
Communications and Network, 2010, 2, 207-215
doi:10.4236/cn.2010.24030 Published Online November 2010 (http://www.SciRP.org/journal/cn)

Copyright © 2010 SciRes. CN

SimNP: A Flexible Platform for the Simulation of Network
Processing Systems

David Bermingham, Zhen Liu, Xiaojun Wang
School of Electronic Engineering, Dublin City University, Collins Avenue, Glasnevin, Dublin, Ireland

E-mail: {david.bermingham, liuzhen, wangx}@eeng.dcu.ie
Received September 16, 2010; revised September 30, 2010; accepted October 20, 2010

Abstract

Network processing plays an important role in the development of Internet as more and more complicated
applications are deployed throughout the network. With the advent of new platforms such as network proc-
essors (NPs) that incorporate novel architectures to speedup packet processing, there is an increasing need
for an efficient method to facilitate the study of their performance. In this paper, we present a tool called
SimNP, which provides a flexible platform for the simulation of a network processing system in order to
provide information for workload characterization, architecture development, and application implementa-
tion. The simulator models several architectural features that are commonly employed by NPs, including
multiple processing engines (PEs), integrated network interface and memory controller, and hardware accel-
erators. ARM instruction set is emulated and a simple memory model is provided so that applications im-
plemented in high level programming language such as C can be easily compiled into an executable binary
using a common compiler like gcc. Moreover, new features or new modules can also be easily added into
this simulator. Experiments have shown that our simulator provides abundant information for the study of
network processing systems.

Keywords: Network Processors; Sim NP

1. Introduction

Driven by the ever increasing linking speed of Internet
and the complexity of network applications, networking
device providers have never ceased the effort in devel-
oping a packet processing platform for the next-genera-
tion network infrastructures. One of the most promising
solutions is network processor (NP) which leverages the
programming flexibility of microprocessor with the high
performance of custom hardware [1]. Ever since the ad-
vent of this concept, the design goals have been setup as:
1) enabling rapid development and deployment of new
network applications; and 2) providing sufficient per-
formance scalability to prolong the life cycle of the
products.

During nearly ten years of development, the architec-
ture of NP continually evolves to meet the stringent re-
quirements of these design goals. For example, enforced
by the demands of making the programming easier, spe-
cialized instruction sets employed by early generations of
NP products [2] have been replaced by standard ones
such as MIPS [3] that possess a wealth of existing soft-

ware including development tools, libraries, and applica-
tion codes. Besides, most of the NPs fall in the Sys-
tem-on-Chip (SoC) paradigm. Compared with general
purpose processor (GPP), new generations of NPs often
possess some or all of the following architectural fea-
tures:

1) Multi core. Due to the large amount of packet and
flow level parallelism that naturally exist in network ap-
plications, multi core schemes are commonly used in
various ways [4]. Although the number of processing
engines (PEs) in most NPs has been around the order of
ten, Cisco’s Silicon Packet Processor (SPP) has pushed
the boundary to 188 32-bit Reduced Instruction Set
Computer (RISC) cores per chip [5].

2) Integrated memory controller. For general pur-
pose processing that is not sensitive to access latency, the
memory subsystem is optimized for bandwidth rather
than latency. Due to the semi-real time features of packet
processing, NPs must perform fast memory operations to
keep up with the packet arriving speed over the network
interface [6]. Therefore, most of the NPs have integrated
memory controllers in order to achieve lower latency.

208 D. BERMINGHAM ET AL.

3) Integrated network interface. To reduce latency
of packet loading, network interfaces are integrated in-
stead of being one of the external I/O devices that are
linked to the processor through a common bus and some-
times a bus bridge. A typical implementation is to in-
clude on-chip MACs so that the processor can connect
directly to external PHY devices. SPI-4.2 (System Packet
Interface Level 4 Phase 2) for 10 Gigabit optical net-
working or Ethernet, and GMII (Gigabit Media Inde-
pendent Interface) for Gigabit Ethernet are commonly
supported interfaces [7]. In some cases, CSIX (Common
Switch Interface) that is used for switch fabric is also
supported to ease the deployment of NP on a line card.

