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ABSTRACT 

A rotating liquid film reactor (RLFR) is a device of two coaxial rotating conical cylinders with the inner cone rotating 
and the outer one stationary. A complete mathematical model for the flow between the conical cylinders is built and a 
dimensional analysis is carried out. It is proved that at each point of the flow field the dimensionless pressure and ve- 
locity of the flow are determined by parameters: Reynolds number (Re), aspect ratio (Γ), radius ratio (η) and wall incli- 
nation angle (α). Furthermore, a sufficient and a necessary condition are derived for mechanical similarity between 
RLFR and a manufacturing equipment being geometrically similar to RLFR. Finally, a numerical simulation for the 
distribution of pressure and velocity is performed. The results may provide a theoretical basis for experiment method 
and numerical simulation of the flow in a RLFR-like device. 
 
Keywords: Rotating Liquid Film Reactor (RLFR); Coaxial Rotating Conical Cylinder; Mechanical Similarity; 

Reynolds Number; Dimensional Analysis 

1. Introduction 

The viscous flow between concentric rotating cylinders, 
called Taylor-Couette flow (TCF) [1], has been studied 
by numerous research workers for over 300 years (see [2] 
and the references therein). This is a classical system to 
investigate properties of flow driven by rotation. So far, 
an abundance of experimental and numerical results on 
TCF are available. 

Recently, another configuration related to rotating 
body has aroused the interest of researchers. A few che- 
mists have constructed a precipitation reactor, called ro- 
tating liquid film reactor, which is used as a reactor to 
prepare new functional nano-particles. It is found that, 
compared with conventional precipitation reactors, the 
particles produced in the RLFR are smaller in size and 
narrower in size distribution [3]. The RLFR consists of 
two coaxial conical cylinders with the inner cone rotating 
and the outer one stationary, as displayed in Figure 1. 
The walls of cones are parallel giving a constant width of 
the gap for RLFR. The gap between two cones is filled 
with reactants which are usually considered as a viscous 
incompressible fluid. In order to understand the effect of 
the RLFR on precipitation, it is necessary to investigate 
the properties of the flow in the gap. This can be done by 
experimental and numerical simulation. However, the pro-  

perties of the fluid flow depend on many parameters, e.g. 
  (rotor’s angular velocity),   (viscosity), H (cone’s 
height),   (inclination angle of the cone), 1  (bottom 
radius of the inner cone), 2  ( bottom radius of the 
outer cone). In order to reduce the dimension of the 
problem, it is necessary to conduct a dimensional analy-
sis for this problem. The dimensional analysis is also a 
basis for experimental and numerical simulation. More-
over, the RLFR is very tiny, compared with the manu-
facturing equipment. The reactor has a height of 17 mm, 
upper diameter of 40.8 mm, bottom diameter of 50 mm 
and inclination angle of 75 deg. The gap width can be 
adjusted in the range of 0.1 mm - 0.5 mm by moving the 
stator (outer cone). The rotor (inner cone) can rotate at 
variable speeds up to 5000 rpm by a adjustable-speed 
motor. One may ask that, to what extent, the flow prop-
erties obtained by experimental and numerical simulation 
for the RLFR could reflect that of the real flow in manu-
facturing equipment. This is a problem of mechanical 
similarity. Try to reduce the dimension and to derive 
mechanical similarity of this problem are the motivations 
of our paper. As far as we know, there is no paper deal-
ing with this problem. 

R
R

So far, the studies of the flow in RLFR have not been 
given due attention. However, for the upside down de- 
vice of Figure 1, the properties of the flow in the gap  
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(a) 

 
(b) 

Figure 1. The sketch of the coaxially rotating liquid film 
reactor. 
 
with the inner one rotating and the outer one at rest have 
been experimentally studied by Wimmer [4,5] and nu- 
merically by Noui-Mehidi et al. [6,7], Xu et al. [8,9] and 
Li et al. [10]. In [4,5] Wimmer studied the stability of 
basic flow and the transition to Taylor vortices, as well as 
the occurrence of Taylor vortex at different geometries. 
Noui-Mehidi et al. [6,7] investigated the effect of wall 
alignment on the flow and the stability of the helical flow, 
as well as the transition to turbulence. Xu et al. [8] stu- 
died the dependence of the velocity and the pressure 
magnitude on the cone inclination. In [9] Xu et al. 
showed that the behavior of the flow is dominated by a 
competition between the meridional flow and the radial 
flow. Li et al. [10] discussed the local maximum value of 
velocity and the local maximum of pressure, as well as 
the transition to Taylor vortices. 

