , ,t m t M  

t

            (83) 

This transformation shows that antimatter, which is in 
the PTZ and so moves forward in time, gets converted to 
matter, which is in NTZ and so moves backward in time 
[8]. In the theory of Quantum Electrodynamics also, an- 
timatter moving forward in time is interpreted as matter 
moving backward in time.  

3.8. Rarity of Antimatter 

When Equation (78) rules, antimatter is hugely abundant 
in the NTZ at present, and because of the time barrier 
there is absolutely no chance of antimatter appearing in 
the PTZ and being detected. But when Equation (79) 
rules, antimatter appears in the PTZ. It has been explain- 
ed in Subsection 3.6 that such appearances are extremely 
rare. Thus it is explained why antimatter is extremely 
rare in spite of its huge abundance.  

4. Game Matter and Antimatter Play 

4.1. The Three Fundamental Scalars 

The three fundamental scalars (time, radius of the 3- 
sphere and mass), associated with antimatter, are related 
to the corresponding scalars, associated with matter, as 
given below. 

at                     (84) 

aS S                   (85) 
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m M                   (86) 

where the suffix “a” indicates association with antimatter. 

4.2. Matter in the Expanding Universe 

Equation (39) 
1

H
t

  ; so, by Equation (23), 

tH t                  (87) 

where  

tH S                  (88) 

Equation (39) also implies: 

t tH t                    (89) 

Now, Equation (12)  1 tt
M M       

So, by Equation (51),  

     1 1 1 2 2t tt tM q H q H H H t t              

whence  
1t M                   (90) 

Next, Equations (87) and (88) together imply: 

t tt S   

whence  
t S                   (91) 

By Equations (90) and (91)  
S

t
M

                   (92) 

4.3. Antimatter in the Expanding Universe  
(Figure 1) 

Equation (76)    t t t t
M M M m 

         whence  

t t
M m


 

t

               (93) 

Equation (92) . So, by Equation (93), t tt S M   
t t t

Then, by Equation (77), this becomes:  
t S m    . 

t t t
t S m


    

 

 

Figure 1. In the figure all the Particles in the positive time 
zone represented by  gets converted into the cor- 

responding antiparticle in the negative time zone repre- 
sented by  

  A t M,

or,    1

t tt
t S m

 

    , whence 
m

t
S

  . 

Now, because the LHS  and the RHS , 0 0
a m

t
S


  , where  0a   is a constant. Then, 

a m
t

S
 , whence  

m
t

S
                  (94) 

4.4. How Antimatter Increases in the Expanding  
Universe 

Let the four corners , ,A B C  and  of a rectangular 
strip of paper represent respectively the paired scalars 

D

     , , , , ,t M t m t m  and , as shown in the 
figure. Then, transformations (82) and (83) can be writ- 
ten as below.  

 ,t M 

  , ,A t M C t m               (95) 

  ,B t m D t M  ,              (96) 

Now, when this strip is given a single twist and the 
edge AB  is joined with the edge  in such a way 
that 

CD
A  and  coincide with  and  respective- 

ly, a Mobius strip is formed. 
B C D

Then, transformations (95) and (96) together constitute 
a Mobius transformation operating within the universe 
[9]. So, under this built-in Mobius transformation in the 
universe, particles (in the PTZ), represented by  , A t M , 
undergo conversion to the corresponding antiparticles (in 
the NTZ), represented by . Plenty of matter in 
the universe ensures “continual” conversion of matter to 
antimatter. Such a scenario supports Equation (60) as 
well as the pair of Equations (92) and (94) taken to- 
gether.  

