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ABSTRACT 

In this paper, we analyze an inverse notch filter and present its application to F0 (fundamental frequency) estimation. 
The inverse notch filter is a narrow band pass filter and it has an infinite impulse response. We derive the explicit forms 
for the impulse response and the sum of squared impulse response. Based on the analysis result, we derive a normalized 
inverse notch filter whose pass band area is identical to unit. As an application of the normalized inverse notch filter, we 
propose an F0 estimation method for a musical sound. The F0 estimation method is achieved by connecting the normal- 
ized inverse notch filters in parallel. Estimation results show that the proposed F0 estimation method effectively detects 
F0s for piano sounds in a mid-range. 
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1. Introduction 

In speech processing, image processing, biomedical sig- 
nal processing, and many other signal processing fields, 
it is important to eliminate the narrowband signal. The 
examples of the narrowband signal are a hum noise from 
the power supply, an acoustic feedback, and an interfere- 
ence noise, and so on. A notch filter is useful for the 
elimination of the narrowband signal [1-7], where the 
notch filter passes all frequencies expect of a stop fre- 
quency band centered on a center frequency, called as the 
notch frequency. The notch filter has a simple structure, 
and its stop bandwidth and its notch frequency are indi- 
vidually designed. The notch filter is used in many ap- 
plications and it has been analyzed in many literatures 
[1,4-7]. 

On the other hand, an inverse notch filter is a band 
pass filter which has the inverse characteristics of the 
notch filter. In contrast to the notch filter, there are few 
applications of the inverse notch filter. As an example of 
the applications, an active noise control system for re- 
ducing a sinusoidal noise has been proposed [8]. In this 
system, the inverse notch filter is used to extract the si- 
nusoidal noise. Unfortunately, the system is designed 
without respect to the impulse response of the inverse 
notch filter. Hence, the inverse notch filter cannot accu- 
rately extract the sinusoidal noise when the filter output 
is in the transient state. To utilize the inverse notch filter 
more effectively for not only the active noise control 
system but also many other applications, a more detail 
analysis of the impulse response for the inverse notch 

filter needs to be required. 
In this paper, we derive an explicit form for the infinite 

impulse response of the inverse notch filter. Additionally, 
we derive an explicit form for the sum of the squared 
impulse response. Then, we reveal the limit values of 
these two infinite sequences. Next, based on the analysis 
results, we propose a normalized notch filter whose pass 
band area is adjusted to unit. The normalized inverse 
notch filter is efficient to estimate the output power in the 
short time such as the frame processing. Finally, as an 
application of the normalized inverse notch filter, we 
present an F0 estimation method for a musical sound. In 
the F0 estimation method, we use multiple normalized 
inverse notch filters whose pass frequencies are identical 
to F0s for each monophonic sound, respectively. These 
normalized inverse notch filters are connected in parallel. 
In the estimation procedure, we detect F0 from the in- 
verse notch filter whose output power is largest among 
all the inverse notch filter output powers. From the 
simulation results, we see that the proposed F0 estimation 
method can effectively detect the F0 both of for the 
monophonic sounds and the polyphonic sounds. 

2. Performance Analysis of Inverse Notch  
Filter 

In this section, we explain both of the notch filter and the 
inverse notch filter, where the latter filter has an inverse 
characteristic of the notch filter. The notch filter passes 
all frequencies expect of the narrow frequency band cen- 
tered on the notch frequency. The stop bandwidth and the 
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notch frequency can be individually designed [1-7]. The 
several structures of the notch filter have been proposed 
and all of them can be transformed to the inverse notch 
filter. In this paper, we use the structure of the notch fil- 
ter proposed in [3-5], since the inverse notch filter can be 
simply obtained from the notch filter’s transfer function. 
The transfer function of the notch filter is given by  N z

 
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where   is a parameter to design the notch frequency 
and  is the stop bandwidth parameter. The 
notch frequency parameter is given by 
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where HzF  denotes the notch frequency and  HzF



S  
denotes the sampling frequency. When we put the stop 
bandwidth as HzK r, the relational expression of  
and  is represented as K
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From (1), we can derive the inverse notch filter repre- 
sented as 

   
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where the I z

r

 is the transfer function of the inverse 
notch filter. We see from (4) that the inverse notch filter 
is very easy to implement. Note that the pass bandwidth 
parameter  is also given as (3), where K denotes the 
pass bandwidth. Figure 1 shows the structure of the in- 
verse notch filter, where  x n


 is the input signal, 

y n  u n is the output signal, and  is the signal ob- 
tained from the IIR unit within the inverse notch filter. 
We see from this figure that the inverse notch filter re- 
quires only three multiplications and three additions to 
calculate the output signal. Figure 2 shows the frequency 
amplitude response of  I z  when  0 2F F 

r

r
r

S  
with = 0.8, 0.9, 0.99, where the vertical axis denotes 
the amplitude and the horizontal axis denotes the nor- 
malized frequency. We see from Figure 2 that the am- 
plitude at the notch frequency is 1 regardless of , and 
the pass bandwidth becomes narrow with increasing  



 

 

Figure 1. Structure of inverse notch filter. 