The paper is organized as follows: Mathematical for- 
mulation is given Section 2. Section 3 and 4 are devoted 
to dimensional analysis and mechanical similarity analy- 
sis, respectively. A numerical simulation for the pressure 
and the velocity is implemented in Section 5. Finally, the 
conclusions and some discussion are made in Section 6. 

2. Mathematical Formulation 

Consider the configuration in Figure 1 in which the inner 
cone and the outer one have the same inclination angle 
 . The gap between two cones is filled with a viscous 

incompressible fluid. The inner cone rotates at angular 
velocity   and the outer one is at rest. It is assumed 
that the top and the bottom end plate are rigid and the 
boundary condition at the cone side is no-slip. Then the 
governing equations with the initial and the boundary 
conditions are as follows: 

1
,t P


0       u u u u u       (1) 

  
0 0

0 0, , , , ,
t t t t x y z p p x y z
 

 u u      (2) 

top bottom
0

 
 u u                     (3) 

1 2
, 0

 
 u                      (4) 

where , , pu  and  denote velocity, density, pressure 
and kinematic viscosity of the fluid, respectively.  

top bottom 1 2

v

d, , an     denote the top end plate, the bot- 
tom end plate, inner and outer cone side, respectively. 
  is the angular velocity of the cones. We set Cartesian 
coordinate system as in Figure 1. 

Let z  be the unit vector along axes of the 
cylindrical coordinate system, then with  

r r z z

, andr e

u 

e e

u u  eu e e  Equation (1) expressed in cylin-
drical coordinates are as follows: 
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 (the continuity equation) (8) 

where 
2 2

2 2 2
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The initial and the boundary conditions are presented 
as follows: 

        
 

0

0
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0

r zu

p p
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





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   
1 2 1 22

1

, ,

1 1

0

cot .

r zu u u

u r z R z



 
   



  

    
          (10) 

3. Dimensional Analysis of the Model 

Consider the initial and boundary value problem (5) - (10) 
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by using the following dimensionless quantities 

2 1 1

2 2
1 1 1

1
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Equations (5)-(8), by removing “*”, can be nondi- 
mensionalized into the following ones: 

2

2 2

1 2Du v p u v
u

Dt r r Re r r 
           
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 (the continuity equation) (14) 

where 
2 2
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   
    

 
   

   
   

2

2z  

and 1dR
Re




  (the Reynolds number). 

By removing “*” the dimensionless initial and boun- 
ary conditions (9) and (10) resume to following forms: 
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1
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R
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1 2,
0

 
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with  0, .z H d  The dimensionless form of boundary 
condition at the top and bottom end plate remains as 

   
top bottom

, , , , 0u v w u v w
 

  .       (17) 

Furthermore, we have 

1 2cot cotR z r R z      

thus 1 2cot cot
R R

z r z
d d

       . 

Removing “*” we have 1 2cot cot
R R

z r z
d d

     . 

The behavior of fluid in the RLFR is governed by the 
Equations (11)-(14) with the initial and the boundary 
conditions (15)-(17). The solving region is: 
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the dimensionless solving region becomes: 
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 as 

 

and the boundary conditions (16) can be written

1 1 2 2, ,

1
1 cot ,v z u v w

1 2
0.

