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Abstract 
 
Mathematical statement of elastodynamic contact problem for cracked body with considering unilateral re-
strictions and friction of the crack faces is done in classical and weak forms. Different variational formula-
tions of unilateral contact problems with friction based on boundary variational principle are considered. 
Nonsmooth optimization algorithms of Udzawa’s type for solution of unilateral contact problem with friction 
have been developed. Convergence of the proposed algorithms has been studied numerically. 
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1. Introduction 
 
The mathematical formulation of the elastodynamic 
problem for a cracked body, that takes into account the 
possibility of crack edge contact interaction and the for-
mation of areas with close contact, adhesion and sliding, 
was presented first in [1]. The algorithm for the solution 
of this problem was elaborated in [2] and is based on a 
theory of subdifferentional functionals and the finding of 
their saddle points. Many examples of the crack faces 
contact interaction and friction influence on the fracture 
mechanics criterions have been considered in the book 
by Guz and Zozulya [3] and review papers [4-6]. In these 
cases the contact area is “a priori” unknown and the uni-
lateral conditions have to be imposed on the relative dis-
placements and the mutual tractions. The unilateral con-
tact restriction with friction can be written as an inequal-
ity for the displacement and traction vectors. As a result 
a complete set of boundary conditions at crack faces is 
written as a system of equations and inequalities. The 
presence of inequality type boundary conditions implies 
the boundary problems to be nonlinear, which requires 
the investigation of corresponding boundary value prob-
lems.  

Mathematical formulation of the problem of crack 
faces contact interaction in the dynamic case has bee 
done in [3-5,7]. Since the constraints concern boundary 
variables only, it is natural to look for a numerical solu-

tion by means of boundary integral equation (BIE) 
method. Approach is based on use of fundamental solu-
tions. In [8] BIE formulation via energy method is based 
on boundary min-max principle, i.e., a principle ex-
pressed in terms of the boundary unknowns. First time 
boundary variational formulation of elastodynamic con-
tact a problem with frication was proposed in [2] and 
then was extended and applied to elastodynamic prob-
lems for bodies with cracks with considering unilateral 
frictional contact of the crack faces in Guz and Zozulya 
[3,5]. 

There are many algorithms for unilateral contact 
problems with friction. Because of nonlinearity of the 
problem most of them include discretization and iterative 
procedure to satisfy unilateral constrains. Iterative algo-
rithms of such type in [9,10] are named Uzawa’s type 
algorithms. For the first time Uzawa’s type algorithm 
was proposed in for solution elastodynamic frictional 
contact problem for body with crack in [1]. Then the 
approach was developed and more algorithms were pro-
posed in [2,11-13]. The algorithms are based on saddle 
point finding and projection on the set of unilateral re-
strictions and friction respectively. In [14] it was shown 
that proposed algorithms are convergent and was studies 
rate of convergence. Some mathematical problems re-
lated existence and uniqueness of the problem of unilat-
eral contact problem with friction were studied in 
[7,15,16]. More information related to mathematical for-
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mulation and numerical solution of the unilateral contact 
problems can found in [17,18]. 

The aim of this paper is to present variational formula-
tion of the elastodynamic problem for body with crack 
with considering possibility for unilateral crack faces 
contact interaction with friction. Variational formulation 
of the problem, which is based boundary variational 
principle is presented. Nonsmooth functionals that cor-
respond to unilareral frictional contact conditions are 
constructed. The case of the crack in infinite elastic me-
dia is considered in more details. In order to study con-
vergence of the proposed algorithms, two problems re-
lated to the crack faces contact interaction under action 
of the harmonic tension-compression and shear waves 
have been solved numerically using BIE method.  
 
2. Classical Formulation of the Problem  
 
Let us consider dynamical loading of crack in an infinite 
homogeneous, lineally elastic body. The crack is des- 
cribed by a corresponding oriented middle surface   
since we suppose that only small deformations occur. We 
assume that displacements of body points and their gra-
dients are small.  

In this case in \nR   ( 2,3)n  the differential equa-

tions of equilibrium in displacement may be presented in 
the form 

2 ,ij j i t iA u b u   \nR  x , 

0 1

1

[ , ]

( , ) ( ( , ))n n
i i k

t t t

q t q 

  

x xF
       (1) 

The operator Aij  for an isotropic body has the form  

( )ij ij k k i jA          ,          (2) 

where  and  are Lame constants, 0   and    , 

ij  is a Kronecker’s symbol, i ix     denotes the 

partial derivatives with respect to space, t t     de-

notes the partial derivatives with respect to time. 
Throughout this paper we use the Einstein summation 
convention. 

