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Abstract 
 
Network processing plays an important role in the development of Internet as more and more complicated 
applications are deployed throughout the network. With the advent of new platforms such as network proc-
essors (NPs) that incorporate novel architectures to speedup packet processing, there is an increasing need 
for an efficient method to facilitate the study of their performance. In this paper, we present a tool called 
SimNP, which provides a flexible platform for the simulation of a network processing system in order to 
provide information for workload characterization, architecture development, and application implementa-
tion. The simulator models several architectural features that are commonly employed by NPs, including 
multiple processing engines (PEs), integrated network interface and memory controller, and hardware accel-
erators. ARM instruction set is emulated and a simple memory model is provided so that applications im-
plemented in high level programming language such as C can be easily compiled into an executable binary 
using a common compiler like gcc. Moreover, new features or new modules can also be easily added into 
this simulator. Experiments have shown that our simulator provides abundant information for the study of 
network processing systems. 
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1. Introduction 
 
Driven by the ever increasing linking speed of Internet 
and the complexity of network applications, networking 
device providers have never ceased the effort in devel-
oping a packet processing platform for the next-genera- 
tion network infrastructures. One of the most promising 
solutions is network processor (NP) which leverages the 
programming flexibility of microprocessor with the high 
performance of custom hardware [1]. Ever since the ad-
vent of this concept, the design goals have been setup as: 
1) enabling rapid development and deployment of new 
network applications; and 2) providing sufficient per-
formance scalability to prolong the life cycle of the 
products.  

During nearly ten years of development, the architec-
ture of NP continually evolves to meet the stringent re-
quirements of these design goals. For example, enforced 
by the demands of making the programming easier, spe-
cialized instruction sets employed by early generations of 
NP products [2] have been replaced by standard ones 
such as MIPS [3] that possess a wealth of existing soft-

ware including development tools, libraries, and applica-
tion codes. Besides, most of the NPs fall in the Sys-
tem-on-Chip (SoC) paradigm. Compared with general 
purpose processor (GPP), new generations of NPs often 
possess some or all of the following architectural fea-
tures: 

1) Multi core. Due to the large amount of packet and 
flow level parallelism that naturally exist in network ap-
plications, multi core schemes are commonly used in 
various ways [4]. Although the number of processing 
engines (PEs) in most NPs has been around the order of 
ten, Cisco’s Silicon Packet Processor (SPP) has pushed 
the boundary to 188 32-bit Reduced Instruction Set 
Computer (RISC) cores per chip [5]. 

2) Integrated memory controller. For general pur-
pose processing that is not sensitive to access latency, the 
memory subsystem is optimized for bandwidth rather 
than latency. Due to the semi-real time features of packet 
processing, NPs must perform fast memory operations to 
keep up with the packet arriving speed over the network 
interface [6]. Therefore, most of the NPs have integrated 
memory controllers in order to achieve lower latency. 
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3) Integrated network interface. To reduce latency 
of packet loading, network interfaces are integrated in-
stead of being one of the external I/O devices that are 
linked to the processor through a common bus and some-
times a bus bridge. A typical implementation is to in-
clude on-chip MACs so that the processor can connect 
directly to external PHY devices. SPI-4.2 (System Packet 
Interface Level 4 Phase 2) for 10 Gigabit optical net-
working or Ethernet, and GMII (Gigabit Media Inde-
pendent Interface) for Gigabit Ethernet are commonly 
supported interfaces [7]. In some cases, CSIX (Common 
Switch Interface) that is used for switch fabric is also 
supported to ease the deployment of NP on a line card. 

4) Hardware accelerator. Offloading special applica-
tions that are relatively stable and suitable for hardware 
implementation has been adopted as an important 
method to achieve high performance [8]. Hardware ac-
celerators usually function as coprocessors and have the 
potential of being executed concurrently with other parts 
of the program. They can be implemented either private 
to or shared by the PEs, or as external devices interacting 
with NP. Commonly accelerated applications include 
table lookup, checksum verification and generation, en-
cryption/decryption, hashing, and even regular expres-
sion matching. The hardware accelerator can be accessed 
through memory mapping, or specialized instructions, 
which are extensions to standard instruction set with 
corresponding modifications to compliers and libraries. 