 
     


      (18) 

itions, According to the symmetry of the boundary cond
the pressure and the velocity of the flow are  -inde- 
pendent and together with the above dimensi
analysis the solution of the problem has the following 
de

onless 

pendencies: 

 
 

, , , , , , ,

, , , , , , .

t r z Re

p p t r z Re

  
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 

 
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where   is the so called aspect ratio. Hence we obtain 
the following theorem: 

Theorem 1 Let be the solut he initial 
and boundary value pr  (11)-(17), then at any time 

nd
less pa  Reynolds 

nu

and pu  
oblem

nsion
ct ratio 

ion of t

point a  each point of the flow field, and pu  are de-
termined by the dime rameters:

mber (Re), aspe   , radius ratio    and 
cone inclination angle   . 

4. Mechanical Similarity Analysis 

We all know that the size of FR in laboratory is very 
tiny, compared with that of th

RL
e manufacturing equipment 

lly similar to 
 whether the 

(i.e., the actual object), which is geometrica
RLFR. Therefore, one obvious question is
data obtained by experimental and numerical simulation 
for the flow in RLFR can characterize the properties of 
real flow in the actual object. That is the question we like 
to answer in this section. 

We now consider the necessary condition for me- 
chanical similarity of two flows. Assuming that there are 
two flows with dimensionless velocity  , ,i i i iu v wu  
and dimensionless pressure , as well as
di

ip  corresponding 
mensionless parameters: , ,i i iRe   and i , where 

1i   stands for the first flow and 2i   the second one. 
We suppose that the two flows have mech  
rity, i.e. 

1 2 1,

anical simila-

2p p   u u

where, iu  and ip  satisfy the dimensionless Equations 
(11)-(14) with th undary condition (16)-(17). In order 
to ensure that two solutions are equal, the solving re-
gio should be the same one, which leads to  

e bo

n D  

1 2 1 2 1 2, and        . 
From iu  and ip  satisfying Equation (13), we obtain 
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Subtra ing tw  equations and taking account of ct o  

, we have 1 2w w 1
1 2

1 1
0w

Re Re

 
   

 
. Suppose  

 in D, s to 

1 2Re  we have 1 0w  . With the zero-boundary 
ndition of 0w   and a result of partial differential  

Re
co
equation

1

ai, we obt which leadn 0w 1

1 0
p

z





. So it follows 

the c

the necessa

that the

ous

 pressure 1p is independent 

of z . Due to hange of centrifugal forces in the 
z -direction, this is obvi ly not the fact, hence 

2e . Summarizing foregoing analysis, we obtain 

ry condition for the mechanical similarity of 
the two flows as following: 

1 2 1 2 1 2 1 2, , and .Re Re

1 RRe 

          

Moreover, with the uniqueness of the solution the suf- 
ficient condition for mechanical similarity of the two 
flows is at hand. Now we formulate our results in fol- 
lowing theorem: 

Theorem 2 Assuming that we have two flows with pa- 
rameters , ,i i iRe   and  1,2i i  , then the neces- 
sary condition for mechanical similarity of the two flows 
is: 

1 2 1 2 1 2 1 2, , and .Re Re           

Moreover, if the Equations (11)-(14) have unique so- 
lution, the sufficient condition for mechanical similarity 
of the two flows is: 

5. A Numerical Simulation of Pressure and 
Velocity Distribution 

The nonlinear and the time dependent Equation (1) to- 
l  

1 2 1 2 1 2 1 2, , a

The initial conditions for the two flows are the same,

The boundary conditions for two flows are the same.

Re Re





 

nd ,        

gether with the boundary conditions (3)-(4) and initia
conditions 

0 0
0

t t
p

 
  y  

 m

u  are integrated numericall

using the finite volumes method. For the convection 
terms in equations, a second-order upwind scheme is 
used to interpolate the face values of the various quanti-
ties from the cell center values. Central difference quo-
tient which is always second-order accurate is used for 
the diffusion terms. The temporal discretization involves 
integrating all the terms in the differential equations with 
a time step t . The integration of the transient terms is 
implicit by using a second-order formulation. The SIM- 
PLE algorithm is used to link pressure and velocity. The 
discretized equations are then solved sequentially using a 
segregated solver. For the justification of the numerical 

method, one ay refer to [8]. 
From Sections 3 and 4, we know that the distribution 