If the problem is defined on an infinite region, then the 
solution of Equation (1) is uniquely determined by as-
signing displacements and velocity vectors in the initial 
instant of time. Then the initial conditions are 

0 0
´0 0( , )  ( ) , ( , ) ( ),  i i t i iu t u u t v V    x x x x x   (3) 

Additional conditions at the infinity must be satisfied  
1( , ) ( )iu t O rx , 2( , ) ( )ij t O r x  for r   in 

3-D case                (4) 
1( , ) (ln( ))iu t O rx , 1( , ) ( )ij t O r x  for r   

in 2-D case               (5) 

Here r  is the distance in the 3-D and 2-D Euclidian 
spaces respectively. 

The differential operator :ij j iP u p  is called stress 
operator. It transforms the displacements into the trac-
tions. For homogeneous isotropic elastic medium it has 
the forms 

  ij i k ij n k iP n n                (6) 

Here in  are components of the outward unit normal 

vector, n i in    is a derivative in direction of the vec-

tor ( )n x  normal to the surface V . 

The contact forces ( , ) ( , )i it q tq x x e  which arise on 

the cracks edges during the interaction are denoted by 

( , ) ( , ) ( )t t  q x σ x n x              (7) 

where ( , ) ( , )ij i jt t σ x x e e  is the strain tensor; 

( ) ( )i inn x x e , ( ) ( ) ( )i i in n n   x x x ; ( )in x  and 

( )in x  are the normal unit vectors directed to the posi-

tive side of the opposite cracks edges. 
The displacement discontinuity vector characterizes 

mutual displacements of the cracks edges 

( , ) ( , ) ( , )i i iu t u t u t   x x x ,         (8) 

where ( , )iu t x  and ( , )iu t x  are displacements of op-

posite cracks edges. 
Furthermore, we impose the following Signorini con-

straints 

, 0 , ( ) 0 ,n o n n o nu h q u h q       x   (9) 

and Coulomb’s friction law: 

0 , ,n t n t tk q k q                q u q u q  

 x                 (10) 

with ( )τλ   u x q  for x ; the Coulomb’s 

friction coefficient 0k   is here assumed to be con-

stant. 
Here the normal and tangential components of the dis-

placement discontinuity on   are denoted by  

( , ) ( , ) ( , )n i iu t u t n tx x x ,  

( , ) ( , ) ( , ) ( )nt t u t    u x u x x n x ,    (11) 

and the normal and tangential components of the con-
tact forces on   are denoted by 

( , ) ( , ) ( )n i iq t q t nx x x , 

( , ) ( , ) ( , ) ( )nt t q t  q x q x x n x .     (12) 

Classical formulation of the elastodynamic problem 
for body with crack with considering opposite crack 
sides interaction consists in solution of the initial bound-
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ary value problem (1)-(5) with considering Signorini 
contact conditions (9) with friction (10).  

In classical elastodynamics the equations of motion (1) 
and initial conditions (2) must be satisfied exactly (see 
[19]). This means that the components of the displace-
ment vector should be functions of the class 

2.2 1.0( ) ( )nR   C C . Here , ( )k l nR C is a func-
tional space of functions, with k smooth derivatives with 
respect to the space coordinates and l  smooth deriva-
tives with respect to the time. In order to satisfy all the 
equations of elastodynamics in the classical sense, the 
components of the stress-strain state should belong to the 
following functional spaces  

2,2 1,0

1,0 0,0

( ) ( ) , ,

( ) , ( )

n
i ij

n
ij i

u R

R p





   

  

C C

C C
    (13) 

These requirements of classical elastodynamics are 
very stringent. Therefore many important physics and 
engineering problems, in particular problems with uni-
lateral restrictions and friction, have no classical solution. 
For this reason it is necessary to consider “weakened” 
formulations to elastodynamic problems. With such an 
approach it is not necessary to fulfill all the elastody-
namics equations in the classical sense.  

 
3. Variational Formulation of the Problem 

without Contact Conditions  
 
In order to formulate an elastostatic contact problem for 
body with crack in week form we will consider the 
boundary variational principle introduced in [2,5,11,12]. 