 , C t m 

4.5. Roles Played by Matter and Antimatter 

Relation (92) shows that with advancing time, decreasing 
matter effects the expansion of the universe, while 
increasing antimatter effects its contraction [vide relation 
(94)]. Due to matter preponderating over antimatter du- 
ring the expansion phase, the contraction remains eclip- 
sed. So, m M  is symptomatic of the expansion of 
the universe. The universe will be on the threshold of 
inflecting into the contraction phase when  

m M                  (97) 

4.6. The Moment of the Inflexion 

  C t m , .
Let the moment of inflexion be , and all the scalars 
at this moment have the suffix “T”. Then, by Equation 

t T
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(97), 

Tm M T . By Equation (60), 0 0T TM m M m . So,  

0 0T TM m M m             (98) 

Then, by Equations (71) and (72),  

523.738643084 10 KgT TM m          (99) 

Next, by Equation (51), tM H qH    , or,  

 d
1 d

M
q H t 

M
   . 

or, 
 
 

 
 

2d 1 d 1 2d

3 1 6 1 2

q qM

M q q

 
 

      
 

Integration of this gives:  2 1

3 6ln ln 1 ln 1 2 lnM q q


     A , where A  is the 
constant of integration. 

Now, since 
1

1
2

q   , 1 1q q    and  

1 2 1 2q   q . Also, M M . 

Then,    
2 1

3 6ln ln 1 ln 1 2 lnM q q


     A ; or,  

 

 

2

3

1

6

1

1 2

A q
M

q





             (100) 

Then, 
 

 

1

6
0 0

2

3
0

1 2

1

M q
A

q





. By Equations (48) and (71), 

. So,  5212.42726525 10 KgA  

  

 

2
52 3

1

6

12.42726525 10 Kg 1

1 2

q
M

q

 



     (101) 

Next, let  

0

3

t

                  (102) 

Then, by Equation (46),  
 

2 2
2 3 3
3

4

3

6 e
1

e 1

t

t

q





 


, and by 

Equation (45),  
 

 

1 1
6 31

6
1

3

3 e 1
1 2

e 1

t

t

q





 


 

Then, 
 

  

2
53 3

1

3

3.416825969 10 e
Kg

e 1 e 1

t

t t

M



 




   

. So,  

 
  

2
53 3

1

3

3.416825969 10 e
Kg

e 1 e 1

T

T 
T T

M



 



   

. 

By Equation (99), this becomes:  

  
2 1

3 3e 0.107795938 e 1 e 1
T

T T


         (103) 

By Equation (47), 1.487068912  . Also,  
1 174.320432 10 sH    . 0 0t

So, by Equation (102), 5.9616 18 123536 10 s   . 
For this value of  , Equatio

  (104) 

years from now. 

 

Let in the post-inflexion period, time be denote

n (103) gives:  
1710 s 17.884 10  95.545363334 years.T  

So, inflexion occurs after 

4.7. The Reversal of the “Arrow of Time”

94.184 10  

d by   
an suffix “c”.d other scalars have the  Also, let cS  and 
 c cS dS  be the radii of the 3-sphere, and cH  and 
 c cH dH  be the Hubble’s Constant therein at times 
  and  d   respectively. d dt    will indica  
the reversal of the “Arrow of Time”. 

ves from c TS S

te

cS   to 0cS  , w e S  
 0S

 mo hil
m romoves f   to TS S . So, each value of cS  

ust corr o a unique value of o,  

cS S

ond t S . Sm esp

                   (105) 

ontractAlso, as the universe c s,  

cdS dS  (106) 

Next, 0cS S 
S S dS

0c dS   , and so,   and dS
Sc cS d S c     . So,  

1c

S
cS dS

c

                 (107) 

Also,  
0c c cS S S S               (108) 

Now, c c
c c c c

c c

dS dS
S H H d H d

S S
        

d
dc

c
c

S
H

S
    ln dc cS H    , A

where A  
08),

is the constant of integration. Then, by Equa- 
tion (1  Aln dc cS H  

de cA H

; or,  

cS   

Then, 
 de c cA H dH

c cS dS     

So, by Equation 07),  (1

de 1cH c c

c

S dS

S
 
   
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Hence, 

d 0cdH    

cHDifferentiation of this with respect to  gives:  

0d                  (109) 

Next,  T  moves from  to 0  , while 
moves fr  to . So, each value of 

t  
om 0t  t T   mu

correspo . So, 
st 

nd to a unique value of t  

t                 (11   0) 

Then, 0d dt   , or, 0dtd    . Inequality (109), 
so, indicates  

d dt                  (111) 

So, the “Arrow of Time” rev rses at th

 

e e moment of 
inflexion, i.e. at 

 the tracting Uni  

Equation (92) is reproduced bel

t T . 

