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ABSTRACT 

The problem of a disk rotating in a viscous fluid has been investigated. The disk is accelerated with angular velocity 
proportional to time. Employing suitable similarity transformations the governing partial differential equations are 
transformed in to ordinary differential form. The resulting equations are solved numerically using SOR method and 
Simpson’s (1/3) rule. The results have been improved by using Richardson’s extrapolation. The effect of the non-di- 
mensional parameter s which measures unsteadiness is observed on velocity components, skin friction coefficient and 
torque of the disk. 
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1. Introduction 

The flow of an incompressible viscous fluid past an infi- 
nitely rotating disk was first studied by Von Karman [1] 
who reduced the necessary Navier-Stokes equations to 
self-similar form by means of some transformations and 
derived approximate solutions. Different physical situa- 
tions were studied in this area by Dolidge [2], Sparrow & 
Gregg [3] and Benton [4]. Watson et al. [5] considered 
the flow past a decelerating porous rotating disk and they 
studied the effects of time dependent suction or injection 
velocity on the flow of a viscous fluid. Watson et al. [6] 
considered the two dimensional channel flow symmetri- 
cally driven by accelerating walls. Ariel [7] studied the 
problem of steady laminar flow of a second grade fluid 
near a rotating disk. The motion of an electrically con- 
ducting fluid film squeezed between two parallel disks in 
the presence of a transverse magnetic field was studied 
by Hamza [8]. MHD flow due to non coaxial rotations of 
an accelerated disk and a fluid at infinity was analyzed 
by Asghar et al. [9]. 

Unsteady flows are of importance from the practical 
point of view and full unsteady Navier-Stokes equations 
with all the unsteady, nonlinear and viscous terms are 
difficult to solve whereas exact solutions are rare. How- 
ever, similarity solution to the governing equations is of  

special interest in case of fluid flow along a rotating disk. 
Wang [10] studied a viscous fluid between two parallel 
plates, which are being squeezed or separated with nor- 

mal velocity proportional to   1 2
1 t   and found simi- 

larity solutions of the unsteady Navier-Stocks equations. 
Ishizawa [11] derived a similarity solution to the case of 
the unsteady laminar flow between two parallel disks. 
Pop [12] investigated the problem of unsteady flow past 
a wall which starts impulsively to stretch from rest. 
Nazar et al. [13] investigated unsteady boundary layer 
flow due to a rotating fluid. Xu et al. [14] considered un- 
steady three dimensional MHD flow and heat transfer in 
boundary layer over an impulsively stretching plate. 

Watson and Wang [15] solved the problem for decal- 
eration of a rotating disk in a viscous fluid for the range 

20 0s   . They also viewed that similarity solution do 
not exist for  which corresponds to the accelerated 
rotating disk. In the present work, the numerical solu- 
tions have been found for an accelerated 

0s 

 0s 
0

 rotat- 
ing disk in a viscous fluid. The case  corresponds 
to steady rotation of a disk in a fluid. 

s 

2. Mathematical Analysis 

The fluid flow is unsteady and incompressible. u, v, w are 
velocity components in cylindrical polar coordinates (r, θ,  *Corresponding author. 
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z). The z-axis is the axis of rotation of the disk, with 
 on the surface of the disk. The following similar- 

ity transformations are used: 
0z 

       

 
 

     

0 0

1 2

0 0
1 2

, ,
1 1

2
and ,

11

r r
u f v g

t t

w f p
tt

 
 

 
P 



  
 

   
 



   (1) 

where 
 

1 2

0
1 2

1

z

t


 
   

  
 is the dimensionless va- 

riable,   is non dimensional constant and 0  is a 
positive constant. When 0 

0

, the problem reduces to 
the case of the steady rotation of a disk in a fluid. We 
shall study the case when   . By using Equation (1), 
Navier-Stokes equations reduce to a set of nonlinear or- 
dinary differential equations 

2 1
2

2
,f f f g f f s f f         

 

       (2) 

 

1
2 2

2

2 4 .

,g fg f g s g g

P f ff s f f





       


      


          (3) 

where prime denote differentiation with respect to   and 

0s   is non-dimensional parameter which measures 
unsteadiness. 