Just as GPP, the development of such sophisticated 
systems needs an efficient methodology that can facili-
tate the study of NP architecture and the deployment of 
network applications on this platform. At the beginning 
the study of NP, many academic researches have either 
focused on a specific type of NP product, or heavily re-
lied on GPP simulators such as the SimpleScalar toolset 
[9]. While the conclusions obtained from the former 
method can hardly be extended to other types of NP [10], 
convincing results are hard to be obtained from the latter 
either [11,12]. GPP simulators often devote a lot of 
simulation effort in some features that do not play an 
important role in network processing systems. For exam-
ple, instruction-level parallelism (ILP) is aggressively 
exploited to increase the utilization rate of processing 
power in GPP. Therefore, techniques that are hardly em-
ployed by NP, such as multiple-instruction issue, 
out-of-order instruction scheduling, branch predication, 
and speculative execution, are widely simulated in GPP 
simulators [13]. However, the effects of NP’s unique 
architecture that are optimized for packet processing 
cannot be effectively reflected in GPP simulators. 

This motivates the development of a simulator called 
SimNP by the authors, which provides a flexible plat-
form for fast simulation and evaluation of network proc-

essing systems. A simplified prototype version of this 
simulator was briefly introduced in [14]. As more mod-
ules were added and experiments were performed, part of 
our work was summarised in a short paper [15]. Since 
the architecture of network processing systems keeps 
evolving at a fast pace, the design effort of our simulator 
are guided by the following criteria: the simulator should 
provide enough details that represent the features of to-
day’s network processing systems and at the same time 
also enough flexibility so that component can be easily 
modified, extended or deleted. 

Our simulation platform has incorporated all of the 
four architectural features mentioned above. The simu-
lator only models the most basic characteristics of the 
hardware units such as queuing, and resource contention, 
without involving details of a specific design. It adopts 
the software architecture of SimpleScalar toolset in order 
to provide a clean and expressive interface and guarantee 
that the individual components can be easily replaced by 
other modules. Just like SimpleScalar, our simulator does 
not try to memorize each internal state of the execution 
and uses an event queue to reduce the need to examine 
the status of hardware modules during each cycle. A 
large number of parameters can be tuned through modi-
fying the configuration file of the simulator, including 
the number of PEs, operating frequency of all devices, 
bus bandwidth, and latency of hardware modules. 

This simulator provides a unified tool for a wide range 
of studies. Interactions among different modules provide 
insight into the execution of packet processing workloads 
for architects to generate ideas to improve the perform-
ance. Newly designed modules can be tested and evalu-
ated before actually being implemented. The simulator 
also offers a platform for programmers to collect infor-
mation such as instruction characteristics, memory utili-
zation, and inter-processor communication, which helps 
them performing tasks like tuning the software imple-
mentation of algorithms, and evenly allocating tasks to 
different PEs. 

The rest of the paper is organized as follows. Section 2 
gives a brief description of related works. Section 3 in-
troduces several aspects of our simulator, including 
software organization, the simulated hardware architec-
ture, and programming environment. Section 4 gives 
some experiences with our simulator. In Section 5, we 
list some future directions for extending our work. Sec-
tion 6 gives a conclusion. 
 
2. Related Works 
 
A set of tools for the simulation of network interfaces are 
introduced in [16]. PacketBench, a tool that provides a 
framework for network applications implementation is 
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presented in [17]. This tool only adds several APIs for 
loading packets into SimpleScalar and omits most of the 
impact of NP architectural features. Simulators targeted 
to real life network processors are also developed. Yan 
Luo et al have developed a NP simulator called NePSim 
that complies with most of the functionalities described 
in Intel IXP1200 specification [18]. Compared with 
IXP1200’s own cycle-accurate architectural simulator, 
NePSim estimates the packet throughput with an average 
of only 1% of error and the processing time with 6% of 
error on the tested benchmark applications. However, 
application development on IXP1200 requires a thorough 
understanding of the underlying hardware details. The 
difficulty in programming has greatly constrained the 
usage of NePSim in any architectural studies. In [19], 
Deepak Suryanarayanan et al. present a component net-
work simulator called ComNetSim which models a Cisco 
Toaster network processor. However, it only provides 
functional simulation and is implemented according to 
the execution of applications that are modeled. 
 
3. The SimNP Platform 
 
The SimNP derives its software architecture from the 
widely used SimpleScalar/ARM toolset, which allows us 
to perform accurate simulation of modules such as de-
vice command queues and bus arbitration using the exe-
cution-driven method. Our simulation platform organizes 
the simulated hardware components to permit their reuse 
over a wide range of modeling tasks. It consists of sev-
eral interchangeable modules to model a range of archi-
tectural features. It can be used to model the entire life 
cycle of packet processing, from packet receiving to its 
transmission onto the external link. Although it models 
the architecture of a typical network processor, its usage 
can be easily extended to other network processing sys-
tems. Most of the packet processing is based on software 
implementation, in addition to the support for simulating 
hardware accelerators. 
 
