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ABSTRACT 

How can we best find project changes that most improve project estimates? Prior solutions to this problem required the 
use of standard software process models that may not be relevant to some new project. Also, those prior solutions suf-
fered from limited verification (the only way to assess the results of those studies was to run the recommendations back 
through the standard process models). Combining case-based reasoning and contrast set learning, the W system re-
quires no underlying model. Hence, it is widely applicable (since there is no need for data to conform to some software 
process models). Also, W’s results can be verified (using holdout sets). For example, in the experiments reported here, 
W found changes to projects that greatly reduced estimate median and variance by up to 95% and 83% (respectively).  
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1. Introduction 

Existing research in effort estimations focuses mostly 
on deriving estimates from past project data using (e.g.) 
parametric models [1] or case-based reasoning (CBR) 
[2] or genetic algorithms [3]. That research is curiously 
silent on how to change a project in order to, say, re-
duce development effort. That is, that research reports 
what is and not what should be changed. 

Previously [4-7], we have tackled this problem using 
STAR/NOVA, a suite of AI search algorithms that ex-
plored the input space of standard software process 
models to find project options that most reduced the 
effort estimates. That approach had some drawbacks 
including 1) the dependency of the data to be in the 
format of the standard process models, 2) the imple-
mentation complexity of the Monte Carlo simulator 
and the AI search engines, and 3) the lack of an inde-
pendent verification module (the only way to assess the 
results of those studies was to run the recommenda-
tions back through the standard process models). 

This paper describes “W”, a simpler, yet more general 
solution to the problem of finding project changes that 
most improves project estimates. Combining case-based 
reasoning and contrast set learning, W requires no un-
derlying parametric model. Hence, W can be applied to 

more data sets since there is no requirement for the 
data sets to be in the format required by the standard 
software process models. For example, this paper ex-
plores five data sets with W, three of which cannot be 
processed using STAR/NOVA. 

W is simpler to implement and easier to use than 
STAR/NOVA, requiring hundreds of lines of the 
scripting language AWK rather than thousands of lines 
of C++/LISP. For example, we describe below a case 
study that finds a loophole in Brooks’ Law (“adding 
manpower [sic] to a late project makes it later”). Using 
W, that study took three days which included the time 
to build W, from scratch. An analogous study, based on 
state-of-the-art model-based AI techniques, took two 
years. 

Also, the accuracy of STAR/NOVA is only as good 
as the underlying model (the USC COCOMO suite [1]). 
W’s results, on the other hand, are verified using 
hold-out sets on real-world data. In the experiments 
reported below, we show that W can find changes to 
projects that greatly reduce estimate median and vari-
ance by up to 95% and 83%, respectively. 

Finally, the difference between W, which finds what 
to change in order to improve an estimate, and a stan-
dard case-based effort estimator, which only generates 
estimates, is very small. Based on this experiment, we 
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advise augmenting standard CBR tools with modules 
like the planning sub-systems in W. 

The rest of this paper is structured as follows. After 
some background notes on effort estimation and 
STAR/NOVA, we describe the general framework for 
case-based reasoning. The W extension to CBR is then 
described (contrast set learning over the local neigh-
borhood), using a small example. This is followed by 
fourteen case studies, one with Brooks’ Law, and thir-
teen others. Our conclusion will discuss when W is 
preferred over STAR/NOVA. 

2. Background 

2.1. Why Study Effort Estimation? 

Generating (and regenerating) project effort estimates is 
an important and continuous process for project manag-
ers. Not only do good estimates allow the better use of 
resources, but by reviewing and improving their estima-
tion process, a software company can learn and improve 
from their past experience. 

Sadly, we often get estimates wrong. Consider the 
NASA’s Checkout Launch Control System, which was 
canceled when the initial estimate of $200 million was 
overrun by an additional $200 M [8]. This case is not 
unique, despite the significant effort put into designing 
more accurate estimation models. It has been reported 
that many predictions are wrong by a factor of four or 
more [9,10]. In order to conduct software effort estima-
tion, it is standard practice to use models to estimate ef-
fort. Many software process models have emerged aim-
ing to achieve that task, and there has not emerged a sin-
gle standardized model that is widely used by the soft-
ware engineering industry. There several reasons for this 
including generality, data islands and instability. Soft-
ware models may not be general so it can be inappropri-
ate to apply a software model learned in one environment 
one to another. Also, many companies prefer to keep cost 
related data confidential. This data island effect has also 
contributed to the fragmentation of the field by compa-
nies preferring to build private models rather than using 
publicly available models. This multiplicity of software 
effort models has lead to scarcity of publicly available, 
local data needed for model based effort estimation. 
Without sufficient data to build, audit, and tune models, 
the predictions generated by these models may be highly 
unstable. Baker [11] reports a study that learned values 
for the (a, b) (linear, exponential) constants in Boehm’ 
COCOMO software process model [9]. The study was 
repeated 100 times, each time selecting from a random 
sample of 90% of the project data. The learned values for 
(a, b) exhibited an alarming variance: 

