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ABSTRACT 

The characterization of finite length Surface Acoustic Wave (SAW) and Bulk acoustic Wave (BAW) resonators is ad- 
dressed here. The Finite Element Analysis (FEA) induces artificial wave reflections at the edges of the mesh. In fact, 
these ones do not contribute in practice to the corresponding experimental response. The Perfectly Matched Layer 
(PML) method, allows to suppress the boundary reflections. In this work, we first demonstrate the basis of PML 
adapted to FEA formalism. Next, the results of such a method are depicted allowing a discussion on the behavior of 
finite acoustic resonators. 
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1. Introduction 

The ultimate optimization in the development of compo- 
nents such as SAW (Surface Acoustic Wave) and BAW 
(Bulk Acoustic Wave), is to increase the capability to 
simulate the real shape of the resonator. In the case of 
SAW devices, the main effort is currently devoted to 
account for lateral resonance [1] that can pollute the 
SAW main contribution exploited for the filtering opera- 
tion. These phenomena can be adequately modeled using 
advanced numerical tools, and more particularly a for- 
mulation must be developed to allow the analysis of the 
active part of the resonator as well as the area near the 
edges, suppress modes generated by the lack of consis- 
tent data absorbing conditions. 

When one solves an equation numerically by volume 
discretization like in Finite Element Analysis (FEA), one 
must truncate the computational grid in some way. In 
such cases, the important thing is how to perform this 
truncation without introducing significant artifacts into 
the computation. Two cases may arise. If the computa- 
tional domain is large enough and the sides are seen by a 
very attenuated wave so there is no problem. In the other  

hand, if the wave doesn’t vanish at the mesh boundary 
we must apply absorbing condition to avoid spurious re- 
flection. The application of boundary conditions as rigid 
walls (Dirichlet or Neumann) or periodic boundary con- 
ditions leads unacceptable artifacts reflections at the ed- 
ges of the mesh. Therefore, the wave equations require 
an absorption condition which makes vanish the waves 
that strike the edges without reflection into the domain of 
interest. A well known method is the Boundary Element 
Method [2]. It is based on the calculation of Green’s func- 
tions and requires an external approach to the finite ele-
ment analysis. We propose a method directly included in 
the FEA formalism: the Perfectly matched Layer (PML). 

In 1994, however, the problem of absorbing bounda- 
ries for wave equations was transformed in a seminal 
paper by Berenger [3]. Berenger changed the question: 
instead of finding an absorbing boundary condition, he 
found an absorbing boundary layer, as depicted in Figure 
1. An absorbing boundary layer is a layer of artificial 
absorbing material that is placed adjacent to the edges of 
the grid, completely independent of the boundary condi- 
tion. When a wave enters the absorbing layer, it is at- 
tenuated by the absorption and decays exponentially;  
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Figure 1. Chematic of the wave problem and the interest of absorbing layer. 
 
even if it reflects o the boundary, the returning wave after 
one round trip through the absorbing layer is exponen- 
tially tiny. 

The problem with this approach is that, whenever you 
have a transition from one material to another, waves 
generally reflect, and the transition from non-absorbing 
to absorbing material is no exception so, instead of hav- 
ing reflections from the grid boundary, you now have 
reflections from the absorber boundary. However, Ber- 
enger showed that a special absorbing medium could be 
constructed so that waves do not reflect at the interface: a 
perfectly matched layer, or PML. Although PML was 
originally derived for electromagnetism (Maxwell’s equa- 
tions), the same ideas are immediately applicable to other 
wave equations. A lot of work has been devoted to 
transpose this approach to elasticity problems [4-6]. 

In the following, we first expose the theoretical devel- 
opment for piezoelectricity-based problems, focusing on 
the simple case of the scalar plane wave. We will see that 
the establishment of PML formulation may be described 
by the combination of the following two steps: first, 
changing in complex variable, next a coordinate trans- 
formation allowing the back to real coordinates. 

A first numerical application is achieved in 2D to ad- 
dress the simulation of finite dimension of a SAW reso- 
nator with a periodic FEA code. Indeed, up to now, the 
devices modelings were most often considered as 2D 
systems infinitely periodic in the direction of propagation 
and infinite in the perpendicular one. We just demon- 
strate that it is now possible to take into account the ef- 
fects due to finite dimension along the direction of pro- 
pagation. 

We also show, the interests of PML method is the case 
of an 3D SAW devices. This is especially to show the in- 
fluence of the numerical aperture which was considered 
as infinite. This also shows the effects of lateral edges of 
such components. 

As a conclusion, we propose different tracks to further 

optimize the PML approach, particularly for 3D piezo- 
electric problems. 

