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ABSTRACT 

Flow behavior of transient mixed electro-osmotic and pressure driven flows (EOF/PDF) through a microannulus is in- 
vestigated based on a linearized Poisson-Boltzmann equation and Navier-Stokes equation. A semi-analytical solution of 
EOF velocity distribution as functions of relevant parameters is derived by Laplace transform method. By numerical 
computations of inverse Laplace transform, the effects of inner to outer wall zeta potential β, the normalized pressure 
gradient Ω and the inner to outer radius ratio α on transient EOF velocity are presented. 
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1. Introduction 

Microfluidic devices have become important due to their 
applications in medical science, biology, and analytical 
chemistry [1]. When an electrolyte comes in contact with 
a microchannel wall in which the fluid flows, the surface 
charge leads to the formation of an electric double layer 
(EDL) [2] and its ion density variation obeys the Boltz- 
mann distribution [3]. When an electric field is applied 
tangentially along the charged surface, it will exert a 
Coulombic force on the ions within the EDL. The migra- 
tion of the mobile ions will carry the adjacent and bulk 
liquid phase by viscosity, resulting in an electroosmotic 
flow (EOF). EOF is widely used in the fields of biology, 
chemistry and medicine. 

Both theoretical and experimental investigations to 
steady EOF have been well studied in various micro- 
capillaries geometric domains [4-12]. However, such 
steady electro-osmotic flows are likely to necessitate re- 
latively larger voltages and field strengths, which might 
be rather undesirable in many practical situations. Re- 
cently, time periodic EOF has been attracting growing 
attention as an alternative mechanism of microfluidic 
transport. Dutta and Beskok [13] analytically investi- 
gated the time periodic EOF between two parallel plates, 
illustrating interesting similarities or dissimilarities with 
the Stokes second problem. A semi-analytical solution of 
periodical EOF in a rectangular microchannel was pre-  

sented by Wang et al. [14] Chakraborty and Ray [15] 
investigated the mass flow-rate control through time pe- 
riodic EOF in circular microchannels. Jian et al. [16] 
derived an analytical solution of velocity distribution for 
time periodic EOF in a cylindrical microannulus. Two 
limiting cases, i.e., the time periodical EOF approxima- 
tely in parallel plate microchannel and circular microtube 
are discussed in their work. In addition, using separation 
of variable and Green function methods, Keh and Tseng 
[17] and Kang et al. [18] studied transient EOF in fine 
capillary and gave analytical expressions of electroosmo- 
tic velocity, respectively. 

However, no one seems to have discussed, to the au- 
thors’ knowledge, transient mixed EOF/PDF through a 
microannulus. The purpose of current paper is to extend 
our recent work of time periodic EOF [16] to transient 
mixed EOF/PDF with a constant voltage in a cylindrical 
microannulus by the method of Laplace transform. The 
evolution of the EOF velocity at any time can be ob- 
tained. 

2. Mathematical Formulation 

2.1. Electrical Potential Distribution 

The transient mixed EOF/PDF of incompressible Newto- 
nian fluids through an annular region with inner radius 

 0R  1   and outer radius R, the length of the 
channel is L, assumed to be much larger than the diame-  *Corresponding author. 
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ter, i.e.,  is shown in Figure 1. The electrolyte 
fluid is acted upon by an axial (along z-direction) steady 
electric field of strength E0. The chemical interaction of 
electrolyte liquid and solid wall generates an EDL, a very 
thin charged liquid layer at the solid-liquid interface. A 
cylindrical coordinate system  is adopted. In 
this theoretical model, the channel wall is assumed to be 
uniformly charged so that the electrical potential in the 
EDL varies in the r direction only and do not depend on 
θ. For a symmetric binary electrolyte solution, assuming 
the electrical potential ψ of the EDL is steady, and its 
distribution and the local volumetric net charge density 

 are described by the Poisson-Boltzmann equa- 
tions 
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here ε is the dielectric constant of the electrolyte liquid, 
n0 is the ion density of bulk liquid, zν is the valence, e0 is 
the electron charge, kb is the Boltzmann constant, and T 
is the absolute temperature. Substituting Equation (2) 
into Equation (1), the electrical potential in the annulus 
region can be expressed as 
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which is subject to the following boundary conditions 
 

 
(a) 

 
(b) 