4) Hardware accelerator. Offloading special applica-
tions that are relatively stable and suitable for hardware
implementation has been adopted as an important
method to achieve high performance [8]. Hardware ac-
celerators usually function as coprocessors and have the
potential of being executed concurrently with other parts
of the program. They can be implemented either private
to or shared by the PEs, or as external devices interacting
with NP. Commonly accelerated applications include
table lookup, checksum verification and generation, en-
cryption/decryption, hashing, and even regular expres-
sion matching. The hardware accelerator can be accessed
through memory mapping, or specialized instructions,
which are extensions to standard instruction set with
corresponding modifications to compliers and libraries.

Just as GPP, the development of such sophisticated
systems needs an efficient methodology that can facili-
tate the study of NP architecture and the deployment of
network applications on this platform. At the beginning
the study of NP, many academic researches have either
focused on a specific type of NP product, or heavily re-
lied on GPP simulators such as the SimpleScalar toolset
[9]. While the conclusions obtained from the former
method can hardly be extended to other types of NP [10],
convincing results are hard to be obtained from the latter
either [11,12]. GPP simulators often devote a lot of
simulation effort in some features that do not play an
important role in network processing systems. For exam-
ple, instruction-level parallelism (ILP) is aggressively
exploited to increase the utilization rate of processing
power in GPP. Therefore, techniques that are hardly em-
ployed by NP, such as multiple-instruction issue,
out-of-order instruction scheduling, branch predication,
and speculative execution, are widely simulated in GPP
simulators [13]. However, the effects of NP’s unique
architecture that are optimized for packet processing
cannot be effectively reflected in GPP simulators.

This motivates the development of a simulator called
SimNP by the authors, which provides a flexible plat-
form for fast simulation and evaluation of network proc-

essing systems. A simplified prototype version of this
simulator was briefly introduced in [14]. As more mod-
ules were added and experiments were performed, part of
our work was summarised in a short paper [15]. Since
the architecture of network processing systems keeps
evolving at a fast pace, the design effort of our simulator
are guided by the following criteria: the simulator should
provide enough details that represent the features of to-
day’s network processing systems and at the same time
also enough flexibility so that component can be easily
modified, extended or deleted.

Our simulation platform has incorporated all of the
four architectural features mentioned above. The simu-
lator only models the most basic characteristics of the
hardware units such as queuing, and resource contention,
without involving details of a specific design. It adopts
the software architecture of SimpleScalar toolset in order
to provide a clean and expressive interface and guarantee
that the individual components can be easily replaced by
other modules. Just like SimpleScalar, our simulator does
not try to memorize each internal state of the execution
and uses an event queue to reduce the need to examine
the status of hardware modules during each cycle. A
large number of parameters can be tuned through modi-
fying the configuration file of the simulator, including
the number of PEs, operating frequency of all devices,
bus bandwidth, and latency of hardware modules.

This simulator provides a unified tool for a wide range
of studies. Interactions among different modules provide
insight into the execution of packet processing workloads
for architects to generate ideas to improve the perform-
ance. Newly designed modules can be tested and evalu-
ated before actually being implemented. The simulator
also offers a platform for programmers to collect infor-
mation such as instruction characteristics, memory utili-
zation, and inter-processor communication, which helps
them performing tasks like tuning the software imple-
mentation of algorithms, and evenly allocating tasks to
different PEs.

The rest of the paper is organized as follows. Section 2
gives a brief description of related works. Section 3 in-
troduces several aspects of our simulator, including
software organization, the simulated hardware architec-
ture, and programming environment. Section 4 gives
some experiences with our simulator. In Section 5, we
list some future directions for extending our work. Sec-
tion 6 gives a conclusion.