In [2,5] it have been shown that in the case if body 
with crack occupied infinite region the boundary varia-
tional functional may be presented in the form  

1
2( , ) ( , ) ( , ) ( , , )

( , ) ( , )

B i j ji

i i

u t u t F t dSdt

p t u t dSdt

  



      



  

 

u p y x x y

y y
 

(14) 

where 0( , ) ( , ) ( , ) ( , )i it p t t t  p x x e p x q x , 0 ( , )tp x  is 

a vector of given loading applied to the crack edges, 
( , )tq x  is a vector of contact forces,. 

The boundary variational functional (14) is smooth 
and Gateaux-differentiable, therefore the following con-
dition of functional minima take place  

( ) 0B  u                (15) 

and the problem of finding minima is equivalent to the 
following integral equation 

( , ) ( , , ) ( , )j ji iu t F t dSdt p t


   x x y y       (16) 

We can represent boundary variational functional (14) 
in the form  

1
2( , ) , ,B 

       u p F u u p u     (17) 

where F  is matrix integral operator defined in (16).  
Then variational formulation of an elastodynamic 

problem for cracked body without unilateral constraints 
(7) and friction (8) is as follows: 

* *

* *

, ( , )

, ( , )

( , ) min { [ , ]}
B

B

B B

Find   such tha t  

 

  

    
u p K u p

u p K u p

u p u p    (18) 

where  

1/2,1 1/2.0

( , )

{ ( ) , ( ), }

B



 

      

K u p

u H p H x
 (19) 

 
4. Nonsmooth Functionals for Unilateral 

Contact Conditions with Friction 
 
In order to formulate boundary conditions in form of 
inequalities (9) and (10) in week form let us consider a 
maximal monotone operators :i i iu p  . For each 

maximal monotone operator  i  may be defined with 

accuracy up to a constant component convex semi-con-
tinuous from below functional ij  such, that i ij   . 

Here  is denoted the subdifferential of the nonsmooth 
functional (see [18] for details).  
 
4.1. Signorini Boundary Conditions in  

Functional Space  
 

Let 1/2,1( )nu  H  and 1/2,0 ( )nq  H  satis- 

fy following conditions 0 ,nu h   0.nq   

0, ( ) 0n nq u h


   , Here ,


   denotes the duality 

pairing between the functional spaces 1/2,0 ( )H  and 
1/2,1( ) H . Then corresponding functional has the 

form  

00 , if
( )

, otherwise
n

n n

u h
u

 
   

          (20) 

The conjugate functional has the form 

0 , if 0
( )

, otherwise
nc

n n

q
q


  

            (21) 

 
4.2. Boundary Conditions with Coulomb  

Friction 
 
Lets 1/2,1 2( ( ))  u H  and 1/2,0 2( ( ))

 q H
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satisfy following conditions if nkq q  then 0 u , 

if nkq q  then     u q  and also 

( ), 0n tkq   
   q u . Here ,


   denotes the 

duality pairing between the functional spaces 
1/2,1 2( ( ))H  and 1/2,0 2( ( )) H . Then corre-

sponding functional has the form  

( ) ,    
   u q u            (22) 

The conjugate functional has the form 

0 , if
( )

, otherwise
c nkq
 

 
  



q
q           (23) 

 
4.3. Signorini Boundary Conditions with  

Friction 
 
These boundary conditions may be considered as com-
bination of the previously considered boundary condi-

tions. Really lets 1/2,1( )nu  H  and 
1/2,0 ( )nq  H  satisfy following conditions 

0nu h  , 0nq  , 0, ( ) 0n nq u h


    and also 

1/2,1 2( ( ))  u H  and 1/2,0 2( ( ))
 q H  sat-

isfy following conditions if nkq q  then 0 u  , 

if nkq q  then t      u q  and also 

( ) 0n tkq   
   q u . We consider functionals 

such that  

, ( ) ( ) ( )n n nu        u u  and 

, ( ) ( ) ( )c c c
n n nq     q q

         
(24) 

These functionals have the form 

0
,

, , if
( )

, otherwise 

t n
n

u h 



       



q u
u  (25) 

,

0 , if 0 ,
( )

, otherwise       
c n n
n

q kq


  
  



q
q       (26) 

 
4.4. Sets of Admissible Displacements and  

Traction for Signorini Boundary Conditions 
with Friction 

 
For variational formulation of the unilateral contact 
problems with friction also are used sets of admissible 
displacements  