 

Figure 2. Power spectrum of the inverse notch filter. 
 
toward to 1, i.e., we can accurately extract a single sinu- 
soidal signal by setting  extremely close to 1. r

When filtering an input signal, one of the most impor- 
tant factors is the impulse response of the filter. We 
firstly derive the impulse response of the inverse notch 
filter as an explicit formulation. We see from (2) or Fig- 
ure 1 that the signal  y n  u n

 

 and  are given as 

    1
2

2

r
y n u n u n


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with 

       1 2u n x n u n ru n     .       (6) 

To obtain the impulse response, we put the input sig- 
nal as the impulse signal represented as 

   x n n ,                  (7) 

 where n  is the Kronecker’s delta. In this case, (6) 
can be represented as the following equation 

     1 2 0u n u n ru n    

2n 

,         (8) 

where . Solving the above homogeneous equation 
with respect to  u n  and introducing the initial condi- 
tion that  0 1u  1u  and 

 

, we obtain the solution 
expressed as 
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sin 1nu n r n

p
 ,          (9)  

24p r   ,                (10) 

arctan
p


    
2 4r
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We assume that  . Note that this assumption is 
satisfied when 1r  . By substituting (9) into (5), we 
obtain the impulse response of the inverse notch filter 
  2h n n   expressed as 

      
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    (12) 

From (12), we see that the impulse response becomes 
close to 0 with increasing  due to the term 1 2nr  . 
When     0, 0u n n  1h  0h  and  , we also have 
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represented as 
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Next, we formulate the sum of squared impulse re- 
sponse to evaluate its convergence property. Taking 
square of (12), the squared impulse response  

 is obtained as 
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where we use the following relation 
21 2p r 

 

cos 2 .            (16) 

The above relation is derived from (10) and (11). Us- 
ing (13), (14), and (15), the sum of the squared impulse 
response J n  is represented as 
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From (17), we easily obtain the limit value of  J n
n 
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 con- 
verges to the constant which is depending on the pass 
bandwidth parameter . From Parseval’s theorem, we 
see that (20) is identical to the sum of the squared fre- 
quency response. Note that (20) also shows the pass band 
area of the inverse notch filter, since its frequency re- 
sponses are almost zero expect of the pass band. Figure 
3 shows the actual convergence properties for the sum of 
the squared impulse response with = 0.8, 0.9, 0.99, 
where the solid line denotes the sum of the squared im- 
pulse response and the dashed line denotes the theoretical 
limit calculated from (20). The horizontal axis denotes 
sample number. We see from Figure 3 that the sum of 
the squared impulse response converged to each theo- 

retical limit. Also we see that convergence speed be- 
comes fast with decreasing . 

In the audio signal processing, the inverse notch filter 
is often utilized for measuring a narrowband frequency 
power which is corresponding to the inverse notch fil- 
ter’s output power. However, the pass band area of the 
inverse notch filter depends on the parameter  as 
shown in (20), and thus the output power also depends on 

. Hence, it is difficult to evaluate the inverse notch fil- 
ter’s output power when there exist multiple inverse 
notch filters which have different s. To solve this 
problem, we derive a normalized inverse notch filter 
whose output power is fairly available independently 
with . Since the output power is actually calculated in 
a short frame length, we have to establish the normalized 
inverse notch filter by taking into account the frame 
length. The sum of the squared output signal is given by 

  
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      (21) 

where  is the frame length. Here, we consider the 
case that the observed signal x n

2
 is a white noise 

whose mean value and variance are 0 and N , respect- 
tively. Taking the expectation value of (21), we have 
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Substituting (17) into (22) gives 
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where 

   2cos 4 cos 2L
Ld r L   .         (24) 

The white noise has the same magnitude for all fre- 
quencies. Thus, it is desirable that the sum of the squared  
 

 

Figure 3. Convergence property for sum of squared impulse 
response. 
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output signal of the inverse notch filter is always constant 
regardless of the values of ,  ,  r L . However, as shown 
in (23), the expectation value of strongly depends 
on the respective values. 

 V L

To solve this problem, we propose the following nor- 
malized inverse notch filter. 

     
 

2

1 2

1 1r z

z rz



12
I z I z E V L

E V L
 

 
 

L
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(25) 

The above normalized inverse notch filter adjusts the 
total pass band area in  samples to unit. Figure 4 
shows the structure of the normalized inverse notch filter, 
where  y n  denotes its output signal. Comparing Fig- 
ure 4 with Figure 1, we see that the difference is only 
one multiplier’s value. Hence, the computational com- 
plexities of those filters are the same. 

To confirm the property of the normalized inverse 
notch filter, we carried out a simulation. In this simula- 
tion, the capability of the normalized inverse notch filter 
was compared with the general inverse notch filter 
shown in (4). We prepared four filters which designed by 
different parameters. The parameter setting is summa- 
rized in Table 1. We used white noise as the observed 
signal, where its mean and variance are 0 and N

2 1  . 
Figure 5 shows  for frame length , where  
“×” denotes the average value of  in 1000 simu- 
lations and the solid line denotes the theoretical value 
calculated by (23). In this figure, the horizontal axis de-  

 E V L  L
 V L

 

 

Figure 4. Structure of normalized inverse notch filter. 
 