2. Related Works

A set of tools for the simulation of network interfaces are
introduced in [16]. PacketBench, a tool that provides a
framework for network applications implementation is

Copyright © 2010 SciRes. CN

D. BERMINGHAM ET AL.

209

presented in [17]. This tool only adds several APIs for
loading packets into SimpleScalar and omits most of the
impact of NP architectural features. Simulators targeted
to real life network processors are also developed. Yan
Luo et al have developed a NP simulator called NePSim
that complies with most of the functionalities described
in Intel IXP1200 specification [18]. Compared with
IXP1200’s own cycle-accurate architectural simulator,
NePSim estimates the packet throughput with an average
of only 1% of error and the processing time with 6% of
error on the tested benchmark applications. However,
application development on IXP1200 requires a thorough
understanding of the underlying hardware details. The
difficulty in programming has greatly constrained the
usage of NePSim in any architectural studies. In [19],
Deepak Suryanarayanan et al. present a component net-
work simulator called ComNetSim which models a Cisco
Toaster network processor. However, it only provides
functional simulation and is implemented according to
the execution of applications that are modeled.

3. The SimNP Platform

The SimNP derives its software architecture from the
widely used SimpleScalar/ARM toolset, which allows us
to perform accurate simulation of modules such as de-
vice command queues and bus arbitration using the exe-
cution-driven method. Our simulation platform organizes
the simulated hardware components to permit their reuse
over a wide range of modeling tasks. It consists of sev-
eral interchangeable modules to model a range of archi-
tectural features. It can be used to model the entire life
cycle of packet processing, from packet receiving to its
transmission onto the external link. Although it models
the architecture of a typical network processor, its usage
can be easily extended to other network processing sys-
tems. Most of the packet processing is based on software
implementation, in addition to the support for simulating
hardware accelerators.

3.1. Software Architecture

The simulator follows the traditional way of having a
front-end functional simulator that interprets instructions
and handles I/O operations, and a back-end performance
model that calculates the expected behaviors according
to the executed instructions. To maintain compatibility,
the execution of system calls still depends on calling the
host operating system. For the simulated packet interface,
we provide a specific programming paradigm to avoid
using system calls.

The simulator accepts instruction binaries and packet
traces as input. For applications that need table accesses,

a memory image file of these tables should be loaded
before the program executes. Both real-life packet traces
and synthesized traffic can be used within simulations. In
the case of packet headers collected from a website such
as the National Laboratory for Applied Network Re-
search (NLANR), any encoding format (TSH,
TCPDUMP, ERF, FR+) can be used [20]. A dedicated
trace loader is able to turn each of them into the SimNP
native packet format, with anonymous IP addresses be-
ing replaced with random IP addresses generated from
real-life route table or rule-set, and payload being padded
with random contents to the length indicated in packet
header.

3.2. Simulated Hardware Architecture

As has mentioned before, the design choices of the
simulator concentrate on selecting only those necessary
features of packet processing so that the simulated archi-
tecture can represent a wide range of network processing
systems without getting involved into too many specific
details. As shown in Figure 1, all of the four architec-
tural features described in Section 1 have been covered
in our simulator. As the advance of NP architecture and
software, new features are expected to be easily added.

3.2.1. Processing Engines
SimNP supports up to 32 PEs, with each PE functionally
emulating the ARM Instruction Set. The ARM instruc-
tion set is chosen for two reasons. Firstly, the Instruction
Set Architecture (ISA) provided by the ARM processor
closely resembles the small RISC type PEs used within a
NP, and secondly, the maturity of the ARM architecture
provides a number of efficient compiler solutions. With
free compiler suites such as gcc [21] allowing fast gen-
eration of ARM code from languages such as C, and
C++. The processing cores support the ARM7 integer
instruction set and FPA floating-point extensions, with-
out the 16-bit thumb extension.

Each PE also has a Control Store, Local SRAM and
Local Hardware Accelerators, as will be explained later.
The communications between PEs and other devices are
performed through a System Bus. Since a shared bus
system can result in long access latencies to both I/O and
memory, PEs are simulated with an automatic suspen-
sion mechanism once a command has been issued. When
the command has been completed, the PE resumes from
its previous state. At current stage we do not implement
synchronization mechanism.