4.8. Matter in Con verse

ow:  

, 0
S

t dt
M

                (112) 

4.9. Antimatter in the Contracting Universe 

Equation (94) is reproduced below:  

,
m

t dt
S

  0

g  

Reversal of the “Arrow of Time” at 
arrows of transformations (95) and

              (113) 

4.10. How Matter Increases in the Contractin
Universe 

t T  reverses the 
 (96) as shown below.  

   , ,C t m A t M              (114) 

   , ,D t M B t m              (115) 

Antimatter decreases in the contracting universe with 
regressive time  t , as given in relation (113), while 
matter increas hown in rela
appearing antimatter is converted
transformation (114), which is part
built “Mobius transformation”, discussed in Subsection 
4.

ve

expansion of 
the universe. With the mass of matter preponderating 

atter, contraction rules over expansion. 

es, as s tion (112). The dis- 
 to matter by the 
 of the reversed in- 

4 and now reversed. As antimatter in the universe is 
plentiful, the con rsion is “continual”, and matter in- 
creases at the cost of decreasing antimatter. 

4.11. Back to t  0  

Relation (112) implies that with regressive time in- 
creasing mass of matter effects contraction of the uni- 
verse, while relation (113) shows that with regressive 
time decreasing mass of antimatter effects 

over that of antim
As time is regressive, it is back to 0t  , when by 

relation (112), 0S   and M   , and by relation 
(113), 0m  . Thus , ,t S M  and m  are back to their 
starting values at 0t  . 

4.12. Symmetry between Matter and Antimatter 

Th start 
atter and antimatter

 at a xcep
e of e preponderance of matter over 

antimatter, denied antimatter a role, as important as the 

 in their denotations, 
 with those in the WORLD, 
enotations.  

e universe, discussed so far, did not with sym- 
metry between m , nor this symmetry 
was there ny instant e t at t T . Absence of this 
symmetry, becaus th

role of matter, in the workings of the universe. 
In the next section, the concept of the “Antiworld” is 

introduced and it is shown that symmetry between matter 
and antimatter is never disturbed. 

5. The ANTIWORLD 

5.1. What the ANTIWORLD Is 

The ANTIWORLD is the mirror image of the WORLD. 
It is like the WORLD except that the fundamental scalar 
therein, having the subscript “A”
bear the following relations
having no subscript in their d

At t                     (116) 

AS S                    (117) 

AM M
m


                 (118) 

Am m
M


 

where by Equation(60), 

               (119) 

M m    

5.2. Isolation of Two WORLDS fro  

Time 

m Each Other

 At  
. It a

 

in the ANTIWORLD is, by Equation (116) 
negative dvances from
range is: 

            (120) 

 At  0  to At   . So, its 

0 t    A    

On the other hand, time  t  in the WORLD is 
positive and advances from 0t   to t   , its range 
being  

0 t      (121)              

These two ranges show that 
has in the other’s range, and so 
be

neither of the WORLDS 
the WORLD has no past 

yond 0t  , or the ANTIWO D has no past beyond 
0At

RL
 . This means that exce t 0t   , the two 

WORLD
pt a

 completely isolated from other by 
this time barrier.  

At
 each S are
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5.3. The ANTIWORLD Is Expanding with the  
WORLD 

The relation between AH , the Hubble’s Constant in the 
ANTIW D, and ORL H , that in the WORLD, is obtained, 

Equations (116) and (117), as is low. 

