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ABSTRACT 

The Lambert W function has its origin traced back 250 years, but it’s just been in the past several decades when some of 
the real usefulness of the function has been brought to the attention of the scientific community. 
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1. Introduction 

The Lambert W function, named after Johann Heinrich 
Lambert [1], is a standard function in both Mathematica, 
where it’s called Product  Log x , and in Maple, where 
you can use both Lambert  W x  or Lambert  W 0, x . 
The zero in this latter expression denotes the principal 
branch of the inverse of exx . The actual usage of the 
letter W has a rather vague origin. One source attributes 
it to some earlier papers on the subject that wrote the 
standard equation as  using a small w. Pro- 
gramming protocol with Maple then forced the letter to 
be capitalized [2]. Another source [3] attributes the W to 
honor the British mathematician Sir Edward M. Wright 
(famous co-author with G. H. Hardy of An Introduction 
to the Theory of Numbers) who did a lot of pioneering 
work with the function. Finally, Robert Corless and 
David Jeffrey of the University of Western Ontario have 
written, during the past several decades, a number of 
journal articles on the function. Their paper in 1996, in 
collaboration with Gaston Gonnet, David Hare, and Don- 
ald Knuth, was where Lambert’s name got attached to 
the function [2]. It could have been coined the Euler W 
function, since Euler had studied the equation 

eww x

exx   
[4] (although Euler credits Lambert as studying the equa- 
tion first [5]), but they decided Euler had enough items 
attached to his name! 

2. Definition 

The exponential function exy x  is defined for all real  

x, but has a codomain of 
1

y
e


 . This function (Figure  

1(a)) is the product of two elementary functions, each 

defined on the entire real line, and each being one-to-one; 
but the product is not injective. Consequently, if we re- 
strict the domain to , then 1x   exx  will possess an 
inverse, which is a function, and it’s this function that is 
now known as the (principal) Lambert W function (Fig- 
ure 1(b)), written as  W x . An alternative branch for 
W would be defined for that portion of exx  when 

1x   . We won’t consider that situation in this article. 
Several function values of W are easy to compute,  

such as    W 1 1, W 0 0e    . 
1

W ln 2 ln
2

    
 

2 ,  

and  W e 1 . The value of  W 1 , known as the 
omega constant, has the approximate value 0.567143. 
The number  W 1  is, in some sense, a distant cousin of 
the golden ratio  , since 1   is a solution to 1 1x x  , 
and  W 1  is the solution to 1 exx  , and 1x   is the 
linear Maclaurin approximation to ex  (Figure 2). Since 
W is the inverse of exx , it follows that  W 1 e  W 1 1  
and that the slope of the curve in Figure 1(b) at the point  

  1, W 1  is .   1W 11 e 0.6381


   

3. Computation 

A natural question is how to compute arbitrary values of 
 W x . One result, from the Lagrange inversion theorem, 

asserts that the Lambert W function has the Taylor series 
expansion [6,7] 

    1

1

W
!

n

n

n

n
,x x

n






                (1) 

which, unfortunately, has a radius of convergence of 
merely 1 e . Since the denominator n! grows rapidly it’s  
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(a) 

 
(b) 

Figure 1. (a) Graph of  xy xe ; (b) Graph of W(x), 


x

e

1
. 

 

 

Figure 2.  and  W 1 1  . 

advantageous to write the series with the coefficients  

defined recursively as  
1

W n
n

n

x c x




  , with  

2

1 1, , 2
1

n

n n

n
c c c n

n




 

1      
. This recursion lends  

itself to easy programming evaluation. Testing this, with 
say a series of 150 terms (which is plenty, considering  

that 
1

x
e

 ), with 
1

ln 2 0.3465736
2

x     , we ob- 

tain a partial sum value of , which dif- 
fers from the exact value of  by 0.0000003. We  

S 0.69314684 
ln 2

also note that 
1

x
e

 , so the use of the series is justified.  

On the other hand, a TI-graphing calculator returns 
“overflow error” if we try to determine , primarily 
since the coefficients grow rapidly. 