3.2.2. Memory Subsystem

Qshared by all PEs. The operation parameters, such as
ccess latency and number of banks in DRAM, of these a

Copyright © 2010 SciRes. CN

D. BERMINGHAM ET AL.

Copyright © 2010 SciRes. CN

210

...

System Bus

Rx
Buffer

Bus Interface

Shared Hardware Accelerators

ARM Register
File

Local SRAM

Processing Engine

Control Store

Local Hardware
Accelerators

ARM Register
File

Local SRAM

Processing Engine

Control Store

Local Hardware
Accelerators

Bus Interface

SRAM SRAM

Bus Interface

Bus Interface

DMA

Tx
Buffer

I/F
CTRL

DRAM Controller
Bus Interface

DRAM

TCAM Controller

Local
Masks

TCAM

SRAM Controller
Bus Interface

SRAM

Cluster A Cluster B

Figure 1. Hardware architecture.

memory devices are configurable. Prefix Matching (LPM) applications such as route table

lookup. In addition to normal content, both global mask
(GM) and local masks are needed to be loaded from-
memory image before the processing begins.

Both Control Store and Local SRAM provide single
cycle access. As shown in Figure 2, they can be used to
store the program execution environment for each PE,
including instructions, initialized and uninitialized data,
stack, heap, and arguments. Packets are normally loaded
from network interface into DRAM, along with the
queuing information stored in global SRAM. Other
shared data structures such as routing table, packet clas-
sification rule sets, can be stored in either global SRAM
or DRAM. TCAM is expected to accelerate the Longest

Figure 2 also shows a possible PE memory map. The
address space [0000 0000h, 0FFF FFFFh] is private to
each PE, while the address space from 1000 0000h is
shared among all PEs. Unlike Intel IXP instructions,
ARM uses the same instructions to access different type
of memory devices. The device-to-address mapping is
implemented by modifying the parameters for compiler
and specifying starting address in memory image. With-
out changing the ARM instructions, it is easier and more
flexible for the programmer to create new applications.

3.2.3. Network Interface
The SimNP network interface is designed to model the
behavior of SPI-like interface. To simplify the program-
ming of network applications, packets are maintained in
a link-list, instead of fixed-length blocks as in some
real-life NPs, when stored in the memory pool of net-
work interface. Once the Rx Buffer has been filled,
newly arrived packets are dropped. Similarly, a full Tx
Buffer blocks the processing of some PEs until enough
space is released. PEs demand packet from Rx Buffer or
write packet to Tx Buffer by issuing commands to net-
work interface. The actual transfers between network
interface and memory are handled via a DMA controller
which uses either main system bus or a dedicated bus
(not shown in Figure 1. A dedicated bus is provided to
reduce the contention on system bus, since the traffic
volume generated by parallel architecture can be poten-
tially very high.

Figure 2. An example of memory usage and PE address
space mapping.

D. BERMINGHAM ET AL.

211

The interaction between network interface and PE is
modeled in a relatively simple way so that the overhead
in a real network processing system can be reflected
without having the programmer getting overwhelmed
with unnecessary communication details. Figure 3
shows the programming framework used for SimNP
where a run-to-complete polling model is used for packet
transfer. The registers in network interfaces are mapped
to memory and the addresses are defined in
<simnp_defs.h> for macros starting with NET_INTF_.
Macro PE_PKT_BASE_ADDR indicates the starting
address in the memory that a packet should be written to
or read out. It can be either a value predefined for each
PE in <simnp_defs.h> or a value passed from shell
scripts at compile time. The packet request is issued by
primitive WRITE_WROD which sends necessary infor-
mation to the register specified by its parameter. Similar,
primitive READ_WORD returns the content of the
specified register.

3.2.4. Hardware Accelerator
In SimNP, both local and shared hardware accelerators
are simulated. As shown in Figure 2, their own memo-
ries and registers are accessed by mapped addresses so
that new components can be easily added, subtracted and
accessed without major changes. Local hardware accel-
erators are suitable for simple calculations such as
checksum in IP header.