(2.2 ≤ a ≤ 9.18) ^ (0.88 ≤ b ≤ 1.09)       (1) 

Such large variations make it hard to understand the ef-
fects of changing project options. Suppose some pro-
posed change doubles productivity, but a moves from 9 
to 4.5. The improvement resulting from that change 
would be obscured by the tuning variance.  

2.2. STAR and NOVA 

The SBSE literature inspired us to try simulated anneal-
ing to search the what-ifs associated with Equation 1. 
This lead to the STAR system [4,6]. NOVA was a gen-
eralization of STAR that included simulated annealing 
and other search engines [5,7]. 

STAR/NOVA handled model variance by finding 
conclusions that were stable across the space of possible 
tunings. This analysis assumed that, for a mature effort 
estimation model, the range of possible tunings was 
known (this is the case for models like COCOMO). For 
such models, it is possible for the AI search engines to 
find conclusions that hold across the space of all tunings.  

STAR and NOVA constrain project options P but not 
the tuning options T. Hence, their recommendations con-
tain subsets of the project options P that most improve the 
score, despite variations in the tunings T. This approach 
meant we could reuse COCOMO models requiring using 
local tuning data. The following is a description that 
briefly presents the operation of STAR and NOVA: 

1) SAMPLE: We sample across the ranges of all the 
attributes in the model n1 times. Often we sample ran-
domly across the range. Some heuristics allow us to 
concentrate more on the extremes of the range. 

2) DISCRETIZE: The data seen in the n1 samples is 
then discretized into D = 10 bins. Equal frequency bins 
were used. 

3) CLASSIFY: The top n% projects are classified as 
best or rest. 

4) RANK: The ranges are then ranked in increasing 
order using Support-Based Bayesian Ranking. 

5) PRUNE: STAR runs n2 experiments with the mod-
els where the top ranked ranges 1…X ranges are pre-set 
and the remaining ranges can be selected at random. 

6) REPORT: STAR returns the 1…X settings that op-
timize the best for the fitness function. These settings are 
determined by iterating back from the minimum point 
achieved towards the first point that is statistically simi-
lar to the minimum point. 

In practice, STAR/NOVA approach was very effective. 
Figure 1 shows the large effort reductions found by 
STAR in three out of four cases presented at ASE’09. It 
is insightful to reflect about STAR/NOVA’s failure to 
find large reductions in the fourth case study (nasa93 
osp2). In this project, management had already fixed 
most of the project options. STAR/NOVA failed, in this 
case, since there was very little left to try and change.  
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Study NOVA 

nasa93 flight 72% 

nasa93 ground 73% 

nasa93 osp 42% 

nasa93 osp2 5% 

Figure 1. Effort estimate improvements found by NOVA. 
from [12]. 
 
This fourth case study lead to one of the lessons learned 
of STAR/NOVA: apply project option exploration tools 
as early as possible in the lifecycle of a project. Or, to 
say that more succinctly: if you fix everything, there is 
nothing left to fix [13]. 

While a successful prototype, STAR/NOVA has cer-
tain drawbacks: 
 Model dependency: STAR/NOVA requires a model 

to calculate (e.g.) estimated effort. In order to do so, 
we had to use some software process models to 
generate the estimates. Hence, the conclusions 
reached by STAR/NOVA are only as good as this 
model. That is, if a client doubts the relevance of 
those models, then the conclusions will also be 
doubted. 

 Data Dependency: STAR/NOVA’s AI algorithms 
explored an underlying software process model. 
Hence, it could only process project data in a format 
compatible with the underlying model. In practice, 
this limits the scope of the tool.  