 W 1

Suppose that 
1

x
e

  and we wish to compute  W x .  

One possibility is the series 

     
 

 
1

1
W ln ln ln

ln

n

nn
n

x x x a
x






   x     (2) 

where        
1

ln ln
1 S , 1

!

m
n

m

n
m

x
a x n n m

m

       and  

 S ,n k  denotes a Stirling number of the first kind [3]. 
The series (2) is somewhat impractical to use because of 
the difficulty in determining ; it turns out to be 
more useful to employ some standard numerical schemes 
for approximating 

 na x

 W x . 
First, setting  W x y , we need to solve e yy x . 

Defining the function g by   e yg y y  x , we use 
Newton’s method to approximate y in   0g y  . This  

gives 
 
 

2

1

e nyy x 
1

n n
n n

n n

y y
g y y   
 

g y
. To determine  

 W 2

0y
, for example, starting with an initial approximate 

of 0 , after 7 more iterations we get  

8 0.85y 2605502 , which is an excellent approximation 
to  W 2  because  returns 2 on the calculator. If 
x is a relatively small number, then an initial approximate 
of 0 will suffice for the algorithm; but if x is large, then 
ln x can be chosen for 0 . For instance, if 

8
8e

yy

y 10x  , 
choose  0y ln 10 , and after 5 iterations we get W(10) 
≈ 1.745528003. 

Newton’s method is a favorite iteration scheme for 
many because of its simplicity, though the convergence, 
quadratic in general, is typically relatively slow. A faster 
choice is furnished by Halley’s method (of Halley’s 
comet fame), which produces cubic convergence, and 
happens to be the choice implemented by the software 
Maple; this scheme gives [8] 
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 
  1

e
.

2 e
1 e

2 2

n

n

n

y
n

n n y
n ny

n
n

y x
y y

y y x
y

y




 
 

 


 

Employing this gives W(10) ≈ 1.745528003 after 3 it- 
erations. This complex looking scheme is actually what 
you get when you apply Newton’s method to the function  

 
 

g x

g x
 [9]. An alternative root-finding scheme, using  

continued fraction expansion, is described in [10]. 

4. Calculus 

We know that since exy x  is an increasing and dif- 
ferentiable function for all  then its inverse 1x  

 Wy x  is likewise increasing and differentiable for  

all 
1

x
e

  . 

Differentiating this latter equation with respect to y, 
we obtain 

dW d dW
1 e

d d d
y yx

y
x y x

    e ,  

so 

 
   

 
 

 
 

 
W

1
W

1 e 1 e

W e
, 0

1 1 WW 1

y y

x

y
x

y y y

xy
x

y x xx x



  
 

  
   

.
 (3) 

In particular,    
1

W
1 1 2

e
e e

  


1
, and similarly, 

 
 

1
lim W

x e
x

 
   . What about  the right-hand   W 0

side of (3) is indeterminant at , but division of both 
sides of (1) by x and taking the limit as  give  

0x 
0x 

 
0

W
lim 1
x

x

x
 . This yields  

   
 

 
 0 0

W W 1
W 0 lim lim .

1 W 11 Wx x

x x

xx x 
  

  

x
  

For large x, the graph of  W x  bears strong resem- 

blance to ln x , since from (2) we have 
 W

lim 1
lnx

x

x
 ,  

although we have to be careful here because the difference 
 W lnx x  increases without bound as x   [7]. 

The graph of  W x , like that of ln x , is concave down- 
ward for all x since exx  is concave upward. If we dif- 
ferentiate (3), and omit the argument x for brevity, then 

   
   

2 3

22 2

1 W W W W 1 W 2 W W
W

3
1 W 1 W

x x

x x

         
 

W

0.  

Rewriting   as 
 

 

2W

3

e W 2

1 W

   




2

 puts this into  

the form which fits the general case for  [5]. In 
fact, from this form, we readily see that there is a point of 
inflection on the curve when , which actually 
falls on the other branch of the W function. 