As for shared hardware accelerators, two clusters are
provided with each of them supporting up to four sepa-
rate hardware accelerators, shown in Figure 1. Cluster A
targets data-intensive payload applications, such as
packet encryption/decryption and Deep Packet Inspec-
tion (DPI) [22,23]. To speedup the calculation, additional

SRAM is equipped to temporarily hold the packet data
block transferred from packet buffer. Like the network
interface, using a source address, destination address and
buffer length, a DMA controller will automatically fetch
and store data without any PE interference. The pro-
gramming framework for Cluster A is somewhat similar
with that of Figure 3. Cluster B is aimed at accelerators
for header-based applications such as packet classifica-
tion [24] and IP lookup [25], where the SRAM is used to
hold rule-set or route table and a small number of packet
data transfers is needed. Figure 4 shows the program-
ming framework for calling the packet classification
hardware accelerator

3.2.5. System Bus

All devices connected to the system bus use one or
two Command FIFO(s) (labeled as CMD with PEs’
CMDs omitted in Figure 1, to buffer data requests. The
commands are arbitrated by system bus in a weighted
round robin manner. The bandwidth of system bus is
configured by user. Some devices, such as SRAM and
DRAM, also have a data buffer to hold the content de-
manded by PE or DMA controllers. During each cycle, at
least one command can be processed by the system bus
unless all of the buffers are empty.

4. Experiments

4.1. Experimental Setup

We choose three algorithms commonly used within net-
work processors to do the experiment on SimNP. The first
one is a header processing application, Level Compressed

0 #include "simnp_defs.h”

1 int application(void *pkt_addr, int pkt_len);

2 void main ()
3 {
4 unsigned long pkt_len;
5 int action;

6 while (1) {

7 /* Request Packet from Interface */
8 WRITE_WORD(NET_INTF_REQUEST, PE_PKT_BASE_ADDR);
9 pkt_len = READ_WORD(NET_INTF_STATUS);

10 /* Process Packet */
11 action = application(PE_PKT_BASE_ADDR, pkt_len);

12 If (action == FORWARD) {
13 /* Queue Packet At Egress */
14 WRITE_WORD(NET_INTF_TRANSMIT, PE_PKT_BASE_ADDR);
15 }
16 }
}

Figure 3. Sample programming framework for workloads.

Copyright © 2010 SciRes. CN

212 D. BERMINGHAM ET AL.

0 #include "simnp_defs”

1 void main ()
2 {
3 struct ip *ipdhr;
4 struct tcp *tcphdr;
5 int port, classify_result;
6
7 iphdr = (struct ip *)PKT_ADDR;
8 tcphdr = (struct tcp *)PKT_ADDR + (IP_SIZE>>2);

9 /* Create Request */
10 WRITE_WORD(CLASSIFY_UNIT, iphdr->src_addr);
11 WRITE_WORD(CLASSIFY_UNIT + 4, iphdr->dst_addr);
12 port = (tcphdr->sport)<<16 | (tcphdr->dport);
13 WRITE_WORD(CLASSIFY_UNIT + 8, port);
14 WRITE_WORD(CLASSIFY_UNIT + 12, iphdr->prot);

15 /* Get the Result from Hardware Accelerator */
16 classify_result = READ_WORD(CLASSIFY_STATUS);
}
17 #include "simnp_defs”
[1]
18 void main ()

Figure 4. An example calling procedure for packet classification hardware accelerator.
Trie (LC-Trie) based IP Forwarding [25]. The other two
are payload processing applications, packet fragmenta-
tion [26], and a packet encryption/decryption algorithm
called Advanced Encryption Standard (AES). AES is
designed to be implemented in Cipher Block Chaining
(CBC) mode with 128-bit encryption, which is typical
for today’s routers [22]. Under this configuration, AES
requires 10 rounds per 16-byte data block. The three
programs are compiled with gcc-3.4.3 and the object
code is copied to the Control Store of each PE. An OC-3
packet header trace from NLANR is used, which con-
tains a large percentage of small packets. A 127,000-
entry AT&T East route table is used for the LC-Trie ap-
plication. The Simulation is performed on a Linux
Computer with a 2.0 GHz Intel® Core-Duo processor
and 2GB memory.