 Inflexibility: It proved to be trickier than we 
thought to code up the process models, in a manner 
suitable for Monte Carlo simulation. By our count, 
STAR/NOVA’s models required 22 design deci-
sions to handle certain special cases. Lacking guid-
ance from the literature, we just had to apply “en-
gineering judgment” to make those decisions. While 
we think we made the right decisions, we cannot 
rigorously justify them. 

 Performance: Our stochastic approach conducted 
several tens of thousands of iterations to explore the 
search space, with several effort estimates needing 
calculation with each iteration. This resulted in a 
performance disadvantage. 

 Size and Maintainability: Due to all the above fac-
tors, our code base proved difficult to maintain. 
While there was nothing in principle against apply-
ing our techniques to other software effort models, 
we believe that the limiting factor on disseminating 
our technique is the complexity of our implementa-
tion. As partial evidence for this, we note that in the 
three years since we first reported our technique [6]:  

 We have only coded one set of software process 
models (COCOMO), which inherently limited the 
scope of our study.  

 No other research group has applied these tech-
niques. Therefore, rather than elaborate a complex 
code base, we now explore a different option, based 
on Case Based Reasoning (CBR). This new ap-
proach had no model restrictions (since it is does 
not use a model) and can accommodate a wide 
range of data sets (since there are no restrictions of 
the variables that can be processed).  

While there was nothing in principle against applying 
our techniques to other software effort models, we be-
lieve that the limiting factor on disseminating our tech-
nique is the complexity of our implementation. As partial 
evidence for this, we note that in the three years since we 
first reported our technique [6]: 
 We have only coded one set of software process 

models (COCOMO), which inherently limited the 
scope of our study. 

 No other research group has applied these tech-
niques. 

Therefore, rather than elaborate a complex code base, 
we now explore a different option, based on Case Based 
Reasoning (CBR). This new approach had no model re-
strictions (since it does not use a model) and can ac-
commodate a wide range of data sets (since there are no 
restrictions of the variables that can be processed). 

3. Case-Based Reasoning (CBR) 

Case based reasoning is a method of machine learning 
that seeks to emulate human recollection and adaptation 
of past experiences in order to find solutions to current 
problems. That is, as humans we tend to base our deci-
sions not on complex reductive analysis, but on an in-
stantaneous survey of past experiences [14]; i.e., we 
don’t think, we remember. CBR is purely based on this 
direct adaptation of previous cases based on the similar-
ity of those cases with the current situation. Having said 
that, a CBR based system has no dedicated world model 
logic, rather that model is expressed through the avail-
able past cases in the case cache. This cache is continu-
ously updated and appended with additional cases. 

Aamodt & Plaza [15] describe a 4-step general CBR 
cycle, which consists of: 

1) Retrieve: Find the most similar cases to the target 
problem. 

2) Reuse: Adapt our actions conducted for the past 
cases to solve the new problem. 

3) Revise: Revise the proposed solution for the new 
problem and verify it against the case base. 

4) Retain: Retain the parts of current experience in the 
case base for future problem solving. 

Having verified the results from our chosen adapted ac-
tion on the new case, the new case is added to the avail-
able case base. The last step allows CBR to effectively 
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learn from new experiences. In this manner, a CBR sys-
tem is able to automatically maintain itself. As discussed 
below, W supports retrieve, reuse, and revise (as well as 
retain if the user collecting data so decides). 

This 4-stage cyclical CBR process is sometimes re-
ferred to as the R4 model [16]. Shepperd [16] considered 
the new problem as a case that comprises two parts. 
There is a description part and a solution part forming 
the basic data structure of the system. The description 
part is normally a vector of features that describe the 
case state at the point at which the problem is posed. The 
solution part describes the solution for the specific prob-
lem (the problem description part). 

The similarity between the target case and each case in 
the case base is determined by a similarity measure. Dif-
ferent methods of measuring similarity have been pro-
posed for different measurement contexts. A similarity 
measure is measuring the closeness or the distance be-
tween two objects in an n-dimensional Euclidean space, 
the result is usually presented in a distance matrix (simi-
larity matrix) identifying the similarity among all cases 
in the dataset. Although there are other different distance 
metrics available for different purposes, the Euclidean 
distance metric is probably the most commonly used in 
CBR for its distance measures. 