3.1. Software Architecture 
 
The simulator follows the traditional way of having a 
front-end functional simulator that interprets instructions 
and handles I/O operations, and a back-end performance 
model that calculates the expected behaviors according 
to the executed instructions. To maintain compatibility, 
the execution of system calls still depends on calling the 
host operating system. For the simulated packet interface, 
we provide a specific programming paradigm to avoid 
using system calls. 

The simulator accepts instruction binaries and packet 
traces as input. For applications that need table accesses, 

a memory image file of these tables should be loaded 
before the program executes. Both real-life packet traces 
and synthesized traffic can be used within simulations. In 
the case of packet headers collected from a website such 
as the National Laboratory for Applied Network Re-
search (NLANR), any encoding format (TSH, 
TCPDUMP, ERF, FR+) can be used [20]. A dedicated 
trace loader is able to turn each of them into the SimNP 
native packet format, with anonymous IP addresses be-
ing replaced with random IP addresses generated from 
real-life route table or rule-set, and payload being padded 
with random contents to the length indicated in packet 
header. 
 
3.2. Simulated Hardware Architecture 
 
As has mentioned before, the design choices of the 
simulator concentrate on selecting only those necessary 
features of packet processing so that the simulated archi-
tecture can represent a wide range of network processing 
systems without getting involved into too many specific 
details. As shown in Figure 1, all of the four architec-
tural features described in Section 1 have been covered 
in our simulator. As the advance of NP architecture and 
software, new features are expected to be easily added. 
 
3.2.1. Processing Engines 
SimNP supports up to 32 PEs, with each PE functionally 
emulating the ARM Instruction Set. The ARM instruc-
tion set is chosen for two reasons. Firstly, the Instruction 
Set Architecture (ISA) provided by the ARM processor 
closely resembles the small RISC type PEs used within a 
NP, and secondly, the maturity of the ARM architecture 
provides a number of efficient compiler solutions. With 
free compiler suites such as gcc [21] allowing fast gen-
eration of ARM code from languages such as C, and 
C++. The processing cores support the ARM7 integer 
instruction set and FPA floating-point extensions, with-
out the 16-bit thumb extension. 

Each PE also has a Control Store, Local SRAM and 
Local Hardware Accelerators, as will be explained later. 
The communications between PEs and other devices are 
performed through a System Bus. Since a shared bus 
system can result in long access latencies to both I/O and 
memory, PEs are simulated with an automatic suspen-
sion mechanism once a command has been issued. When 
the command has been completed, the PE resumes from 
its previous state. At current stage we do not implement 
synchronization mechanism. 
 
3.2.2. Memory Subsystem 

Qshared by all PEs. The operation parameters, such as 
ccess latency and number of banks in DRAM, of these  a       

Copyright © 2010 SciRes.                                                                                   CN 



D. BERMINGHAM  ET  AL. 

Copyright © 2010 SciRes.                                                                                   CN 

210 
  

...

System Bus

Rx 
Buffer

Bus Interface

Shared Hardware Accelerators

ARM Register 
File

Local SRAM

Processing Engine

Control Store

Local Hardware 
Accelerators

ARM Register 
File

Local SRAM

Processing Engine

Control Store

Local Hardware 
Accelerators

Bus Interface

SRAM SRAM

Bus Interface

Bus Interface

DMA

Tx 
Buffer

I/F
CTRL

DRAM Controller
Bus Interface

DRAM

TCAM Controller

Local
Masks

TCAM

SRAM Controller
Bus Interface

SRAM

Cluster A Cluster B

 

Figure 1. Hardware architecture. 
 
memory devices are configurable. Prefix Matching (LPM) applications such as route table 

lookup. In addition to normal content, both global mask 
(GM) and local masks are needed to be loaded from-
memory image before the processing begins. 