, , ( , ) ( , ) ( ) ( )B n B n       K u p K u p K u K u ,  

, ( , ) ( , ) ( )B n B n    K u p K u p K u , 

, ( , ) ( , ) ( ) ( )B B n       K u p K u p K u K u , 

1/2,1
0( ) { ( ) , 0}, , }n nu h t         K u u H x  

              (27) 
1/2,1( ) { ( ) ,

0 for and for , }
t

n t t nk q k q
 

     
       

       

K u u H u

q u q q x
 

and traction  

, , ( ) ( ) ( ) ( )c c
B n T n   K σ K σ K σ K σ ,  

, ( ) ( ) ( )c
B n T n K σ K σ K σ , , ( ) ( ) ( )c

B T  K σ K σ K σ  

1/2,0( ) { ( ) , 0, }c
n nq     K σ σ H x  (28)  

1/2,0( ) { ( ) , , }c
nk p  

     K σ σ H q x  

 
5. Variational Formulation of the Problem 

with Contact and Friction 
 
In order to formulate an elastodynamic contact problem 
for body with crack in variational form we consider 
functional (17) on the set of admissible displacements 
(27) or admissible traction (28).  

In the first case the problem is formulated in the form  

** , ,

* *

( , )( , )

  

( , ) sup inf { ( , )}
B nB

B B

Find  and  such tha t   

  



    
u K u pp K u p

u p

u p u p  (29) 

In the second case the problem is formulated in the 
form  

* *
, ,

* *

( , ) ( , )

  

( , ) inf sup { ( , )}
cB B n

B B

Find  and  such tha t   


    



    
u K u p p K u p

u p

u p u p  (30) 

In order to formulate an elastodynamic contact prob-
lem for body with crack in week form using nonsmooth 
functionals (23) and (24) we will consider the boundary 
variational principle in the form  

* *

* *
, , , ,

, ( , )

  

( , ) inf sup { ( , )}
B

B n B n

Find  and  such tha t   

 
  



    
u p K u p

u p

u p u p   (31) 

where  

, , ,( , ) ( , ) ( )B n B n     u p u p u       (32) 

In the same way we can consider the complementary 
functional 

, , ,( , ) ( , ) ( )c c
B n B n    u p u p q .      (33) 

In this case the problem well be  

* *

* *
, , , ,

, ( , )

  

( , ) supinf { ( , )}
B

c c
B n B n

Find  and  such tha t   

 


  
u p K u p

u p

u p u p    (34) 

Functional in (29) and (30) has a simple form, but the 
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sets of restrictions (27) and (28) are complicate, they 
contains unilateral constraints (9) and (10). Functionals 
(30) and (31) are more complicate and nonsmooth, but 
the set of restrictions (19) is simple, it does not contain 
unilateral constraints (9) and (10). Which for is more is 
preferable depend on algorithm used for numerical solu-
tion of the problem. It is necessary to mention that the 
boundary variational principles are usually used with 
BEM. 
 
6. Dual Variational Formulation and 

Uzawa’s Optimization Algorithm 
 
We can reformulate above variational problems using 
duality feature. On these dual formulations are based 
Uzawa’s nonsmooth optimization algorithms. Let us 
consider dual formulations and corresponding Uzawa’s 
algorithms for the problems under consideration.  

 
6.1. Bounadry Variational Principles I 
 
Let us introduce functional  

* * * *( , , ) ( , ) , ( )B  
    u p q u p q uL    (35) 

which is considered on the following sets of restric-
tions 

, ( )Bu p K u , , ( )c
n q K σ           (36) 

Dual to (31) variational formulation of the contact 
problem with friction for elastic body with crack has the 
form  

 
* * *

,

* * *

, ( , ) ( )

( , , ) inf sup sup ( , , )
c

B n  


u p K u p q K σ

u p q u p qL L   (37) 

The Uzawa’s algorithm includes the following steps: 

1) specify an initial value 0
, ( )c

n q K σ ,  

2) solve the minimization problem for known n
q  

and determine the unknown quantity , ( , ) n n
Bu p K u p   

 
, ( , )

, ( , )

( , , ) inf sup { ( , , )}

inf sup ( , ) , ( )

B

B

n n n n

n
B 





 

   

u p K u p

u p K u p

u p q u p q

u p q u

L L

    (38) 

3) correct the quantity nq  to satisfy the constraints  

,

1

( )
[ ( )] c

n

n n n


    

K σ
q P q u           (39) 

where 
, ( )c

n K σ
P  is the operator of projection in 

1/2,0 ( )  H on , ( )c
n K σ  and coefficient   is se-

lected so as to provide the best convergence of the algo-
rithm, 

4) proceed to the next step of iteration. 