Irrespective of the similarity measure used, the objec-
tive is to rank similar cases from case-base to the target 
case and utilize the known solution of the nearest k-cases. 
The value of k in this case has been the subject of debate 
[17,2]: Shepperd [2], Mendes [18] argue for k = 3 while 
Li [3] propose k = 5.  

Once the actual value of the target case is available it 
can be reviewed and retained in the case-base for future 
reference. Stored cases must be maintained over time to 
prevent information irrelevancy and inconsistency. This 
is a typical case of incremental learning in an organiza-
tion utilizing the techniques of CBR. 

Observe that these 4 general CBR application steps 
(retrieve, reuse, revise, retain) do not include any explicit 
model based calculations; rather we are relying on our 
past experience, expressed through the case base, to es-
timate any model calculations based on the similarity to 
the cases being used. This has two advantages: 

1) It allows us to operate independently of the models 
being used. For example, our prior report to this confer-
ence [13] ran over two data sets. This study, based on 
CBR, uses twice as many data sets. 

2) This improves our performance, since data retrieval 
can be more efficient than calculation, especially given 
that many thousands of iterations of calculation were 
needed with our traditional modeling based tool. As evi-
dence of this, despite the use of a slower language, W’s 
AWK code runs faster than the C++/LISP used in 

STAR/NOVA. It takes just minutes to conduct 20 trials 
over 13 data sets with W. A similar trial, conducted with 
NOVA or STAR, can take hours to run. 

4. From CBR to W 

A standard CBR algorithm reports the median class val-
ue of some local neighborhood. The W algorithm treats 
the local neighborhood in a slightly different manner: 
 The local neighborhood is divided into best and 

rest. 
 A contrast set is learned that most separates the re-

gions (contrast sets contain attribute ranges that are 
common in one region, but rare in the other). 

 W then searches for a subset of the contrast set that 
best selects for (e.g.) the region with lower effort 
estimates. 

The rest of this section details the above process. 

4.1. Finding Contrast Sets 

Once a contrast set learner is available, it is a simple 
matter to add W to CBR. W finds contrast sets using a 
greedy search, where candidate contrast sets are ranked 
by the log of the odds ratios. Let some attribute range x 
appear at frequency N1 and N2 in two regions of size R1 
and R2. Let the R1 region be the preferred goal and R2 be 
some undesired goal. The log of the odds ratio, or LOR, is: 

LOR(x) = log ((N1/R1) (N2/R2))        (2) 

Note that when LOR(x) = 0, then x occurs with the 
same probability in each region (such ranges are there-
fore not useful for selecting on region or another). On the 
other hand, when LOR(x) > 0, x is more common in the 
preferred region than otherwise. These LOR-positive 
ranges are candidate members of the contrast set that 
selects for the desired outcome. 

It turns out that, for many data sets, the LOR values 
for all the ranges contain a small number of very large 
values (strong contrasts) and a large number of very 
small values (weak contrasts). The reasons for this dis-
tribution do not concern us here (and if the reader is in-
terested in this master-variable effect, they are referred to 
[19,20]). What is relevant is that the LOR can be used to 
rank candidate members of a contrast set. W computes 
the LORs for all ranges, and then conducts experiments 
applying the top i-th ranked ranges. 

For more on LOR, and their use for multi-dimensional 
data, see [21]. 

4.2. The Algorithm 

CBR systems input a query q and a set of cases. They 
return the subset of cases C that is relevant to the query. 
In the case of W:  
 Each case Ci is an historical record of one software 
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projects, plus the development effort required for 
that project. Within the case, the project is de-
scribed by a set of attributes which we assume have 
been discretized into a small number of discrete 
values (e.g. analyst capability ∈{1, 2, 3, 4, 5} de-
noting very low, low, nominal, high, very high re-
spectively). 

 Each query q is a set of constraints describing the 
particulars of a project. For example, if we were in-
terested in a schedule over-run for a complex, high 
reliability projects that have only minimal access to 
tools, then those constraints can be expressed in the 
syntax of Figure 2. 

W seeks q' (a change to the original query) that finds 
another set of cases C' such that the median effort values 
in C' are less than that of C (the cases found by q). W 
finds q' by first dividing the data into two-thirds training 
and one-third testing. Retrieve and reuse are applied to 
the training set. Revising is then applied to the test set. 

1) Retrieve: The initial query q is used to find the N 
training cases nearest to q using a Euclidean distance 
measure where all the attribute values are normalized 
from 0 to 1. 