Figure 1. (a) Sketch of transient electro-osmotic flow 
through a microannulus along z direction; (b) Cross section 
of the microannulus. 
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where the ςo is the outer capillary wall zeta potential and 
the ςi is the inner capillary wall zeta potential. For sim- 
plicity, the following dimension dimensionless groups 
are introduced 
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Here κ is the Debye-Hückel parameter and 1/κ denotes 
the thickness of the EDL, and K is called the non-di- 
mensional electrokinetic width. The dimensionless elec- 
trical potential Equation (3) and the corresponding 
boundary condition (4) can be written as 
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,o   at 1,r               (7a) 

,i   at .r              (7b) 

Assuming the electrical potential is small enough, the 
Debye-Hückel linearization approximation can be used 
for the hyperbolic sine function appearing in the right 
hand side of Equation (6), which means physically that 
the electrical potential is small compared with the ther- 
mal energy of the charged species. Equation (6) can be 
simplified as 

21 d d
.

d d
r K

r r r

    
 

           (8) 

Equation (8) is a modified Bessel equation, and its so- 
lution has the following form 

   1 0 1 0 ,A I Kr B K Kr         (9) 

where I0 and K0 is the modified Bessel functions of first 
and second kinds of order zero, respectively. Substituting 
boundary conditions of Equation (7) into Equation (9), 
the constants of A1 and B1 can be determined as 
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here i o    is defined as the ratio of the zeta poten- 
tials of the inner wall to the outer wall of the annulus. 
Substituting Equation (10) into Equation (9), the final 
electrical potential can be expressed as 

   0 0 ,o AI Kr BK Kr             (11) 

Copyright © 2013 SciRes.                                                                                OJFD 



R. NA  ET  AL. 52 

and the constants A and B are 
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2.2. Velocity Distribution 

electric field, the equation 




In the presence of the applied 
of the motion through the annulus due to electro-osmosis 
is given by the Navier-Stokes equation 
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 with zty component, which is along -direction, μ is the 

fluid viscosity, p is pressure, and E0 is constant electric 
field of strength. In fact, we have assumed that the time- 
dependent EOF does not affect the charge distribution in 
the Debye layer in Equation (13). Generally, the transient 
effect of EDL relaxation can be neglected because the 
time scale related to electro migration in the EDL is at 
least two orders smaller that the characteristic time asso- 
ciated with the evolution of the EOF [19]. The boundary 
conditions of Equation (13) are supposed no slip and can 
be written as 
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It is important to mention  that th
di

 here e boundary con- 
tions at the walls may exhibit apparent slip behavior 

instead of following the classical no-slip conjecture. 
Such deviations, not being the focal point of concern in 
the present study, are not considered here. Introducing 
the following dimensionless groups: 
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where  is the normalized pressure gradient applied 
e 


along th channel axis. 
Using Equations (2) and (8), for small zeta potential, 

the Equation (13) can be normalized as 
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The normalized boundary conditions Equation (14) are 
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Equation (21) is linear and inhomogeneous ordinary 
differential equation, and its solution can be expressed by 
the sum of a general solution  ,hU r s  corresponding 
to homogeneous equation and a special solution 
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The homogeneous solution of Equation (21) is written 
as 
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here E and F are constants, which can be determined 
from boundary conditions of Equation (23). Considering 
the formation of the right hand side of Equation (21), the 
special solution can be expressed as 
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here C and D are constants. Substituting Equation (24) 
into Equation (21) yields 
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From Equation (8), we can obtain easily 
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Substituting Equation (26) into Equation (25) and 
equalizing the coefficients in front of the modified Bessel 
functions I0 and K at the two sides of the equati
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Inserting Equations (23) and (24) into Equation (22), 
the solution of velocity 

Using boundary conditions of Equation (20), we can 
determine the constants E and F as  ,U r s  is 
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Now the analytical solution of Laplace transform of 

EOF velocity through a microannular can be determined 
by Equation (28) with related constants given by Equa- 
tions (12), (27), (29) and (30). Then using the method of 
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3. Results and Discussions 

In the previous section, dimensionless transient 
velocity depend mainly on the ele
inner to outer radius ratio α, inner to outer zeta potential 

re gradient Ω. In this 
ce of these parameters 

ta potential 
ra

 deter- 
mined by electrical potential is 
the EDL, appreciable reducti
to occur outside the EDL. In addition, with the increase 

Larger β leads to larger velocity near the inner microan- 
nulus wall. The reason is that the electric force

mainly concentrated in 
ons in velocity are observed 

EOF 
ctrokinetic width K, 

ratio β and the normalized pressu
section, we will discuss the influen
on the dimensionless transient EOF velocity. 