A

using  given be

t   
A

A t t
H S S 

     S 

By Equation (77), t tS S   , and so, A tH S  , 
whence  

AH H                  (122) 

This shows that the ANTIWORLD expands from 
0S   (at 0t  ) to SA A A    (at t   ) aA

from S
long 

, w nds with the WORLD hich expa 0  at 
 to  at  0t  S      . 

0  
t

As at 0At t   , AS S  and growth f 

A

 rates o
H  and H  are equal uation (122))(vide Eq , tS S  
at any instant t t  in the WORLD implies A tS S   
at t t  in the AA = NTIWORLD. That is, at At t  , 
the
wher

 ANTIWORLD is exactly at that stage of expansion, 
 the WO D is at t t

5.4. Antimatter in the Expanding ANTIWORLD

eat RL  .  

 

Eq 94uation ( ) implies t tt
t m S   . Then, by Eq  

(77), 

uation

t tt
t m S
       


tt t

t m S 
        

S
t

m
   . Of this, the L.H.S. 0  and the R.H.S. 

0 , and so, 
aS

t
m


  , where  0a   is a constant. 

Then, 
 a S

t


  ; or, 
m

A
A

aS
t

m
 ; or, AaS

t  ,  A

A
m

whence  

A
A

A

S

Equatio lies tt S  . Th qua

(77), tt

t
m

                  (123) 

5.5. Matter in the Expanding ANTIWORLD 

n (92) imp en, by E tion t t M  

tM     ttS    1
tt

t S M





       

  t
t

M
t

S


     
 

, whence 
M

t  . The L.H.S. of 
S

this 0 , and the R.H.S. 0 , and so, 
aM

t
S


  ,  

where  0a   is a constant. Then, 
 
aM

t 
S

; or,  

A
A

aM
t 

AS
; whence  

A
A

A

M
t             (124) 

AN ORLD 

S
      

5.6. How Matter Increases in the Expanding  
TIW

Let the points A , B , 
r

C
n

, and  in the figure of 
Subsection ese ted in t NTIWORLD by 

D
he A 4.4 be rep

A , B , C , and D  respectively. T n, transformation 
(95) implies: 

he

       A , , , ,At M C t m    

whence,  

A t m C t M    

   , ,A AA t m C t M           (1A A 25) 

fo ation (Next, the trans rm 96) implies: 

       , , , ,B t m D t M B t M D t m        

whence, 

   , ,A A A AB t M D t m           (1 ) 26

Now, let A , B , C , D  
 

be the four corners of a 
rectangular strip of paper. When this stri
single twist and the edge 

p is given a 
AB  is joined with the edge 

CD  in such a way that A  and B  co C  incide with 
and D  respectively, a Mobius strip is formed. 

Then, transformations (125) and (126) together n- 
Mobius transformation, operating within the 
RLD. So, under this built-in system of Mobius 

transformation, anti-particles (in the NT

co
stitute a 
ANTIWO

Z) represented by 
 ,A A At m  undergo conversion to the corresponding 

particles (in t  P Z) ephe T  r resented by  ,A AC t M . 
Plenty of antimatter in the ANTIWORLD ensures 
“continual” conversion of a matter to matter. Such a 

ario supports Equation (60) a well as Equatio  
(123 nd (124). 

nti
scen s ns

) a

durin

As matter is very rare in the NTZ, transformation (126) 
rarely occurs.  

5.7. Symmetry between Matter and Antimatter  
g Expansion 

Equation (123) shows that in the ANTIWORLD, at 
0,A At m   . Also, Equation (92) shows that in the 

WORLD, at 0, .t M    So, Am  in the 
ANTIWORLD and M  in the WORLD have the same 
initial values. 

d

d
t

M

tM
M

  . So, by Equation (118), Next, 
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 

 

1 2d dAm m m 
 

 

1 1

1

d d

dd

t

A A

AA

t tM
m m

mm

  



  






 

d dd
d

A A

A A

A A

m m tt
t m m


 

So, t A t
M m


  , whence  

A
t A t

M m                   (127) 

This means that the growth rates of Am  in the 
ANTIWORLD and M  in the WORLD are equal. 