2) Reuse (adapt): The N cases are sorted by effort and 
divided into the K1 best cases (with lowest efforts) and 
K2 rest cases. For this study, we used K1 = 5, K2 = 15. 
Then we seek the contrast sets that select for the K1 best 
cases with lowest estimates. All the attribute ranges that 
the user has marked as “controllable” are scored and 
sorted by LOR. This sorted order S defines a set of can-
didate q' queries that use the first i-th entries in S: 

qi' = q∪S1∪S2…∪Si                   (3) 

Formally, the goal of W is find the smallest i value 
such qi' selects cases with the least median estimates. 

According to Figure 3, after retrieving and reusing 
comes revising (this is the “verify” step). When revising 
q', W prunes away irrelevant ranges as follows: 

1) Set i = 0 and qi' = q. 
2) Let Foundi be the test cases consistent with qi' (i.e., 

that do not contradict any of the attribute ranges in qi'). 
3) Let Efforti be the median efforts seen in Foundi. 

 
@project example 
@attribute ?rely 3 4 5 
@attribute tool 2 
@attribute cplx 4 5 6 
@attribute ?time 4 5 6 

Figure 2. W’s syntax for describing the input query q. Here, 
all the values run 1 to 6. 4 ≤ cplx ≤ 6 denotes projects with 
above average complexity. Question marks denote what can 
be controlled in this case, rely, time (required reliability and 
development time). 

 

Figure 3. A diagram describing the steps of CBR (source: 
http://www.peerscience.com/Assets/cbrcycle1.gif). 

 
4) If Found is too small then terminate (due to 

over-fitting). After Shepperd [2], we terminated for 
|Found| < 3. 

5) If i > 1 and Efforti < Efforti-1, then terminate (due to 
no improvement). 

6) Print qi' and Efforti. 
7) Set i = i + 1 and qi' = qi-1∪Si 
8) Go to step 2. 
On termination, W recommends changing a project 

according to the set q' – q. For example, in Figure 2, if q' 
– q is rely = 3 then this treatment recommends that the 
best way to reduce the effort for this project is to reject 
rely = 4 or 5. 

One useful feature of the above loop is that it is not a 
black box that offers a single “all-or-nothing” solution. 
Rather it generates enough information for a user to 
make their cost-benefit tradeoffs. In practice, users may 
not accept all the treatments found by this loop. Rather, 
for pragmatic reasons, they may only adopt the first few 
Si changes seen in the first few rounds of this loop. Users 
might adopt this strategy if (e.g.) they have limited man-
agement control of a project (in which case, they may 
decide to apply just the most influential Si decisions). 

Implementing W is simpler than the STAR/NOVA 
approach: 
 Both NOVA and STAR contain a set process mod-

els for predicting effort, defects, and project threats 
as well as Monte Carlo routines to randomly select 
values from known ranges. STAR and NOVA im-
plement simulated annealing while NOVA also im-
plements other search algorithms such as A*, LDS, 
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MAXWALKSAT, beam search, etc. STAR/NOVA 
are 3000 and 5000 lines of C++ and LISP, respec-
tively. 

 W, on the other hand, is a 300 line AWK script. 
Our pre-experimental suspicion was that W was too 

simple and would need extensive enhancement. However, 
the results shown below suggest that, at least for this task, 
simplicity can suffice (but see the future work section for 
planned extensions). 

Note that W verification results are more rigorous than 
those of STAR/NOVA. W reports results on data that is 
external to its deliberation process (i.e., on the test set). 
STAR/NOVA, on the other hand, only reported the 
changes to model output once certain new constraints 
were added to the model input space. 

5. Data 

Recall that a CBR system takes input a query q and cases 
C. W has been tested using multiple queries on the data 
sets of Figure 4. These queries and data sets are de-
scribed below. 

5.1. Data Sets 

As shown in Figure 4, our data includes: 
 The standard public domain COCOMO data set 

(Cocomo81); 
 Data from NASA; 
 Data from the International Software Benchmarking 

Standards Group (ISBSG); 
 The Desharnais and Maxwell data sets. 

Except for ISBSG, all the data used in this study is 
available at http://promisedata.org/data or from the au-
thors. 

Note the skew of this data (min to median much 
smaller than median to max). Such asymmetric distribu-
tions complicate model-based methods that use Gaussian 
approximations to variables. 