For fixed α = 0.4, Figure 2 illustrates the variations of 
normalized EOF velocity at different time (0.02, 0.06, 
0.12 and 0.20) with radius for different inner to outer 
zeta potential ratio β (−1, 0, 1 and 2). It can be seen from 
Figure 2 that for negative inner to outer ze

tio β (see Figure 2(a)), the directions of the EOF ve- 
locity near EDL of two microannulus wall are inverse. 
However, for positive inner to outer zeta potential ratio β 
(see Figures 2(b)-(d)), the directions of the EOF veloc- 
ity within the whole gap of the microannulus are uniform.  

of time, the EOF velocity approaches gradually steady 
status. That is to say, further increase of the time will 
lead to invariable velocity profile. 

For fixed β = 1, Figure 3 shows the variations of nor- 
malized EOF velocity at different time with radius for 
different inner to outer radius ratio α (0.2, 0.4, 0.6 and 
0.8). Similarly, with the increase of time, the EOF veloc- 
ity approaches gradually steady status. In addition, with 
the increase of inner to outer radius ratio α, the gap be- 
tween the two walls of microannulus becomes small, thus 
the time needed to attain the steady status become small. 
The velocity profile changes from plug-like to parabo- 
lic-like shape. 

For fixed α = 0.2, Figures 4(a)-(c) shows the varia- 
tions of normalized EOF velocity at different time with 
different normalized pressure gradient  2,0, 2  . For 
a given dimensionless time, along with the dimension- 
less pressure gradient increased velocity amplitude sec- 
tion bigger. The reason is that dimensionless pressure 
gradient increases mean the driving force of pressure 



R. NA  ET  AL. 54 

 

 

 .20, 0 4, 1, 0oK       Figure 2. Variations of normalized EOF velocity at different time with radius for different . (a) 

β = −1; (b) β = 0; (c) β = 1; (d) β = 2. 
 

 

 20, 1, 1, 0oK       Figure 3. Variations of normalized EOF velocity at different time with radius for different . (a) 

α = 0.2; (b) α = 0.4; (c) α = 0.6; (d) α = 0.8. 
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Figure 4. Variations of normalized EOF velocity at different time with normalized pressure driven flow (K = 20, α = 0.2). (a) 
; (b) 0, 1, 1o     ; (c) 2, 1, 1o      ; (d) 2, 0, 0o     . 2, 1, 1o    

 
increase. So the dimensionless velocity amplitude in- 
creases. In addition, with the increase of time, the EOF 
velocity approaches gradually steady status. Figure 4(d) 
depicts the flow of the fluids only under pressure-driven, 
i.e., no external electroosmotic flow, equivalent to Poi- 
seuille flow. 

Under the different dimensionless parameters, Figures 
2-4 respectively compared the numerical solution with 
the analytical solution in steady state. As can be seen in 
the Figures 2-4, they are essentially coincident. 

4. Conclusions 

A semi-analytical solution of the transient mixed EOF/ 
PDF of Newtonian fluids through a microannulus under 
the Debye-Hückel approximation is presented in this 
work. The solution involves analytically solving the lin- 
earized Poisson-Boltzmann equation and Navier-Stokes 
equation. The results show that the velocity profiles de- 
pend greatly on the non-dimensional electrokinetic width 
K, the inner to outer radius ratio α, the inner to outer wall 
zeta potential ratio β and the normalized pressure gradi- 
ent Ω. With the numerical computation of inverse La- 

place transform, the following conclusions are drawn: 
1) The inner to outer wall zeta potential ratio β deter- 

mines the direction and magnitude of EOF velocity. 
Negative β leads to the inverse directions of the EOF 
velocity near EDL of two microannulus wall and vice 
versa. Larger β leads to larger velocity near the inner 
microannulus wall. 

2) With the increase of inner to outer radius ratio α, the 
time needed to attain the steady status become less. 

3) For a given dimensionless time, along with the di- 
mensionless pressure gradient increased, velocity ampli- 
tude section becomes bigger. 

The transient evolution of the velocity profiles pro- 
vides a detail insight of the flow characteristic of this 
flow configuration. 
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