 W n

W  

Continuing along the calculus vein, we should exam- 
ine, if possible, the integral of  W x . To this end, recall 
that  Wy x  iff e yy x . Thus, 

        

2

d d
W d 1 W

W W

e e dy y

y y y
x x y x x

x x

y y y

  


   

  


 

and integrating this last integral by parts, we obtain  

1
1x y

y

 
  

 
, which now gives 

     
1

d W 1 .
W

W x x x x C
x

 
    

 
       (4) 

In particular, the area of the region bounded by the 
curve  W x , the x-axis, and the line x e  is, there- 
fore, 

     

     

0 0

0

1
W d W 1

W

1
1 1 1 lim W 1 1.

W

e
e

x x x x
x

e e


 


 
   

  

 
        

  


 

We note this result agrees with evaluating the integral 
via inverse functions [11], because then 

     
 W

0 0

W d W 0 W 0 e d 1
xe

xx x e e x x e .       

Other integrals, involving functions containing W, can 
be computed, some just with a special change of variable 
[6]. For instance,  

       2W 21 1
W d e W W

2 2
x 1

2
x x x x x C             . 

The function  Wx x is concave up, connecting  0,0   

and  ,e e , hence its area    2

0

W d 3 1 8
e

x x x e
 

  
 
  

is less than 2

0

d
e

x x e 2 . Similarly we find  

 
   2W 2

0
0

1
d e 1 2 W 3

W 4

e exx
4x x e

x
     , and this is  

greater than 2 2e  since  Wx x  is increasing and 
concave down from  0,1  to   . ,e e
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5. Applications 

An article appeared in the February, 2000, issue of FO- 
CUS, the newsletter of the Mathematical Association of 
America, touting the merits of the W function as a can- 
didate for a new elementary function to be studied in 
schools and to be included in textbooks [12]. The ration- 
ale for this was that not only is W a radically different 
function from the traditional elementary functions of poly- 
nomials, rationals, exponentials, logarithmics, and trigo- 
nometrics, but its calculus provides a wealth of interest- 
ing, and powerful, applications. A number of these are 
mentioned in a paper by Corless et al., where they de- 
scribe such applications as enumeration of trees, com- 
bustion, enzyme kinetics, linear delay equations, popula- 
tion growth, spread of disease, and the analysis of algo- 
rithms [3]. An article [13] by Packel and Yuen shows 
that W is instrumental in determining the maximum 
range for a projectile with linear resistance (problems of 
this type have certainly been important for several thou- 
sand years). The solution for the current in a series di- 
ode/resistor circuit can also be written in terms of W. 
Applications of W are found in complex cases involving 
atomic, nuclear, and optical physics. The first physics 
problem to be solved explicitly in terms of W was one in 
which the exchange forces between two nuclei within the 
hydrogen molecular ion  2 H  were calculated [14]. 
Several other cases involve generalized Gaussian noise, 
solar winds, black holes, general relativity, quantum chro-
modynamics, fuel consumption, Stirling’s formula for n!, 
cardiorespiratory control, water-wave heights in ocean- 
ography, enumeration of trees in combinatorics, and sta- 
tistical mechanics [5,15-17]. A really interesting analog 
of  W x  is given by Dan Kalman [18], where he de- 
fines a function glog, similar to W, in that glog is the  

inverse to 
ex

x
. The glog function bears a strong resem- 

blance to W, possessing similar properties and useful 
common applications, such as solving exponential-linear 
equations. The two functions are intimately related by  

  W log 1 x g x    and    log W 1g x x   . 

In the remainder of this article I wish to focus on a cou- 
ple of applications dealing with ordinary algebraic equa- 
tion solving. 