4.2. Performance of Multiple PEs

Figure 5 presents the performance of packet fragmenta-
tion and LC-Trie as we increase the number of PEs from
1 to 32, without changing the device latencies or system
bus bandwidth. The solid lines represent the number of
non-stall cycles to finish processing 10,000 packets
while the dashed lines indicate the amount of stall cycles.
Here, a “stall” state happens when all of the PEs in the
system are in a suspended state, i.e. no instructions are
executed in this cycle.

Similar to other payload processing applications, frag-
mentation has a high DRAM access requirement to fetch
the packet data. As for LC-Trie, the major memory ac-
cesses occurred for each packet include retrieving a
number of entries in route table which is stored in SRAM.
Obviously, the bandwidth requirement of LC-Trie is
much lower than fragmentation, which results in a lower

stall percentage than fragmentation. As can be seen in
Figure 5, when the number of PE is larger than 4, no
stall state happens for LC-Trie applications while for
fragmentation, the number of stall cycles increases rap-
idly as more PEs are added.

Under this configuration, it can be seen that 2 PEs are
the most efficient for fragmentation, with the stall cycles
increasing from over 69.94x106 cycles for a single PE to
over 1044x106 cycles for a 32-PE system. In this case,
more system bus bandwidth and DRAM bandwidth are
demanded to maintain the efficiency of multiple PEs. As
for LC-Trie, although the stall cycles quickly falls from
425x106 to 1.67 x106

 when implemented on 4 PEs, 8 PEs
is the optimum configuration. The reason is that if more
than 8 PEs are used, even though at any time at least one
PE executes an instruction, the percentage of suspension
state of each individual PE also increases. Therefore, the
total amount of cycles used to process the same amount
of packets only has a moderate decrease.

4.3. Impact of Memory Latencies

Figure 6 shows the number of execution cycles and stall
cycles needed for processing 10,000 packets with the
LC-Trie algorithm as the CPU relative latency changes.
For simplicity, we assume the PEs and System Bus
working at the same clock speed and so do the DRAM
and Global SRAM. Then the ratio between the working
frequency of PE/System Bus and DRAM/Global SRAM
is defined as CPU relative latency.

It can be seen that, when the number of PEs is less
than 8, the long latency of external memory does not
have a significant impact on the number of processing
cycles required. The reason is that, for each packet, only
a small number of Global SRAM and DRAM accesses

Copyright © 2010 SciRes. CN

D. BERMINGHAM ET AL.

213

are needed. As long as the bandwidth of System Bus is
enough for these communications, the increased memory
latency is amortized among different PEs and the chance
of all PEs being suspended is low. So it can be observed
that when there are fewer than 4 PEs, the total number of
stall cycles only slightly increases when the relative

memory latency is higher than 10. As for 8 PEs, the
number of stall cycles becomes more sensitive to the
changes in memory latency. However, since the band-
width of System Bus is still well enough, the number of
cycles needed for processing the packets remains stable
across different values of memory latency.

Figure 5. NP performance of fragmentation/LC-Trie for various number of PEs.

Figure 6. NP performance of LC-Trie under various memory latencies.

Copyright © 2010 SciRes. CN

214 D. BERMINGHAM ET AL.

Figure 7. NP performance of AES under various hardware accelerator latencies.

However, as more PEs are added, the bandwidth of
System Bus is unable to accommodate the data traffic on
them in a timely way. In this case, the increase in mem-
ory access latency does result in not only a higher num-
ber of stall cycles, but also a rapid increase in the number
of processing cycles. When the relative latency is higher
than 5, processing the same number of packets for 16 or
32 PEs takes more cycles than only 4 or 8 PEs.

4.4. Effectiveness of Hardware Accelerators

Using either Cluster A or B, SimNP provides an efficient
method of simulating hardware accelerators as a means
of evaluating their effectiveness by acquiring figures
such as device utilization and speedup. To demonstrate
this, we choose to implement the AES algorithm de-
scribed in Subsection 4.1 as a hardware accelerator. For
hardware accelerators, the trade-off is typically between
increasing the performance and reducing the area cost.
By configuring the latency of hardware accelerators, we
can evaluate the benefit generated through offloading the
calculation intensive tasks.