2. Fundamentals 

2.1. Finite Element Analysis and Piezoelectric 
Problem 

First, we start from the variational formulation of the 
linear dynamic piezoelasticity problem. Here, the un- 
knowns of the problem are mechanical displacement and 
electrical potential. This approach has been implemented 
initially by Tiersten [7] Eernisse [8] and Allik and Hughes 
[9], pioneers in the use of the finite element method for 
problems of piezoelectricity. Since then, many authors 
have explored ways and contributed to their improve- 
ment for the analysis of piezoelectric transducers in a 
general sense [10-14]. The principle of this variational 
formulation consists in balancing the sum of the kinetic 
and potential energies into the computation volume with 
the mechanical and electrical solicitations applied at the 
chosen edges. We thus obtain the following integral form: 

2 d

d d
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j k j kΩ
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i i i ij j j j

δu u δu
C + e

x x x x

uδ δ
+ e ε ρωr u δu V
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  

    
    

  
     

  



  

    (1) 

The terms , ,ijkl kij jkC e   are successively elastic, pie- 
zoelectric and dielectric constants. 

The method of PML takes care of not changing this 
formulation. Indeed, we will see that the calculation pro- 
cess leads to change only material constants. 

2.2. Perfectly Matched Layers 

Let us start with the plane wave of some wave  ,u x t
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equation in infinite space. 

  , e x j k x tu x t A                  (2) 

In Figure 2, the regions of interest are around the ori- 
gin  and extended until 0x  ax . In particular, we will 
focus on the problem in the x  direction (the other 
directions will follow by the same technique). An ab- 
sorbing domain (PML domain, the blue one in Figure 2) 
is added on the side edges of the main mesh from ax  to 

px . 
The PML setting occurs in four conceptual steps, sum- 

marized as follows: 
 Changing x in complex variable; 
 Coordinate transformation allowing back to real x; 
 Transformation of equations in real coordinates into 

complex materials constants; 
 Optimization of PML parameter  and construction of 

the PML region. 

2.3. Changing X in Complex Variable 

The first step is to proceed to change of variable com- 
plex within the whole domain, which transforms the os- 
cillating waves in exponentially decreasing wave in the 
PML area without reflections at the interface with the 
main domain (depicted by the dashed line at ax  in Fig- 
ure 2). Since it must not modify the propagation phase, 
this transform can be written: 

 x x j f x                   (3) 

where  f x  growths from the origin of the absorbing 
area to its end along a defined rate. In the main domain, 
this function is zero thus there is no changes on the FEA 
solution). It is clear that the change of variable has the 
effect of introducing an evanescence of the wave in the  

PML part. The wave model becomes: 

     , e exj k x t kf xu x t A               (4) 

However, since this transform must be efficient for 
any frequency (we represent the problem in the spectral 
domain), it is sense to define this function as follows: 

   
0

1
d

x

f x d x


  x                (5) 

We will see thereafter the absorption function  d x  
that has been chosen and the criteria imposed. 

2.4. Coordinate Transformation Which Allow 
Back to X Real 

The second step, is to perform a coordinate transfor- 
mation to express the complex x as a function of a real 
coordinate. We can easily define the Jacobian transfor- 
mation linking the considered coordinate systems as 
following: 

 
 1 1 1 1

1 x

d xj 1

x j d x x x j x x

 
 

 
             

 (6) 

The entire process of PML can be conceptually 
summed up by this previous transformation of the dier- 
ential equation: In the PML aeras where , the 
oscillating solutions turn into exponentially decaying 
ones. 

  0d x 

In the region of interest  and   0d x  x x , so the 
solution remains unchanged even though the change of 
variable is applied. This is one reason why we do not 
create reflections at the interface ax x . 

The choice to write the absorbing function with a fre- 
quency depedance is motived by looking at what happens 
for the plane wave :  ie kx

 

 

Figure 2. Scheme of PML principle and space domain parting in the x > 0 direction. xa and xp are respectively the lower and 
pper limits of the PML. u  
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   i d d
ie e

k
x x

kx 
    



                (7) 

The term k ω  is equal to 1 xc , the inverse of the 
phase velocity xc  in the x direction. This allows that the 
attenuation rate of the PML is independent of the fre- 
quency ω: all wavelengths decrease at the same rate. 

2.5. Tranformation of Equations in Real 
Coordinates into Complex Materials 
Constants 

Conformably to Zheng and Huang [5], we develop a 
formulation based on the usual piezoelectricity equations, 
yielding significant modifications of the elastic, piezo- 
electric and dielectric constants to account for the ab- 
sorption. 

We now rewrite the elasticity equations in the absorb- 
ing region turning x to x , using then (6) to express the 
result in the initial coordinates. In the new coordinates, 
we have real coordinates and complex materials con- 
stants. 