Both Control Store and Local SRAM provide single 
cycle access. As shown in Figure 2, they can be used to 
store the program execution environment for each PE, 
including instructions, initialized and uninitialized data, 
stack, heap, and arguments. Packets are normally loaded 
from network interface into DRAM, along with the 
queuing information stored in global SRAM. Other 
shared data structures such as routing table, packet clas-
sification rule sets, can be stored in either global SRAM 
or DRAM. TCAM is expected to accelerate the Longest  

Figure 2 also shows a possible PE memory map. The 
address space [0000 0000h, 0FFF FFFFh] is private to 
each PE, while the address space from 1000 0000h is 
shared among all PEs. Unlike Intel IXP instructions,  
ARM uses the same instructions to access different type 
of memory devices. The device-to-address mapping is 
implemented by modifying the parameters for compiler 
and specifying starting address in memory image. With-
out changing the ARM instructions, it is easier and more 
flexible for the programmer to create new applications. 

 

 

 
3.2.3. Network Interface 
The SimNP network interface is designed to model the 
behavior of SPI-like interface. To simplify the program-
ming of network applications, packets are maintained in 
a link-list, instead of fixed-length blocks as in some 
real-life NPs, when stored in the memory pool of net-
work interface. Once the Rx Buffer has been filled, 
newly arrived packets are dropped. Similarly, a full Tx 
Buffer blocks the processing of some PEs until enough 
space is released. PEs demand packet from Rx Buffer or 
write packet to Tx Buffer by issuing commands to net-
work interface. The actual transfers between network 
interface and memory are handled via a DMA controller 
which uses either main system bus or a dedicated bus 
(not shown in Figure 1. A dedicated bus is provided to 
reduce the contention on system bus, since the traffic 
volume generated by parallel architecture can be poten-
tially very high. 

Figure 2. An example of memory usage and PE address 
space mapping. 
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The interaction between network interface and PE is 
modeled in a relatively simple way so that the overhead 
in a real network processing system can be reflected 
without having the programmer getting overwhelmed 
with unnecessary communication details. Figure 3 
shows the programming framework used for SimNP 
where a run-to-complete polling model is used for packet 
transfer. The registers in network interfaces are mapped 
to memory and the addresses are defined in 
<simnp_defs.h> for macros starting with NET_INTF_. 
Macro PE_PKT_BASE_ADDR indicates the starting 
address in the memory that a packet should be written to 
or read out. It can be either a value predefined for each 
PE in <simnp_defs.h> or a value passed from shell 
scripts at compile time. The packet request is issued by 
primitive WRITE_WROD which sends necessary infor-
mation to the register specified by its parameter. Similar, 
primitive READ_WORD returns the content of the 
specified register. 
 
3.2.4. Hardware Accelerator 
In SimNP, both local and shared hardware accelerators 
are simulated. As shown in Figure 2, their own memo-
ries and registers are accessed by mapped addresses so 
that new components can be easily added, subtracted and 
accessed without major changes. Local hardware accel-
erators are suitable for simple calculations such as 
checksum in IP header. 

As for shared hardware accelerators, two clusters are 
provided with each of them supporting up to four sepa-
rate hardware accelerators, shown in Figure 1. Cluster A 
targets data-intensive payload applications, such as 
packet encryption/decryption and Deep Packet Inspec-
tion (DPI) [22,23]. To speedup the calculation, additional 

SRAM is equipped to temporarily hold the packet data 
block transferred from packet buffer. Like the network 
interface, using a source address, destination address and 
buffer length, a DMA controller will automatically fetch 
and store data without any PE interference. The pro-
gramming framework for Cluster A is somewhat similar 
with that of Figure 3. Cluster B is aimed at accelerators 
for header-based applications such as packet classifica-
tion [24] and IP lookup [25], where the SRAM is used to 
hold rule-set or route table and a small number of packet 
data transfers is needed. Figure 4 shows the program-
ming framework for calling the packet classification 
hardware accelerator 
 
3.2.5. System Bus 

All devices connected to the system bus use one or 
two Command FIFO(s) (labeled as CMD with PEs’ 
CMDs omitted in Figure 1, to buffer data requests. The 
commands are arbitrated by system bus in a weighted 
round robin manner. The bandwidth of system bus is 
configured by user. Some devices, such as SRAM and 
DRAM, also have a data buffer to hold the content de-
manded by PE or DMA controllers. During each cycle, at 
least one command can be processed by the system bus 
unless all of the buffers are empty. 
 