6.2. Bounadry Variational Principles II. Let us 
Introduce Functional  

* * * *( , , ) ( , ) , ( )c
B  

     u p u u p u qL  (40) 

Which is considered on the following sets of restric-
tions 

, ( )Bu p K u , , ( )n  u K u          (41) 

Dual to (34) variational formulation of the contact 
problem with friction for elastic body with crack has the 
form  

 
* * *

,

* * *

, ( , ) ( )

( , , ) inf sup sup ( , , )
c

B n  

  
u p K u p q K σ

u p u u p uL L   (42) 

The Uzawa’s algorithm includes the following steps: 
1) specify an initial value 0

, ( )n  u K u , 

2) solve the minimization problem for known nu  

and determine the unknown quantity , ( , )n n
Bu p K u p  

 
, ( , )

, ( , )

( , , ) inf sup { ( , , )}

inf sup ( , ) , ( )

B

B

n n n n

n c
B 





   

   

u p K u p

u p K u p

u p u u p u

u p u q

L L

   (43) 

3) correct the quantity nu  to satisfy the constraints  

,

1

( )
[ ( )]

n

n n c n


    

K u
u P u q         (44) 

where 
, ( )n K u

P  is the operator of projection in 

1/2,1( )H on , ( )n K u  and coefficient   is selected 

so as to provide the best convergence of the algorithm,  
4) proceed to the next step of iteration.  
Next we will show how these algorithm applied to 

some problems of fracture dynamics. More application 
one can find in the book [3] and review papers [4-6].  
 
7. Harmonic Loading of the Crack in  

Infinite Elastic Region  
 
Let a load, which changes harmonically in time 

*( , ) Re{ ( ) }i t
i ip t p e x x  be applied to crack edges. 

Moreover, we suppose that on the crack edges the uni-
lateral restrictions (9) and friction (10) should be satis-
fied. In [4,5] it was shown that in this case the contact 
interaction vector is not harmonic and can not be pre-
sented in the form *( , ) Re{ ( ) }i t

i iq t q e x x . Therefore 

components of the contact forces and displacements dis-
continuity vectors have to be expanded into Fourier se-
ries, which depend on the loading parameter , 

1

1

( , ) ( ( , )) Re{ ( , ) } ,

( , ) ( ( , )) Re{ ( , ) ,

k

k

i t
i i k i k

i t
i i k i k

q t q q e

u t u u e





 

 











 

    





x x x

x x x

F

F

 (45) 
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where  

0

0

( , ) ( ( , )) ( , ) ,
2

( , ) ( ( , )) ( , ) .
2

k

k

T
i t

i k i i

T
i t

i k i i

q q t q t e dt

u u t u t e dt















 

   





x x x

x x x

F

F

  (46) 

Here k k  , F and 1F  are direct and inverse 

discrete Fouirer transforms.  
Fourier coefficients of the components of the contact 

forces and displacements discontinuity are related by the 
following integral equations 

( , ) ( , , ) ( , )j k ji k i ku F dS p  


  x x y y     (47) 

Because of the unilateral restrictions (9) and friction 
(10) the problem becomes a “constructively” nonlinear 
one. This means that the functionals (20) - (26) define 
unilateral contact conditions with friction point by point 
and in fuctional spaces can not be rewritten in frequency 
domain because of their nonlinearity. As result of all 
above variational formulation of the problem can not be 
formulated in frequency domain. Therefore we will use 
vatiational formulations (32) and (33) in space-time do-
main and adapt algorithms 1-4 for solution of the prob-
lem in the case of harmonic loading with considering 
unilateral restrictions (9) and friction (10).  