of the pressure and the velocity of the flow depend on 
, ,Re  and  . In this section, we have chosen 
12.5, 82 , 0.8     and 12.5,112.5,192.5Re  as 

examples to calculate the distribution of pressure and 
ve

bution of es
ters of the system. The d n of the pressure a

e top end 
pl

locity as well as the streamline of the flows. 
Figure 2 illustrates the numerical results of the distri- 

 the pr sure and the velocity for some parame- 
istributio nd 

the velocity is calculated along a line from the midpoint 
of the bottom end plate to the midpoint of th

ate in the xoy -plane for 0x  . In cylindrical coordi- 
nate system, the line is given by  

   1
cot , 0, 0,

2 1
r z z

  



    


. 

It is clear that the distribution curves of the pressure 
and the velocity are approximately a straight line at 

12.5Re  . In this case the streamline of the flow is given 
in Figure 3(a), which indicates that the basic flow is a 
3-dimensional flow for small Reynolds number. The ba-
si

tuation al  

c flow becomes unstable and the first pair Taylor vortex 
appears at about Re = 112.5, corresponding a local fluc-

ong the distribution curve of the pressure and 
 

 
(a) 

 
(b) 

Figure 2. (a) and (b) separately illustrate the distribution of 
pressure and velocity along the middle line marked in the 
same figure for  and  . , . ,   12 5 0 8 82  

. , . , . ,Re 12 5 112 5 192 5  where  1 22 2 2u u v ω   . 
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(a)                 (b)                   (c) 

Figure 3. Front view of streamlines of the flow for 
. , . 12 5 0 8   and , (a) at Re = 12.5 Taylor vor- 

ed; (b) at 112.5 the first Taylor vortex
appears; air
of vortices. 

the velocity ne ottom

the whole distribution curves of the pressure

uid film reactor (RLFR) is
presented. It is proved that at each point of the flow field 

e and velocity is 

 82
 Re = tex is not form  

s  (c) at Re = 192.5 the annulus is filled with six-p

 
ar the b  end plate (see: Figure 2 and 

Figure 3(b)). From Figure 3(c) we see that the gap is 
filled with six-pairs of vortices at about 192.5Re  , and 
n this case i  

and the velocity are fluctuant. 

6. Conclusions and Discussion 

In this work dimensional and mechanical similarity ana- 
lysis for the flow in rotating liq  

the dimensionless quantity of pressur
completely determined by parameters: , ,Re   and  . 
Moreover, between RLFR and a manufacturing equip-
ment being geometrically similar to RLFR, a necessary 
condition and a sufficient condition for mechanical simi- 
larity are derived. Finally, as examples, numerical simu- 
lation for some parameters is implemented. The distribu- 
tion of pressure for 12.5Re   in Figure 2(a) looks like 
a horizontal straight line, and the actual calculation result 
is not the case. The reason is that the pressure amplitude 
for 192.5Re   is much larger than the one for 

12.5Re  , and the pressure in this figure is nondimen-
sionalized by the largest pressure. 

It is showed in [3] that increasing the speed of the ro- 
tor    in the RLFR or increasing the rotor-stator gap 
 d lted in a decrease in particle size and narrower 
particle size distribution. The experiment in [3] also sug-
ge

 resu

t
ec

sted that the turbulence had big effect on particle size 
and par icle size distribution. The turbulent effects were 
d tly related to   and d . There was no dis- cussion 
on the effects of parameters 1, ,
ir

H R  and 2R . 
The results in this paper imply that the particle size 

and the particle size distribution depend not only on   
and d  (included in Re ), but also on parameters ,   
and  . How the particle siz  and particle size distribu- 
tio

e
n depend on ,   and   is an interesting problem 

which is worth studying both experimentally and nu- 

merically. Moreover, our analysis reveals that   and 
d  are not indep ent, and they may substitute each 
other, at least from qualitative point of view. This asser-
tion requires experimental verification. 

The results obtained in this paper provide a theoretical 
basis for further study of the reactor by experimental and 
numerical simulation. 

end
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