Figure 7 shows the number of NP processing cycles
required to encrypt 30,000 packets as the latency of AES
hardware accelerator increases. With only one PE being
evaluated, the bandwidth of System Bus is enough for
the packet data transfer between DRAM and Cluster A.
Therefore, a linear increase in the number of necessary
processing cycles is observed as the latency for process-
ing one data block by AES hardware accelerators be-
comes higher. Note that the number of instructions to be
executed by AES is at least hundreds of times higher
than that of LC-Trie, depending on the length of packet.
However, compared with Figure 5, the number of cycles
needed for AES is lower than that of LC-Trie, normal-
ized to the same number of packets being processed.
Besides, the use of hardware accelerator also makes the
processing time more deterministic. Such behavior is
helpful for the implementation of load balancing.

5. Future Work

Components that we plan to implement for SimNP in the
future include a more accurate PE execution core, and a
cache hierarchy for latency hiding techniques. Introduc-
ing cache hierarchy in a multi-core environment brings
the problem of cache coherence, but it will reduce the
necessity of multiple types of memory devices and make
programming much easier. Finally, flexibility will be
improved by providing a debugging environment within
the simulator, removing the need for any intermediate
stages during application verification.

6. Conclusions

As more and more network applications have been
moved to the NP platform, the availability of an infra-
structure for the simulation and evaluation of such a
complicated system becomes increasingly crucial. After
nearly ten years of evolution, the modern NP has devel-
oped its own collection of architectural features, which
are tailored for packet processing. In this article, we have
proposed and described a new NP simulator called
SimNP. It models the components commonly seen
within a NP, such as multiple PEs, integrated network
interface and memory controllers, and hardware accel-
erators. Supporting ARM instruction set, SimNP can be
easily programmed in high level languages such as C
with no modifications to compilers. The use of a memory
mapped I/O allows rapid addition or removal of compo-
nents, as well as complex NP design space exploration,
balancing a flexible and appropriate abstraction level
while providing meaningful statistics and analysis.

7. Acknowledgements

This work is funded by the Irish Research Council for
Science, Engineering and Technology (IRCSET) and the
Enterprise Ireland (EI). The authors would also like to

Copyright © 2010 SciRes. CN

D. BERMINGHAM ET AL.

215

thank Ms. Yachao Zhou and Mr. Feng Guo for their
work in preparing this manuscript.

8. References

[1] D. Comer and L. Peterson, “Network Systems Design

Using Network Processors,” 1st Edition, Prentice-Hall,
Inc., USA, 2003.

[2] Intel Inc., IXP2800 Hardware Reference Manual.

[3] M. R. Hussain, “Octeon Multi-Core Processor,” Keynote
Speech of ANCS 2006, San Jose, California, USA, De-
cember 2006.

[4] M. Venkatachalam, P. Chandra and R. Yavatkar, “A
Highly Flexible, Distributed Multiprocessor Architecture
for Network Processing,” Computer Networks, Vol. 41,
No. 5, 2003, pp. 563-586.

[5] W. Eatherton, “The Push of Network Processing to the
Top of the Pyramid,” Keynote Address at the Symposium
on Architectures for Networking and Communication
Systems (ANCS2005), Princeton, New Jersey, USA, Oc-
tober 2005.

[6] J. Mudigonda, H. M. Vin and R. Yavatkar, “Managing
Memory Access Latency in Packet Processing,” Pro-
ceedings of the International Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS
2005), Banff, Alberta, Canada, June 2005, pp. 396-397

[7] M. Peyravian and J. Calvignac, “Fundamental Architec-
ture Considerations for Network Processors,” Computer
Networks, Vol. 41, No. 5, 2003, pp. 587-600.