Algorithm 1 includes the following steps: 

1) specify an initial value 0
,( , ) ( )i nu t   x K u ,  

2) calculate Fourier coefficients  
0 0 ( , ) ( ( , ))i k iu u t  x xF           (48) 

3) calculate ( , )n
i kq x  substituting known 

( , )n
i ku  x  in the internals equation  

0( , ) ( , ) ( , , ) ( , )n n
i k j k ji k iq u F dS p   



  y x x y y   (49) 

4) calculate ( , )n
iq tx  using known ( , )n

i kq y  

1( , ) ( ( , ))n n
i i kq t q x xF            (50) 

5) correct the quantity ( , )n
iu t x  to satisfy the con-

straints  

,

1
( )( , ) [ ( , ) ( , )]

n

n n n
i i iu t u t q t




   K ux P x x    (51) 

where 
, ( )n  K uP  is the operator of projection on the sets 

0nu h    and   t     u q  and coefficient   is 

selected so as to provide the best convergence of the al-
gorithm,  

6) proceed to the next step of iteration.  
Algorithm 2 includes the following steps: 

1) specify an initial value 0
,( , ) ( )c

i nq t x K q ,  

2) calculate Fourier coefficients  
0 0( , ) ( ( , ))i k iq q t x xF           (52) 

3) calculate ( , )n
iu  x  solving internals equation for 

known ( , )n
i kq x  

0 ( , ) ( , ) ( , ) ( , , )n n
i i k j k ji kp q u F dS   



  y y x x y   (53) 

4) calculate ( , )n
iu t x  using known ( , )n

i ku  x  

1( , ) ( ( , ))n n
i i ku t u   x xF       (54) 

5) correct the quantity ( , )n
iq tx  to satisfy the con-

straints  

,

1

( )
( , ) [ ( , ) ( , )]c

n

n n n
i i iq t q t u t


   

K q
x P x x   (55) 

where 
, ( )c

n K q
P  is the operator of projection on the sets 

0nq   and  nk q q , and coefficient   is selected 

so as to provide the best convergence of the algorithm,  
6) proceed to the next step of iteration.  
Algorithm 3 includes the following steps: 

1) specify an initial value 0
,( , ) ( )i nu t   x K u ,  

2) calculate Fourier coefficients  
0 0( , ) ( ( , ))i k iu u t  x xF         (56) 

3) calculate ( , )n
i kq x substituting known ( , )n

i ku  x  

in the internals equation  
0( , ) ( , ) ( , , ) ( , )n n

i k j k ji k iq u F dS p   


  y x x y y  (57) 

4) calculate ( , )n
iq tx  using known ( , )n

i kq y  

1( , ) ( ( , ))n n
i i kq t q x xF          (58) 

5) correct the quantity ( , )n
iq tx  to satisfy the con-

straints  

,

1

( )
( , ) [ ( , )]c

n

n n
i iq t q t



 
K q

x P x         (59) 

where 
, ( )c

n K q
P  is the operator of projection on the sets 

0nq   and  nk q q ,  

6) calculate Fourier coefficients  
1 1( , ) ( ( , ))n n

i k iq q t x xF         (60) 

7) calculate ( , )n
iu  x  solving internals equation for 

known 1( , )n
i kq  x   

0 1( , ) ( , ) ( , ) ( , , )n n
i i k j k ji kp q u F dS   



  y y x x y   

(61) 
8) calculate ( , )n

iu t x  using known ( , )n
i ku  x  
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1 ( , ) ( ( , ))n n
i i ku t u   x xF         (62) 

9) correct the quantity ( , )n
iu t x  to satisfy the con-

straints  

,

1
( )( , ) [ ( , )]

n

n n
i iu t u t




  K ux P x        (63) 

where 
, ( )n  K uP  is the operator of projection on the sets 

0nu h    and   t     u q ,  

10) proceed to the next step of iteration. 
Algorithm 4 includes the following steps: 

1) specify an initial value 0
,( , ) ( ) c

i nq t x K q , 

2) calculate Fourier coefficients  

0 0( , ) ( ( , ))i k iq q t x xF           (64) 

3) calculate  ( , )n
iu  x  solving internals equation for 

known ( , )n
i kq x  

0 ( , ) ( , ) ( , ) ( , , )  n n
i i k j k ji kp q u F dS   



  y y x x y (65) 

4) calculate ( , )n
iu t x  using known ( , )n

i ku  x  

1( , ) ( ( , ))n n
i i ku t u   x xF         (66) 

1) correct the quantity ( , )n
iu t x  to satisfy the con-

straints  

,

1
( )( , ) [ ( , )]

n

n n
i iu t u t




  K ux P x        (67) 

where 
, ( ) 

n  K uP  is the operator of projection on the sets 

0nu h    and   t     u q ,  

2) calculate Fourier coefficients  

( , ) ( ( , )) n n
i k iu u t  x xF          (68) 

3) calculate ( , )n
i kq x  substituting known 

( , )n
i ku  x  in the internals equation  

0( , ) ( , ) ( , , ) ( , )n n
i k j k ji k iq u F dS p   



  y x x y y  (69) 

4) calculate ( , )n
iq tx  using known ( , )n

i kq y  

1( , ) ( ( , ))n n
i i kq t q x xF           (70) 

5) correct the quantity ( , )n
iq tx  to satisfy the con-

straints  

,

1

( )
( , ) [ ( , )]c

n

n n
i iq t q t



 
K q

x P x           (71) 

where 
, ( )c

n K q
P  is the operator of projection on the sets 

0nq   and  nk q q ,  

6) proceed to the next step of iteration.  