The associated boundary conditions are 

00 : 0, 0, 1,

: 0, 0,

f f g P

f g




    
   

P
        (5) 

Let f q                     (6) 

The Equations (2) and (3) become: 

2 2 1
2

2
q q f g q s q q      

 
,        (7) 

1
2 2

2
g fg qg s g g     

 

          (8) 

The boundary conditions (5) take the form: 

0 : 0, 0, 1

: 0, 0

f q g

q g



   
  

           (9) 

In order to obtain the numerical solutions of nonlinear 
ordinary differential Equations (7) and (8), we approxi- 
mate these equations by central difference approximation 
at a typical point n   of the interval , we obtain  0,

  2
1

2 2
1

1 2
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1 0
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n n n

n n n
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ns hf g h s q g

h
s hf g


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



        
  

       
  

   (11) 

where h denotes a grid size and Equation (6) is integrated 
numerically. Also, the symbols used denote  

   ,n n nf f g g n    and  nq q n . For computa- 
tional purpose, we shall replace the interval  0,  by 
 0,  where β is a sufficiently large. 

3. Computational Procedure 

Finite difference Equations (10) and (11) and the first 
order ordinary differential Equation (6) are solved simul- 
taneously by using SOR method, Smith [16] and Simp- 
son’s (1/3) rule, Gerald [17] with the formula given in 
Milne [18] respectively subject to the appropriate bound- 
ary conditions. 

The order of the sequence of iterations is as follows: 
1) The Equations (10) and (11) for the solution of q 

and g are solved subject to the following boundary con- 
ditions: 

0, 1 when 0;

0, 0 when .

q g

q g




  
  

 

2) For the solution of f , we use the computed values 
q from above step in to Equation (6) and integrate by 
Simpson’s (1/3) rule subject to the following initial con- 
ditions: 

0 when 0.f    

3) The optimum value of the relaxation parameter 

opt  is estimated, to accelerate the convergence of the 
SOR method. 

4) The SOR procedure is terminated when the follow- 
ing criterion is satisfied for each of q and g: 

1 6max 10n n
i iU U    

where n denotes the number of iterations and  stands 
for each of  and 

U
q g . 

The above steps 1 to 4 are repeated for higher grid lev- 
els 2h  and 4h . The SOR procedure gives the solu- 
tion of f   and g  of order of accuracy  2O h  due to 
second order finite differences used for finite-difference 
equations. While, the Simpson’s (1/3) rule gives the or- 
der of accuracy  5O h  in the solution of f. Higher order 
accuracy  6O h  on the basis of above solutions is 
achieved by using Richardson’s extrapolation, Burden 
[19]. 

ns hf q h s q q

h
s hf q h g









        
  

        
  

   (10) 
4. Numerical Results and Discussion 

The numerical results have been found for the values of  
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.0 1-3. Figure 1 shows the axial velocity distribution  f  . 
Figure 2 elucidates the circumferential velocity distribu- 
tion  g  . The radial velocity distribution  f   has 
been depicted in Figure 3. It is observed that all the ve- 
locity components decrease by increasing s. 

parameter s for range . In order to check the 
accuracy of the results, calculation have been made on 
three different grid sizes namely  and 
0.0125. The results for skin friction coefficient 

0 3s 

0.05,0.025h 
 0f   

and torque  0g  are presented in Table 1. It is ob- 
served from the values given in the Table No. 1 that skin 
friction coefficient  0f   decreases with increasing val- 
ues of s. 

The torque T experienced by the disk of radius R, may 
 

Table 1. Data of skin friction coefficient & torque. 

Also, the torque experienced by the disk  0g  be- 
comes more negative with increasing values of s > 0. It 
means that rotating disk experiences increasing resis- 
tance with increasing values of s. 

s  0f    0g  

0.5 
1.0 
1.5 
2.0 
2.5 
3.0 

0.357811 
0.258781 
0.184577 
0.136933 
0.105831 
0.090728 

−0.785213 
−0.948995 
−1.101076 
−1.238956 
−1.364260 
−1.435172 

It is imperative to describe the effect of the parameter 
s on the flow pattern. So the graphical results of the ve- 
locity components have been exhibited in the Figures 
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Figure 1. Graph of the axial velocity distribution  f   for different values of s. 
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Figure 2. Graph of the circumferential velocity  g   for different values of s. 
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Figure 3. Graph of radial velocity distribution  f   for different values of s. 

 
be written as: 
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For positive values of s, the rotating disk experiences a 
resistance, hence  0g  is negative as shown in Table 1. 
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