 

Figure 5. Sum of squared output signal of inverse notch 
filter output. 
 

Table 1. Parameters for normalized inverse notch filter. 

Filters 1I , 1I  2I , 2I  3I , 3I 4 I , 4I

  −1.999 −1.989 −1.876 −0.488
Parameters 

notes frame length. We see that the each inverse notch 
filter mI  gave different curves of    due to the 
different parameter setting. In this case, it is not easy to 
evaluate the relation between filter output powers. Fig- 
ure 6 shows the result of the normalized inverse notch 
filter 

 E V L 

m I . We see that all the obtained E V L 

,  ,  r L

   are 
unit for every frame length. Hence, we can evaluate the 
relation between the output power regardless of the val- 
ues of  . 

3. Application to F0 Estimation 

In this section, as an application of the normalized in- 
verse notch filter, we present an F0 estimation method for 
musical signal. Here, we assume that the music signal 
consists of the F0 frequency and its harmonics, and the 
amplitude of F0 frequency is greater than other frequency 
amplitudes. We represent the F0 of the music signal such 

as ij , where  denotes an octave number and  de- 
notes a pitch name number, e.g., the pitch 440 Hz is rep- 
resented as 4,10 . The estimating pitch range is set to 

3,9 5,3

P i j

P
P P , where a piano sound in this frequency range 
has the maximum amplitude at its F0 frequency. We set 
the notch frequency of the normalized inverse notch filter 
to correspond to the pitch ij . Then, the -th nor- 
malized inverse notch filter is represented as 

P  ,i j
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where ij  and ijr  are the notch frequency parameter 
and the pass bandwidth parameter for ij  I z , respec- 
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bandwidth of  ijI z
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Figure 6. Sum of squared output signal of normalized in-
verse notch filter. 
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Here, we designed the pass bandwidth as the range 
from its notch frequency to one of the lower neighboring 
notch frequency. The proposed F0 estimator is achieved 
by connecting the designed normalized inverse notch 
filters   ijI z  in parallel. The F0 estimator is shown in 
Figure 7, where  ijy n  denotes the output signal of 

 ijI z . The estimation procedure is the follows: First, we 
calculate  defined in (21) for each  V L  ijI z

V L i

. We 
then detect the normalized inverse notch filter whose 

 is largest among all of filters. Its filter number  
and 


j  directly gives the first F0 estimate as ij . Next, 

we remove the normalized inverse notch filter for 

, j  which is corresponding to harmonics of 

ij . Repeating the above estimation procedure gives the 
second and latter F0 estimates. The repetition of the esti- 
mation process is finished when all the residual 

P

P k ki

P

 V L



s 
are smaller than the threshold. 

We carried out simulations to confirm the capability of 
the proposed F0 estimator. In the simulations, we set the 
sampling frequency 10 kHzF 
L
T

i j
, j

S , and the frame length 
 = 100 (=10 [ms]). We empirically set the threshold 
 to 2 × 109. As the first simulation, we carried out the 

F0 estimation for the monophonic sound which was 
played with a electronic piano. Figure 8 shows the 
waveform of the input signal and the estimation result, 
where the true octave number  and pitch number  
are displayed on the waveform as “ i ”. We plotted the  
 

 

Figure 7. Structure of F0 estimation method. 
 

 

Figure 8. Simulation result for monophonic sound. 

estimated F0 as the thick black line. From the result, we 
see that the F0 estimation method can accurately estimate 
the F0 of the observed signal, although some errors oc- 
curred in the keystroke. Additionally, we carried out the 
simulation for the same monophonic signal with a white 
noise. The estimation result shows in Figure 9. We see 
from the figure that the F0 estimation method can robus- 
tly estimate the F0 under the noisy environment as accu- 
rately as under the environment without noise. 

As the second simulation, we carried out the F0 esti- 
mation for the polyphonic sound. The polyphonic sound 
contains the octave note  4.1 5,1  and ,P P  ,P P4.3 5,3  
which are known as a difficult combination to separately 
detect. Figure 10 shows the estimation result. We see 
from the figure that the F0 estimation method can esti- 
mate the F0 although there also exist some errors at the 
keystroke. Especially, the proposed method can detect F0 
for the octave note. From these results, we confirmed the 
normalized inverse notch filter is efficiently for F0 esti- 
mation. 
 

 

Figure 9. Simulation result for noisy monophonic sound. 
 

 

Figure 10. Simulation result for polyphonic sound. 
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4. Conclusion 

In this paper, we analyzed the inverse notch filter and 
derived the explicit forms for the impulse response and 
the sum of squared impulse response. Based on the 
analysis result, we derived a normalized inverse notch 
filter whose pass band area is identical to unit to evaluate 
the output powers between the multiple inverse notch 
filters which have different parameters. Moreover, we 
established an F0 estimator by connecting the normalized 
inverse notch filters in parallel. Estimation results 
showed that the proposed F0 estimator effectively detects 
F0s for electronic piano sound in a mid-range. 
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