4. Experiments 
 
4.1. Experimental Setup 
 
We choose three algorithms commonly used within net-
work processors to do the experiment on SimNP. The first 
one is a header processing application, Level Compressed 

 
0 #include "simnp_defs.h” 
 
1 int application(void *pkt_addr, int pkt_len); 
 
2 void main () 
3 { 
4   unsigned long pkt_len; 
5   int action; 
 
6   while (1) { 
 
7     /* Request Packet from Interface */ 
8     WRITE_WORD(NET_INTF_REQUEST, PE_PKT_BASE_ADDR); 
9     pkt_len = READ_WORD(NET_INTF_STATUS); 
 
10     /* Process Packet */    
11     action = application(PE_PKT_BASE_ADDR, pkt_len); 
 
12     If (action == FORWARD) { 
13       /* Queue Packet At Egress */ 
14       WRITE_WORD(NET_INTF_TRANSMIT, PE_PKT_BASE_ADDR); 
15     } 
16   } 
} 

Figure 3. Sample programming framework for workloads. 
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0 #include "simnp_defs” 
 
1 void main () 
2 { 
3   struct ip *ipdhr; 
4   struct tcp *tcphdr; 
5   int port, classify_result; 
6  
7   iphdr = (struct ip *)PKT_ADDR; 
8   tcphdr = (struct tcp *)PKT_ADDR + (IP_SIZE>>2); 
 
9   /* Create Request */    
10   WRITE_WORD(CLASSIFY_UNIT, iphdr->src_addr); 
11   WRITE_WORD(CLASSIFY_UNIT + 4, iphdr->dst_addr); 
12   port = (tcphdr->sport)<<16 | (tcphdr->dport); 
13   WRITE_WORD(CLASSIFY_UNIT + 8, port); 
14   WRITE_WORD(CLASSIFY_UNIT + 12, iphdr->prot); 
 
15   /* Get the Result from Hardware Accelerator */ 
16   classify_result = READ_WORD(CLASSIFY_STATUS); 
} 
17 #include "simnp_defs” 
[1]  
18 void main () 

Figure 4. An example calling procedure for packet classification hardware accelerator.          
Trie (LC-Trie) based IP Forwarding [25]. The other two 
are payload processing applications, packet fragmenta-
tion [26], and a packet encryption/decryption algorithm 
called Advanced Encryption Standard (AES). AES is 
designed to be implemented in Cipher Block Chaining 
(CBC) mode with 128-bit encryption, which is typical 
for today’s routers [22]. Under this configuration, AES 
requires 10 rounds per 16-byte data block. The three 
programs are compiled with gcc-3.4.3 and the object 
code is copied to the Control Store of each PE. An OC-3 
packet header trace from NLANR is used, which con-
tains a large percentage of small packets. A 127,000- 
entry AT&T East route table is used for the LC-Trie ap-
plication. The Simulation is performed on a Linux 
Computer with a 2.0 GHz Intel® Core-Duo processor 
and 2GB memory. 
 
4.2. Performance of Multiple PEs 
 
Figure 5 presents the performance of packet fragmenta-
tion and LC-Trie as we increase the number of PEs from 
1 to 32, without changing the device latencies or system 
bus bandwidth. The solid lines represent the number of 
non-stall cycles to finish processing 10,000 packets 
while the dashed lines indicate the amount of stall cycles. 
Here, a “stall” state happens when all of the PEs in the 
system are in a suspended state, i.e. no instructions are 
executed in this cycle. 

Similar to other payload processing applications, frag-
mentation has a high DRAM access requirement to fetch 
the packet data. As for LC-Trie, the major memory ac-
cesses occurred for each packet include retrieving a 
number of entries in route table which is stored in SRAM. 
Obviously, the bandwidth requirement of LC-Trie is 
much lower than fragmentation, which results in a lower 

stall percentage than fragmentation. As can be seen in 
Figure 5, when the number of PE is larger than 4, no 
stall state happens for LC-Trie applications while for 
fragmentation, the number of stall cycles increases rap-
idly as more PEs are added. 

Under this configuration, it can be seen that 2 PEs are 
the most efficient for fragmentation, with the stall cycles 
increasing from over 69.94x106 cycles for a single PE to 
over 1044x106 cycles for a 32-PE system. In this case, 
more system bus bandwidth and DRAM bandwidth are 
demanded to maintain the efficiency of multiple PEs. As 
for LC-Trie, although the stall cycles quickly falls from 
425x106 to 1.67 x106

 when implemented on 4 PEs, 8 PEs 
is the optimum configuration. The reason is that if more 
than 8 PEs are used, even though at any time at least one 
PE executes an instruction, the percentage of suspension 
state of each individual PE also increases. Therefore, the 
total amount of cycles used to process the same amount 
of packets only has a moderate decrease. 
 