The initial value and growth rate of Am
 to t

 in the 
ANTIWORLD being correspondingly equal hose of 
M  in the WORLD implies that the value of Am  at 
any instant  equals that of At t  M  at the corres- 
ponding instant  t t . That is 

A
A tt

m M                (128) 

Next, Equation (124) shows t
at s th

hat in the ANTIWORLD 
0, 0A At M  . Also, Equation (94) show at in the 

WORLD, at 0, 0t m  . That is, AM  in the 
ANTIWORLD and m  in the WORLD have the same 
initial values. 

pplication of Equations (76) and (77) on E ation 
(127) gives: 

A qu

t A t
M m 

  , ; or tM    A t
m  ; or, t A t

M m
  ; 

or,  A t t
M m


   whence  

 
A

A t t
M m                (129) 

This means that growth rates of AM  in the 
ANTIWORLD m  in the WORLD are equal. 

The initial values and growth rates of AM  in the 
ANTIWORLD being correspondingly equal to those of 
M  in the WORLD implies that the value of AM  at 

any instant quals that of At t   e m  at the - 
sponding i . That is, 

 corre
nstant t t  A t t

M m

   , whence

 
A

A t t
M m                (130) 

Addition of Equations (128) and (130) gives:  

 
A A

t A At t t
M M m m         (131)    

of th

layed 
OR

Equation (123) implies that wit

This shows that symmetry between matter and 
antimatter is maintained throughout the expansion phase 

e universe.  

5.8. Roles P by Antimatter and Matter in  
the ANTIW LD 

h progressive time  At  
decreasing antimatter effects expansion of the 
A at with 
progressive time increasing matter effects cont
the ANTIWORLD. 

NTIWORLD, while Equation (124) implies th
raction of 

In the WORLD, matter preponderates over antimatter, 
i.e. t tM m . So, by Equations (128) and (130), this 
becomes  

AA
A A tt

m M , which conveys that in the 
ANTIWORLD antimatter preponderates over matter. 
Then,  

A A
A At t

M m  is indicative of the expansion o
the ANTIWORLD, which will be on the threshold o

cting into the contractio

f 
f 

infle n phase when  

 
A A

A At t
M m               ( ) 

5.9. The Moment of Inflexion 

It has been seen in

132

 Subsection 4.6 that the WORLD 
inflects into the contraction phase at t T , when  

T T
M m                (133) 

Equations (128) and (130) for t T  are respectively  

A
A TT

m M               (134) 

and  

 
A

A T T
M m               (135) 

Equations (133) and (135) together give: 

 
A

A TT
M M               (136) 

This, with Equation (134), gives:  

 
A A

A T
            (137) A T

M m

132),
ANTIWORLD inflects into the c

This, read with Equation (  shows that the 
ontraction phase when 

A At T T  
at 

. The mass of antimatter as well as that of 
matter A At T  is given by:  

 
A A

A AM TT T
m

5.10. The Reversal of the “Ar

Let in s have the suffix 

M         (138) 

row of Time” 

 the post-inflexion period, scalar
”. Also, let ACS  and “ AC  AC AC  S dS be the radii of 

phere, the 3-s and ACH  and H
n at tim

 
es t

AC ACdH  be the 
Hubble’s Co  and nstant therei AC

 AC ACdt  respectively. AC Adt dt   will indicate 
the reversal of the “Arrow of Time”. 