8. Numerical Study of the Algorithms  
Convergence 

 
Convergence and comparison analyses of the above four 
algorithms were done for two test problems with the fol-
lowing parameters. The cracked material has the follow-
ing mechanical characteristics: elastic modulus 

200 E GPa , Poisson’s ratio 0.25  , specific den-
sity 37800 /kg m  . The finite crack is located in the 

plane  2
2R : 0x x  and its surface is described by 

the Cartesian coordinates  

 1 2 3: , 0,l x l x x         x   (72)
 

 
8.1. Tension-Compression Wave 
 
Let harmonic tension-compression P-wave with multiple 
frequencies   propagates normally to the crack surface. 
The incident wave is defined by the potential function  

1 2( )
2( , ) i k x tt e 


  x             (73) 

where 2  is the amplitude of the incident wave, 

1 1/k c  is the wave number,  1 2c      is 

the velocity of the P-wave, 2 / T   is the frequency, 
T  is the period of wave propagation,   and   are 

the Lame constant, and   is the density of the material. 

Following [3-5] we consider two separate problems: 
the problem for incident waves and the problem for re-
flection waves. Obviously, in the case under considera-
tion the problem for incident wave is trivial. Therefore 
we will pay attention to solution of the problem for the 
reflected waves. 

The load on the crack’s edges caused by the incident 
waves has the form  

*
2 2 1( ) Re{ ( ) } i tp t p x e 


 x , , * 2

2 1 2p k   (74) 

In this case the crack surfaces are subjected to the 
boundary conditions  

2 2( ) ( )p t p t 
x , x ,  for 

x       (75) 

2 2( ) ( )p t p t 
x , x ,  for 

x , as it is shown in 

the Figure 1. 
With considering contact interaction at the crack edges, 

the load vector on the crack edges has the form  

2 1

2 1 2 1 1 2 1;

 ( , )

( , ) ( , )   ,  0 ,  

s

e

p x t

p x t q x t x q x


     

  (76) 

where e
      is a region of close contact, 

which is varied during time.  
The force of contact interaction at the crack edges  

2q  and displacement discontinuity (crack opening)  
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Figure 1. Rectangular crack under normal loading. 
 

2 2u u   should satisfy the contact constrains in the form  

2 2 2 20 0 0  x ,   u ,   q ,  u q   t          (77) 

Loading 2 1( , )p x t on the crack edges and their open-

ing 2 1( , )u x t  may be expanded into Fourier series  

1
2 1 2 1( , ) ( ( , ))kp x t p x  F , 1

2 1 2 1( , ) ( ( , ))ku x t u x   F  

      (78) 
where  

2 1 2 1( , ) ( ( , )) kp x p x t  F , 2 1 2 1( , ) ( ( , ))ku x u x t  F  

                  (79) 

Fourier series expansions of the displacement discon-

tinuity 2 ( )ku  x  and the traction 2 ( ) kp x are related 

by the BIE of the form  

2 22 2( () . . ( , ) )k k
kp F P F u d   



    x x y y ,  

0, 1, 2, ,k     ,  x      (80) 

The kernels 22 ( , )kF   x y  may be obtained from 
fundamental solutions for the 2-D steady-state wave 
equations of elastodynamics, which is well known and 
may be find in [3,4,20].  

This problem was solved using above four algorithms. 
Dependence of the algorithms convergence rate on wave 
number is presented in Figure 2. Analysis of these data 
shows that all algorithms are convergent and obtained 
results coincide for all algorithms, but convergence rate 
is different. 

An analysis of results in Figure 2 reveals that Algo-
rithm 3 and Algorithm 4 have significantly faster con-
vergence for all wave numbers.  
 