4.3. Impact of Memory Latencies 
 
Figure 6 shows the number of execution cycles and stall 
cycles needed for processing 10,000 packets with the 
LC-Trie algorithm as the CPU relative latency changes. 
For simplicity, we assume the PEs and System Bus 
working at the same clock speed and so do the DRAM 
and Global SRAM. Then the ratio between the working 
frequency of PE/System Bus and DRAM/Global SRAM 
is defined as CPU relative latency. 

It can be seen that, when the number of PEs is less 
than 8, the long latency of external memory does not 
have a significant impact on the number of processing 
cycles required. The reason is that, for each packet, only 
a small number of Global SRAM and DRAM accesses 
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are needed. As long as the bandwidth of System Bus is 
enough for these communications, the increased memory 
latency is amortized among different PEs and the chance 
of all PEs being suspended is low. So it can be observed 
that when there are fewer than 4 PEs, the total number of 
stall cycles only slightly increases when the relative 

memory latency is higher than 10. As for 8 PEs, the 
number of stall cycles becomes more sensitive to the 
changes in memory latency. However, since the band-
width of System Bus is still well enough, the number of 
cycles needed for processing the packets remains stable 
across different values of memory latency. 

 

 

Figure 5. NP performance of fragmentation/LC-Trie for various number of PEs. 
 

 

Figure 6. NP performance of LC-Trie under various memory latencies. 
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Figure 7. NP performance of AES under various hardware accelerator latencies. 
 

However, as more PEs are added, the bandwidth of 
System Bus is unable to accommodate the data traffic on 
them in a timely way. In this case, the increase in mem-
ory access latency does result in not only a higher num-
ber of stall cycles, but also a rapid increase in the number 
of processing cycles. When the relative latency is higher 
than 5, processing the same number of packets for 16 or 
32 PEs takes more cycles than only 4 or 8 PEs. 
 
4.4. Effectiveness of Hardware Accelerators 
 
Using either Cluster A or B, SimNP provides an efficient 
method of simulating hardware accelerators as a means 
of evaluating their effectiveness by acquiring figures 
such as device utilization and speedup. To demonstrate 
this, we choose to implement the AES algorithm de-
scribed in Subsection 4.1 as a hardware accelerator. For 
hardware accelerators, the trade-off is typically between 
increasing the performance and reducing the area cost. 
By configuring the latency of hardware accelerators, we 
can evaluate the benefit generated through offloading the 
calculation intensive tasks. 

Figure 7 shows the number of NP processing cycles 
required to encrypt 30,000 packets as the latency of AES 
hardware accelerator increases. With only one PE being 
evaluated, the bandwidth of System Bus is enough for 
the packet data transfer between DRAM and Cluster A. 
Therefore, a linear increase in the number of necessary 
processing cycles is observed as the latency for process-
ing one data block by AES hardware accelerators be-
comes higher. Note that the number of instructions to be 
executed by AES is at least hundreds of times higher 
than that of LC-Trie, depending on the length of packet. 
However, compared with Figure 5, the number of cycles 
needed for AES is lower than that of LC-Trie, normal-
ized to the same number of packets being processed. 
Besides, the use of hardware accelerator also makes the 
processing time more deterministic. Such behavior is 
helpful for the implementation of load balancing. 

5. Future Work 
 
Components that we plan to implement for SimNP in the 
future include a more accurate PE execution core, and a 
cache hierarchy for latency hiding techniques. Introduc-
ing cache hierarchy in a multi-core environment brings 
the problem of cache coherence, but it will reduce the 
necessity of multiple types of memory devices and make 
programming much easier. Finally, flexibility will be 
improved by providing a debugging environment within 
the simulator, removing the need for any intermediate 
stages during application verification. 
 
6. Conclusions 
 
As more and more network applications have been 
moved to the NP platform, the availability of an infra-
structure for the simulation and evaluation of such a 
complicated system becomes increasingly crucial. After 
nearly ten years of evolution, the modern NP has devel-
oped its own collection of architectural features, which 
are tailored for packet processing. In this article, we have 
proposed and described a new NP simulator called 
SimNP. It models the components commonly seen 
within a NP, such as multiple PEs, integrated network 
interface and memory controllers, and hardware accel-
erators. Supporting ARM instruction set, SimNP can be 
easily programmed in high level languages such as C 
with no modifications to compilers. The use of a memory 
mapped I/O allows rapid addition or removal of compo-
nents, as well as complex NP design space exploration, 
balancing a flexible and appropriate abstraction level 
while providing meaningful statistics and analysis. 
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