AC es from 

t

S  mov
AAC ATS S  to 0ACS  , while AS  

moves fro 0m AS   to AS S A

 va
T . So, eac

lue o
h valu

ust co
e of 

AC  mS rrespond to a unique f AS . Then,  

AC AS S                  (139) 
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Also, as the ANTIWORLD contracts,  

AC AdS dS                 (140) 

As AS S   and AdS dS    

ACdS dS , and so,  

AC ACdS S dS     

Then, 

; ACS S 

S dS S  

 
1AC AC

AC

S d dS

S S S

 
  



S dSS

, 
whence  

1AC ACS dS

ACS
               (141) 

Next, 

d

d
AC

AC
AC AC AC

AC

S

t
S H H

S
   

0

. As  

AC AS S S   , AC ACS S  . So,  

d
dAC

AC AC
AC

S
H t

S
  . On integration, this yields:  

ln dAC AC ACS H t    B

where is the constant of integB  ration. Then, 
de AC ACB H t

ACS    

So,  

 e dAC AB H d
AC ACS dS      C ACH t

Therefore, 

de AC ACdH tAC AC

ACS
  

S dS

which implies: de 1AC ACdH t   or, 
whence,  

Differentiation of this with respect 

d 0e 1AC ACdH t e    

d 0AC ACdH t   

to ACH  yields:  

              (142) 

Now,  moves from  to , while 
 to value of 

mu  a un e of   

             (143) 

; or, 
, which con

ation (140). 

              (144) 

al of  
of Time” at .  

5. tim ontrac  
LD:

Equ

0ACdt   

ACt

st corr

 AC At T
A At T

ique valu

0ACt 
. So, each 

 At . So,
At

ACt
 moves from 0At 

espond to 

AC At t      

Then, either ACdt ACt 
In the former ca d - 

tradicts Equ

Adt
se, dt

Ad dt . 
0dt t  AC A

So,  

AC Adt dt   

This indicates that there is the revers  the “Arrow

AC At T

11. An atter in the C ting 
ANTIWOR  

ation (123) is reproduced below:  

,      d 0A
A A

A

S
t t

m
             (145) 

cting ANTIWORLD 

Equation (124) is reproduced bel

5.12. Matter in the Contra

ow:  

,       0AM

SA A
A

t dt             (146) 

5.13. How Antimatter Increases in the  

With the reversal of the “Arrow of Time”, the arrow of 
the transformation (125) gets reversed

Contracting ANTIWORLD 

 as follows: 

   , ,A A A AC t M A t m            (147) 

D Matter decreases in the contracting ANTIWORL
with regressive time  At , as given 
while antimatter increases, as shown 

in relation (146), 
in relation (145). 

The disappearing matter is converted t
transformation (147), which is a part 
“Mobius transformation” discussed in Subsection 5.6 and 

l, the con- 
versio es at the cost 

5.14. Back to 

o antimatter by the 
of reversed in-built 

now reversed. 
As matter in the ANTIWORLD is plentifu

n is continual, and antimatter increas
of decreasing matter.  

At  0  

R
m t

elation (145) implies that with regressive time in- 
creasing mass of anti a ter effects contraction of the 
ANTIWORLD, while relation (146) shows that with 
regressive time decreasing mass of matter effects its 
expansion. With the mass of antimatter preponderating 
over that of matter, contraction rules over expansion. 

As time is regressive, it is back to 0 , when, by 
re

At 
lation (145), 0AS   and Am   , and by relation 

(146), 0AM  . Thus, , ,A A At S m  and AM  are back 
to their starting values at 0 .  At 

5.15. Symmetr e
during Contraction Phase

y betw en Matter and Antimatter  
 

Equation (145) shows that in the ANTIWORLD at 
0At  , Am   . Also, Equation (112) shows in the 

WORLD at 0,t M   . So, Am  in the 
ANTIWORLD and M  in the WORLD have the same 
initial values. 

Next, Equation (127) shows that 
A

A tm M
t
  , i.e., 

the growth rates f Am  in th  ANTIWORLD and o e M  
in the WORLD are equal. 
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The initial value and te of m being cor- 
respondingly equal to thos

growth ra
e of 

A  
M  implies that the value 

of A Am  at any instant  equals of t t  that M  at 
the corresponding instant t t . That is,  

A
A tt

N t, E  (146) shows that at 0, 0A At M  . 
Also, Equation (1 t at 

m M               (148) 

ex quation
13) shows tha 0, 0t m  . That is, 

AM  in the ANTIWORLD and m  in the WORLD 
have the same initial value. 