There is also much divergence in the attributes used in 
our data: 
 While our data include effort values (measured in 

terms of months or hours), no other feature is 
shared by all data sets. 

 The COCOMO and NASA data sets all use the at-
tributes defined by Boehm [9]; e.g. analyst capabil-

ity, required software reliability, memory con-
straints, and use of software tools. 

 The other data sets use a variety of attributes such 
as the number of data model entities, the number of 
basic logical transactions, and number of distinct 
business units serviced. 

This attribute divergence is a significant problem for 
model-based methods like STAR/NOVA since those 
systems can only accept data that conforms to the space 
of attributes supported by their model. For example, this 
study uses the five data sets listed in Figure 2. STAR/ 
NOVA can only process two of them (coc81 and nasa93). 
CBR tools like W, on the other hand, avoid these two 
problems:  
 W makes no assumption about the distributions of 

the variables. 
 W can be easily applied to any attribute space (ca-

veat: as long but there are some dependent vari-
ables). 

5.2. Queries 

Figure 2 showed an example of the W query language: 
 The idiom “@attribute name range “defines the 

range of interest for some attribute “name”.  
 If “range” contains multiple values, then this repre-

sents a disjunction of possibilities. 
 If “range” contains one value, then this represents a 

fixed decision that cannot be changed. 
 The idiom “?x” denotes a controllable attribute (and 

W only generates contrast sets from these control-
lables). Note that the “range”s defined for “?x” 
must contain more than one value, otherwise there 
is no point to making this controllable. 

6. Case Studies 

6.1. Case Study #1: Brooks’ Law 

This section applies W to Brooks’ Law. Writing in the 
1970s [22], Brooks noted that software production is a 
very human-centric activity and managers need to be 
aware of the human factors that increase/decrease pro-
ductivity. For example, a common practice at that time at 
IBM was to solve deadline problems by allocating more 
resources. In the case of programming, this meant 

 
Dataset Attributes Number of cases Content Units Min Median Mean Max Skewness

coc81 17 63 NASA projects months 6 98 683 11400 4.4 

nasa93 17 93 NASA projects months 8 252 624 8211 4.2 

desharnais 12 81 Canadian software projects hours 546 3647 5046 23940 2.0 

maxwell 26 62 Finnish banking software months 6 5189 8223 63694 3.3 

isbsg 14 29 Banking projects of ISBSG minutes 662 2355 5357 36046 2.6 

Figure 4. The 328 projects used in this study come from 5 data sets. 
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@project brooks 
@attribute apex 1 
@attribute plex 1 
@attribute ltex 1 
@attribute kloc 0.9 2.2 3 [snip] 339 350 352 423 980 

Figure 5. The brookslaw query. 
 

Treatment median spread 

AsIs = Nasa93 225 670 

ToBe1 = nasa93 ∪ q 380 680 

ToBe2 = nasa93 ∪ q' 220 290 

Figure 6. Effort estimates seen in different treatments for 
the brooks’ law experiment. 

 
adding more programmers to the team. Brooks argued 
that this was an inappropriate response since, according 
to Brooks’ law “adding manpower [sic] to a late software 
project makes it later”. The reason for this slowdown is 
two-fold: 
 The more people involved the greater the commu-

nication overhead. While this is certainly an issue if 
all parts of the software system are accessible to all 
other parts, with an intelligent module design, this 
first issue can be mitigated. 

 The second issue is more fundamental. Software 
construction is a complex activity. Newcomers to a 
project suffer from inexperience in the tools, the 
platform, the problem domain, etc. 

The query of Figure 5 models this second issue. In 
this query, all the experience attributes have been set to 
their lowest value (apex, plex, ltex are analyst experience, 
programmer language experience, and language and tool 
experience, respectively). The remaining attributes are 
all controllable and are allowed to move over their full 
range. For a (dataset, query) of (nasa93, q = brookslaw), 
W returns 

q' = q ∪ (data = 2)            (4) 

That is, W is recommended setting the database size to 
its lowest value. Databases are used to store program and 
data elements. In effect, W is recommending reigning in 
the scope of the project. The recommendation can be 
paraphrased as follows: 

If the project is late, and you add more staff with less 
experience, you can still finish on time if you decrease 
the scope of the project. 