6. Algebra 

In a high-school precalculus course one might be pre- 
sented with the elementary equation  to solve. 
Now, instead, let’s solve a similar equation 

2 10x 
2 10x x , 

which means that it won’t suffice to begin by taking the 
logarithm of both sides. Instead, we proceed as follows: 

ln 2 In2ln 2
2 10 1 10 2 10 e In2e

10
x x xx x x x  
        x

Since the right-hand side of this last equation is of the
form 

 
 iff  Wz y ,ezz , and since we know ezy z   

then  ln 2 W ln 2 10x   , or 
1 1

W ln 2
2

x
   


.  
ln 10 


 Kalman’s glog func we can solve Using tion 2 10x x   

and get 
1 10 

log
log 2 log 2

x g  
 

. Since  

1 1
ln 2 0.069

10 e
    we can to approximate  use (1) 

1
W ln 2

10

 


  and ge

x = 0.1077550 07755015 = 
10x. 

t −0.0746900848, so  

149. Checking, we find 2x = 1.

The equation 2 10x x  is a special case of a more 
general setting bx ca dx e   , where we assume the base 
a 0  and where b nor d equals zero. The sub- 

stitution 

 neither 
be

t bx
d

  n ives    the  g

,bx c t be d c

be
t    td be tdda a a d e e

b b b b
    
       

 
 

 

and, thus,  

lne .
be be be

c c ct td d dtd b b t t aa a a ta t
b td d

     
      

Multiplication of both sides by  gives  

a a 

ln a

    lnln ln eda a t a , which now has th
be

c t ab

d


e form 

w , soeu w   Ww u  , or ln W ln
be

c
db

t a a a
 

       

ce, 

d 
and, hen

1
W ln

ln

be
c

dbe b
,t a a

d a d

 
      

 
 

that is, 

bx

1
ln .

ln

be
c

d
b e

x W a a
b a d d

 
    

 
 

Another interesting algebraic application involves the  

infinite tower of exponents 
xxx


, which will be denoted  
by  T x . To solve the particular equation  T 2x   
one might argue that this is ivalent to  T 2xx equ  , in 

2whi e we have 2xch cas  , so 2x  , whi  
correct solution to 

ch is the
 T 2.x   But what abo  3, 

T(x) = 4, or T(x) = y. as n that as y in- 
creases, so does x. B  T 4x  , we can write this 
as  T 4xx

ut T(x) =
 

t with 
It stands to 

u
re o

 , or 4 4x  , so 2x   again! Something 
isn’t right. 

The em lie t  the do f T. We find in [19] 
that the in f expone only defined (i.e.,  

probl s wi h main o
finite tower o nts is 
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its interval of convergence) for 
1

e
e

e
e x  , or ap- 

proximately 0.065988 1.444667x  . So if x is selected 
from this interval, what is  T x ? If we set  T x y  
then 

   
 

T lnln e W lnx y x ln

W ln
ln .

ln

x y x x x    y

x
y x y

x




   



. 

Note also that  when1y   1x  , and the above ex-
pression for y gives a function continuous at 1x  ,  

since  
0

lim W 1
u

u


   . Hence if 
1

u , e
e

e
e x  , then 

1
lne x    , so 

1
y e  , and this 

e e
is why the equa- 

tion  T 2x    is solvable, but T 4x  is not. 
therefore  

in 

The graph of T is  an increasing function with 

doma
1

, ee


 and range 
e

1
,e

e
 
e

 
  .  passes  

th


rough the two obvious points of  

It also

 1 1
, 1 .567143W 

    and . What else can  ,0  

bility, we have from 
(3), 

e e   
we deduce? Checking for differentia

  1,1

 

   
   

   
 

 
   

2

2

2

T x

W ln 1 1
ln W ln

ln 1 W ln

ln
W ln W ln

1 W lnln

W ln 1
,

ln 1 ln T

x
x x

x xx x

x
x x

xx x

x

x x x x

                  

 


 

 
       

 

and since the limit of this expression is 1 as , then 
, and hence  is never 0, so ways 

strictly increasing. The owing small ta le 1) 

Altern ul



1x 
T is al

ble (Tab
 T 1 1  T
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This complex expression appears to yield negative 
values for all 0.394x   and positive values for all 

, and 0.394x   0.394y 0 . Hence, we have an in- 
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