[8] W. Bux, W. E. Denzel, T. Engbersen, A. Herkersdorf and
R.P. Luijten, “Technologies and Building Blocks for Fast
Packet Forwarding,” IEEE Communications Magazine, ,
Vol. 39, No. 1, 2001, pp. 70-77

[9] D. Burger and T. Austin, “The SimpleScalar tool set ver-
stion 2.0,” Computer Architecture News, Vol. 25, No. 3,
1997, pp.13-25

[10] N. Shah, W. Plishker and K. Keutzer, “NP-click: A pro-
ductive software development approach for network
processors,” IEEE Micro, Vol. 24, No. 5, 2004, pp.
45-54.

[11] T. Wolf and M. Franklin, “Commbench: A Telecommu-
nications Benchmark for Network Processors,” IEEE In-
ternational Symposium on Performance Analysis of Sys-
tems and Software, Austin, USA, April 2000.

[12] G. Memik, W. H. Mangione-Smith and W. Hu,
“NetBench: A Benchmarking Suite for Network Proces-
sors,” Proceedings of IEEE/ACM International Confer-
ence on Computer-Aided Design, Digest of Technical
Papers, San Jose, USA, November 2001, pp. 39-42.

[13] J. L. Hennessy and D. A. Patterson, “Computer Architec-

ture: A Quantitative Approach,” 4th Edition, Morgan
Kaufmann, USA, 2006.

[14] Z. Liu, D. Bermingham and X. Wang, “Towards Fast and
Flexible Simulation of Network Processors,” The IET
2008 China-Ireland International Conference on Infor-
mation and Communications Technologies (CIICT2008),
Beijing, China, September 2008, pp. 611-614.

[15] D. Bermingham, Z. Liu and X. Wang, “SimNP: A Flexi-
ble Platform for the Simulation of Network Processing
System,” ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS2008),
California, USA, November 2008, pp. 123-124.

[16] P. Willman, M. Broglioli and V. Pai, “Spinach: A Lib-
erty-Based Simulator for Programmable Network Inter-
face Architectures,” LCTES, 2004, pp. 20-29.

[17] R. Ramaswamy and T. Wolf, “PacketBench: A Tool for
Workload Characterization of Network Processing,” Pro-
ceeding of IEEE 6th Annual Workshop on Workload
Characterization (WWC-6), Austin, TX, 2003, pp. 42-50.

[18] Y. Luo, J. Yang, L. N. Bhuyan and L. Zhao, “NePSim: A
Network Processor Simulator with a Power Evaluation
Framework,” IEEE Micro, Vol. 24, No. 5, 2004, pp. 34-
44.

[19] D. Suryanarayanan, J. Marshall and G. T. Byrd, “A Meth-
odology and Simulator for the Study of Network Proces-
sors,” In: P. Crowley, M. A. Franklin, H. Hadimioglu,
and P. Z. Onufryk, Eds., Network Processor Design: Is-
sues and Practices, Morgan Kaufmann Publishers, USA,
2003, pp. 27-54.

[20] “NLANR Passive Measurement Analysis,” 2007. http://
pma. nlanr.net/

[21] “The GNU Compiler Collection,” 2009. http://gcc.gnu.org

[22] B. Schneier, “Applied Cryptography,” 2nd Edition, John
Wiley & Sons, New York, 1996.

[23] S. Kumar, J. Turner and J. Williams, “Advanced Algo-
rithms for Fast and Scalable Deep Packet Inspection,”
Proceedings of the ACM/IEEE symposium on Architec-
ture for networking and communications systems, San
Jose, USA, December 2006, pp. 81-92.

[24] P. Gupta and N. McKeown, “Packet Classification on
Multiple Fields,” Proceedings of the 1999 Conference on
Applications, Technologies, Architectures and Protocols
for Computer Communications (ACM SIGCOMM’99),
Massachusetts, US, September 1999, pp. 147-160.

[25] S. Nilsson and G. Karlsson, “IP-Address Lookup Using
LC-Tries,” IEEE Journal on Selected Areas in Commu-
nications, Vol. 17, No. 6, June 1999, pp. 1083-1092.

[26] RFC-791, “Internet Protocol DARPA Internet Pro-
gram Protocol Specification,” 1981.

Copyright © 2010 SciRes. CN