Application of Equation (77) on E ) gives:  quation (127

; or, , 
A At

M
A

A t A t At t t
m M m M m

            

whence  

 
A

A

gro f 

tt
m M               (149) 

The initial value and wth rate o m  in the 
WORLD being correspondingly equal to those of AM  
in the ANTIWORLD implies that the value of AM  at 
any instant At t   equals that of m - 
sponding instant t t . That is 

 at the corre
A t t

M m

 , whence  

 
A

A t
   

t
m M           (150) 

Addition of Equations (148) and (150) gives:  

 
A A

t A At t t
M M m m           (15 ) 

This shows that the symmetry
antimatter is maintained throughou
of

ry 
e u

 symm he

g 

At in the WORLD at the e
ph

1

 between matter and 
t the contraction phase 

 the universe. 
It has been proved in subsection 5.7 that this symmet is 

maintained throughout the expansion phase of th ni- 
verse. So, this etry is absolute in t  universe.  

6. The Big Ban

0t   nd of the contraction 
ase, by Equation (112), 0S   and M   , 
uation (113), 

and by 
Eq 0m  . 

At 0At t    
raction ph

in the D
cont ase, by Equation (145),

ANTIWORL  at the end of the 
 0, A AS m  , 

an

 infinite mass of antimatter of the 
A

een 
infinite quantities of matter and antimatter. 

th the BIG BANG, the WORLD 
 the 

, is i as eac

d by Equation (146), 0AM  . 
At 0At t  , the time-barrier disappears for an 

instant, when an
NTIWORLD meets an infinite mass of matter of the 

WORLD at a point  0AS S  , triggering what is 
known as the BIG BANG, the violent encounter betw

Instantaneously wi
and ANTIWORLD are thrown apart by an infinite 
repulsive force. The force is repulsive because the 
product, AMm , is negative nfinite h of M  
and m  is infinite and the A

rlds
distance between the

wo

7. Conclusion

m  cosmological
. It is p

ntimatter is 

t un  a

 two 
 is zero.  

 

This work presents a co plete oscillatory  
sc io  enar roposed that the universe comprises a 
WORLD and an ANTIWORLD. Matter/antimatter 
operates in the positive time zone (PTZ)/negative time 
zone (NTZ) in both. A rare in the WORLD, 
because its entry in the PTZ is forbidden by a time-bar- 
rier. It is assumed to have a negative mass and is abun- 
dant in the NTZ of the WORLD. It is successfully shown 
that decrease in matter/antimatter causes the accelerative 
expansion of the WORLD/ANTIWORLD. For the Fried- 
man’s fla iverse with the cosmological constant  
theoretical evaluation of the deceleration parameter is 

0 0.606q    which is in agreement with 0 0.6q  
Supernova 

ntimatter (in 

 by 
assuming General Relativity or by using Ia 

d that a built in transformation in the 
ORLD converts matter/a

data. It is propose
WORLD/ANTIW
the PTZ/NTZ) to antimatter/matter (in the NTZ/PTZ). 
The present study has also revealed that in the expanding 
WORLD/ANTIWORLD, decreasing matter/antimatter 
preponderates over increasing antimatter/matter till mass 
of matter and that of antimatter become equal. Then the 
WORLD/ANTIWORLD starts contracting, and the “Arrow 
of Time” reverses. Time moves back to 0t  , when 
mass of matter/antimatter of the WORLD/ANTIWORLD 
is infinite. The WORLD/ANTIWORLD with infinite 
mass of matter/antimatter meets at 0t  , when the time- 
barrier lifts for an instant, to trigger the BIG BANG, the 
violent encounter between matter and antimatter. It has 

tablished that the symmetry be atter 
and antimatter in the universe is maintained throughout. 
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