Figure 6 shows the effects of this recommendation. 
The AsIs row shows the median and spread of the effort 
values in nasa93. The ToBe1 row shows the effect of 
Brooks’ Law. In the subset of the data consistent with 
aexp = plex = ltex = 1, the median effort has nearly dou-
bled. The ToBe2 row shows the impact of W’s recom-
mendation: the project will now finish in nearly the time 

as the AsIs row, and the spread is greatly reduced. 
One of the reasons we are exploring W is the simplic-

ity of the implementation. In this regard, it is useful to 
compare our results on Brooks’ Law to other researchers. 
Brooks’ Law is a well researched effect and other re-
searchers have found special cases where the general law 
does not hold. For example, using sophisticated qualita-
tive reasoning techniques, Zhang et al. [23] found their 
own loopholes in Brooks’ Law. One of us (Keung) 
worked on site with the Zhang team and reports that the 
Brooks analysis was the main result of a two year mas-
ters graduate thesis. In contrast, writing W took three 
days and the specific analysis of Brooks’ Law took 
twenty minutes from first posing the question, to graph-
ing the output. 

6.2. Thirteen More Case Studies 

Apart from the Brooks’ Law experiment, we have tested 
W on thirteen other case studies: 
 For the ISBSG data set, we used our recent experi-

ence to describe the constraints suitable for a 
stand-alone or client server system (denoted 
stdalone and clientsrv). 

 For the Desharnais data set, we posed queries rep-
resenting: 
○ (s; m; l) denotes (small, medium,large) pro-

jects; 
○ (mngr; team) denotes (manager,team) experi-

ence being low. 
 For the Cocomo and NASA data sets, we used our 

contacts at the Jet Propulsion Laboratory to write 
queries describing (a) osp (see above); (b) the sec-
ond version of that system called osp2; as well as (c) 
generic flight and (d) ground systems. 

 Lacking direct experience with the Finnish financial 
system, we could not pose specific queries to the 
Maxwell dataset. Instead, we made half the attrib-
utes controllable and used that for the Maxwell 
query. 

Figure 7 shows the improvements seen in our 13 que-
ries, running on the data sets of Figure 4. As shown by 
the last line of Figure 7, the usual improvements where 
(36, 68) for (median, spread). Note that, unlike 
STAR/NOVA, these are results on real-world data sets 
not used during training. 

Figure 8 displays the Figure 7 results graphically. 
The dashed line indicates the median of the improve-
ments for each axis. One data set had consistently worse 
results than any other. The gray cells of Figure 7 indi-
cate when W failed (i.e., where the treatments increased 
median development effort or spread, or both). Note that 
the gray cells are found only in the Desharnais results.  

On investigation, the root cause of the problem was 
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  Improvement 

dataset query q median spread 

coc81 ground %95  %83  

coc81 osp %82  %68  

93nasa  ground %77  %15  

ISBSG stdalone %69  %100  

93nasa  flight %61  %73  

93nasa  osp %49  %48  

maxwell  %44  %76  

ISBSG clientserv %42  %88  

desharnais mngr-l %36  %45-  

81coc  2osp  %31  %71  

93nasa  2osp  %27  %42  

desharnais mngr-s %23  %85  

desharnais mngr-m %23  %85  

81coc  flight %0  %18  

desharnais team-m %0  %60  

desharnais team-s %15-  %206-  

desharnais team-l %15-  %93-  

 median %36  %68  

Figure 7. Improvements (100 * (initial - final)/initial) for 13 
queries, sorted by median improvement. Gray cells show 
negative improvement. 
 

 

Figure 8. Median and spread improvements for effort esti-
mation. dashed lines mark median values. 
 
the granularity of the data. Whereas (e.g.) coc81 assigns 
only one of six values to each attribute, Desharnais’ at-
tributes had a very wide range. 

Currently, we are exploring discretization policies to 
[24,25] reduce attributes with large cardinality to a 
smaller set. Tentatively, we can say that discretization 
solves the problem with Desharnais but we are still 

studying this aspect of our system. Even counting the 
negative Desharnais results, in the majority of cases W 
found treatments that improved both the median and 
spread of the effort estimates. Sometimes, the improve-
ments were modest: in the case of (coc81, flight), the 
median did not improve (but did not get worse) while the 
spread was only reduced by 18%. But sometimes the 
improvements are quite dramatic. 
 In the case of (ISBSG, stdlone), a 100% improve-

ment in spread was seen when q' selected a group of 
projects that were codeveloped and, hence, all had 
the same development time. 