8.2. Shear H-Wave 
 
Let harmonic shear H-wave with multiple frequencies 

   propagates normally to the crack surface. The inci-
dent wave is defined by the potential function  

 
Figure 2. Convergence of the algorithms for different wave 
numbers. 
 

2 2( )
1( , ) i k x tt e 


  x ,          (81)

 
where 1  is the amplitude of the incident wave, 

2 2/k c  is the wave number, 2c    is the ve-

locity of the H-wave, 2 / T   is the frequency. 
Following [3,4] we consider two separate problems: 

the problem for incident waves and the problem for re-
flection waves. Obviously, in the case under considera-
tion the problem for incident wave is trivial. Therefore 
we will pay attention to solution of the problem for the 
reflected waves. 

The load on the crack’s edges caused by the incident 
waves has the form  

*
1 1 1( ) Re{ ( ) }i tp t p x e 


 x , , * 2

1 2 1p k    (82) 

In this case the crack surfaces are subjected to the 
boundary conditions  

1 1( ) ( )p t p t 
x , x ,  for 

x ,    (83) 

1 1( ) ( )p t p t 
x , x ,  for 

x , as it is shown in 

the Figure 3. 
With considering contact interaction at the crack edges, 

the load vector on the crack edges has the form  

1 1 1 1

1 1 1 1 1;

 ( , ) ( , )

( , )   ,  0 ,  

s

e

p x t p x t

q x t x q x

 
    

    (84) 

where e
      is a region of close contact, 

which is varied during time.  
The force of contact interaction at the crack edges 1q  

and displacement discontinuity (crack opening) 

1 1 1u u u     should satisfy the contact constrains in 

the form  

1 2 1

1 2 1 1

0,  

    x ,    

t

t

q k q u

q k q u q t



  

    

        
  (85) 

where k  is a friction ration; 1 1t u q     is a 

coefficient that depend on quality if contact faces, 2q  is  
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Figure 3. Rectangular crack under shear loading. 

 
a normal contact force, in the problem under considera-
tion it is known before.  

Loading 1 1( , )p x t on the crack edges and their opening 

1 1( , )u x t  may be expanded into Fourier series  
1

1 1 1 1( , ) ( ( , ))kp x t p x  F 1
1 1 1 1( , ) ( ( , ))ku x t u x   F  

    (86) 
where  

1 1 1 1( , ) ( ( , ))kp x p x t  F , 1 1 1 1( , ) ( ( , ))ku x u x t  F  
  (87) 

In Guz and Zozulya 2001, 2002 it was shown that 
Fourier series expansions of the displacement disconti-

nuity 1 ( )ku  x  and the traction 1 ( )kp x are related by 

the BIE of the form  

1 11 1( () . . ( , ) )k k
kp F P F u d   



    x x y y  , 

0, 1, 2, ,k     ,  x       (88) 

The kernels 11( , )kF   x y  may be obtained from 

fundamental solutions for the 2-D steady-state wave equ- 
ations of elastodynamics, which is well known and may 
be find in [3,4,20]. 

This problem was solved using above four algorithms. 
Dependence of the algorithms convergence rate on wave 
number is presented in Figure 4. 

Analysis of these data shows that all algorithms are 
convergent and obtained results coincide for all algo-
rithms and convergence rate is not differing significantly. 
Our calculations show that all four above algorithms are 
convergent in elastodynamic problems with contact and 
with friction for infinite cracked body. It is important to 
mention that Algorithm 3 and Algorithm 4 have signifi-
cantly faster convergence in both cases frictionless con-
tact problem and problem with friction.  
 
9. Conclusions 
 
This paper present various variational formulations of 
elastodynamic problem for body with crack with consid-
ering possibility for unilateral crack faces contact inter-
action and friction. Variational formutations is based on 
boundary variational principle and on fundamental solu- 

 
Figure 4. Convergence of the algorithms for different wave num- 
bers. 
 
tions. Nonsmooth functionals that correspond to unilare-
ral frictional contact conditions are constructed. Iterative 
algorithms of the Uzawa’s type that are based on projec-
tion on the set of unilateral restrictions and friction are 
proposed. It was shown that in the case if varational 
formulation is based on principles formulated only for 
boundary the BIE method may be used. The case of the 
crack in infinite elastic media is considered in more de-
tails and four new algorithms are proposed. To study 
convergence of the proposed algorithms two problems 
related to the crack faces contact interaction under action 
of the harmonic tension-compression and shear waves 
have been solved numerically using BIE method. 
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