 In the case of (coc81, ground), a 95% effort im-
provement was seen when q' found that ground 
systems divide into two groups (the very expensive, 
and the very simple). In this case W found the fac-
tor that drove a ground system into the very simple 
case. 

7. Discussion 

7.1. Comparisons to NOVA 

Figure 9 shows that estimation improvements found by 
W (in this report) to the improvements reported previ-
ously (in Figure 1). This table is much shorter than Fig-
ure 7 since, due to the modeling restrictions imposed by 
the software process models, NOVA cannot be applied to 
all the data sets that can be processed by W. The num-
bers in Figure 9 cannot be directly compared due to the 
different the different goals of the two systems: W tries 
to minimize effort while NOVA tries to minimize effort 
and development time and delivered defects (we are cur-
rently extending W to handle such multiple-goal optimi-
zation tasks). Nevertheless, it is encouraging to note that 
the results are similar and that the W improvements are 
not always less than those found by STAR/NOVA. 

Regardless of the results in Figure 9, even though we 
prefer W (due to the simplicity of the analysis) there are 
clear indicators of when we would still use STAR/ 
NOVA. W is a case-based method. If historical cases are 
not available, then STAR/NOVA is the preferred method. 
On the other hand, STAR/NOVA is based on the USC 
COCOMO suite of models. If the local business users do 
not endorse that mode, then W is the preferred method.  
 

Treatment median spread 

AsIs = Nasa93 225 670 

ToBe1 = nasa93 ∪ q 380 680 

ToBe2 = nasa93 ∪ q' 220 290 

Figure 9. Comparing improvements found by NOVA (from 
Figure 1) and W (Figure 7). 
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7.2. Threats to Validity 

External validity is the ability to generalize results out-
side the specifications of that study [26]. To ensure the 
generalizability of our results, we studied a large number 
of projects. Our datasets contain a wide diversity of pro-
jects in terms of their sources, their domains and the time 
period they were developed in. Our reading of the litera-
ture is that this study uses more project data, from more 
sources, than numerous other papers. Table 4 of [27] lists 
the total number of projects in all data sets used by other 
studies. The median value of that sample is 186, which is 
less much less than the 328 projects used in our study. 

Internal validity questions to what extent the cause-effect 
relationship between dependent and independent vari-
ables hold [28]. For example, the above results showed 
reductions in the effort estimates of up to 95%; i.e., by a 
factor of 20. Are such massive reductions possible? 

These reductions are theoretically possible. Making 
maximal changes to the first factor (personnel/team ca-
pability) can affect the development effort by up to a 
3.53. Making maximal changes just to the first four fac-
tors could have a net effect of up to: 

3.53 * 2.38 * 1.62 * 1.54 ≈ 21 > 20      (5) 

By the same reasoning, making maximal changes to 
all factors could have a net effect of up to eleven thou-
sand. Hence, an improvement of 95% (or even more) is 
theoretically possible. As to what is pragmatically possi-
ble, that is a matter for human decision making. No 
automatic tool such as STAR/NOVA/W has access to all 
the personnel factors and organizational constraints 
known to a human manager. Also, some projects are in-
herently expensive (e.g. the flight guidance system of a 
manned spacecraft) and cutting costs by, say, reducing 
the required reliability of the code is clearly not appro-
priate. Tools like W are useful for uncovering options 
that a human manager might have missed, yet ultimately 
the actual project changes must be a human decision. 

8. Conclusions 

If a manager is given an estimate for developing some 
software, they may ask “how do I change that?” The 
model variance problem makes it difficult to answer this 
question. Our own prior solution to this problem required 
an underlying process model that limited the data sets 
that can be analyzed. 

This paper has introduced W, a case-based reasoning 
approach (augmented with a simple linear-time greedy 
search for contrast sets). W provides a mechanism that 
allows projects to improve over time based on historical 
events, greatly assist in the project planning and resource 
allocation. W has proven to be simpler to implement and 
use than our prior solutions. Further, since this new me-

thod has no model-based assumptions, it can be applied 
to more data sets. When tested on 13 real-world case 
studies, this approach found changes to projects that 
could greatly reduce the median and variance of the ef-
fort estimate. 
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