As in [5], the absorbing effect is assumed along the 
three space directions for the sake of generality. The 
equilibrium equation then reads: 

2 1ij ij
i

j j j

T T
u

x x



 

  
 

            (8) 

where ja  is characterised by its specific function 
 j jd x . ij  and ui respectively represent the dynamic 

stresses and displacements, and ρ is the mass density. 
T

We introduce a non symmetrical stress tensor, ex- 
pressed in the transformed axis: 

1 2 3 1 2 3l l
ij ijkl ijkl ijkl

l

j k j k k

u u
T C C C

k

u

x x x

     
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 






  (9) 

where ijkl  is the transformed elastic constant tensor 
relative to the absorption area. We multiply (8) by 

1 2 3

C

   , thus yielding Newton relation for PMLs in the 
real coordinates 

2 ij
i

j

T
u

x



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


               (10) 

where 1 2 3     is the mass density relative to the 
transformed domain. Given that the obtained form of the 
equilibrium equation complies with the classical expres- 
sion for usual solids, it is allowed to exploit the standard 
FEA formulation. It must however be careful to take into 
account the frequency dependence of the transformed 
tensors (stress and electrical displacement) in the PML 
région. These developments of course can be extended to 
piezoelectricity by rewriting Poisson’s equation and tak- 
ing into account the piezoelectric coupling in the stress 
definition as follows: 

1 2 3 l
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j k
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ijkl kij

k k

u
T C e

kx x

u
C e
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 
       (11) 

Poisson’s equation expressed in the transformed sys- 
tem of axes reads: 

1
0i

i i i

D D

x x
 

0i 
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             (12) 

with i  the electrical displacement vector. To provide 
an homogeneous formulation, we proceed as for the 
stress definition (9), multiplying the electrical displace- 
ment by 

D

1 2 3   , yielding: 

1 2 3
i

i

D
  


 iD                 (13) 

As for the propagation Equation (8), the Poisson’s 
condition is written accounting for these changes as: 

0i

i

D

x







                   (14) 

In the same way as the transformation of the stress ten- 
sor, we introduce the modified piezoelectric and dielec- 
tric constants defined as follows: 
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We now are able to establish a FEA formulation ex- 
ploiting these developments in Equation (16) without 
fundamental changes of the variational formulation de- 
veloped in Equation (1):  
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  

 

     (16) 

As some care must be paid to the truncation of the 
computational region and also to the choice of the ab- 
sorption function, next paragraphs are dedicated to these 
questions. 

2.6. Optimization of PML Parameter and 
Construction of the PML Region 

Once we have performed the PML transformation of the 
FEA formulation, the solutions are unchanged in the re- 
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gion of interest  a x x


 and exponentially decaying in 
the PML regions px x . At the end of the PML do- 
main, the boundary conditions are not important. Indeed, 
even if a hard wall is set on this frontier, the reflected 
waves on it can be neglected after the propagation into 
the PML. 

In order to optimize the operation of the PML, the ab- 
sorption function  must be wisely chosen. We dis- 
cuss here the absorption function and the importance of 
its parameters. 

 d x

In our developments, the absorption function is chosen 
to avoid introducing any brutal change in the physical 
constants. That must be applied as well at the interface 
between the main domain and PML domain as through- 
out the PML area. This signifies it must exhibits deriva- 
tives close to zero at each edge of the PML area, but it 
must continuously vary more rapidly within this area to 
avoid meshing a too long PML zone. We also want this 
function to be even (symmetrical) so it can apply on the 
both sides of a domain centred around . As pro- 
posed in [6], we consider the following form of 

0x 
 d x  

that allows to match all these specifications at once 

 
 
 
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a p

a p
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            
   

x x
 (17) 

with xa and xp the limits of the PML area and n an integer 
controlling the absorption rate. The coefficient max  is 
an adjustable normalisation parameter. This function is 
plotted in Figure 3 to show its compliance to the above 
definition. 

d

With , the first derivates are not zero. So the 
matching coditions are not observed. On the other hand, 
for n too large (for instance, n equal to 4 or 5), the slope 
in the middle of the PML is high and this can lead to 
numerical reflections. Indeed, in the FEA formalism, the 
absorbing function must be numerically integrated on 

1n 

 

 

Figure 3. Comparison between different absorption rates of 
the function d(x). The parameter dmax is equal to 4. 

each elements of the mesh. So, considering Gauss rules, 
a high order polynomial requires more points to con- 
verge. If this condition is not respected, some artifacts 
may appear. 

To highlight, the effects of the pml, Figures 4(a) and 
(b) depict the case without and with PML. We see in 
Figure 4(b) that the mechanical displacement becomes 
close to zero at the end of the PML area by decreasing 
continualy. Unlike in case without PML where the me- 
chanical displacement does not decay. 

In Figure 5, the influence of dmax on the displace- 
ment is demonstrated in the PML domain. We can see the 
importance of choosing the parameter  to obtain 
coherent behavior of PML. For max , the absorb- 
ing function reveals a smoothy behavior providing a con- 
stant decreasing of the wave .along the PML. In contrast, 
for , we see that the displacement seems to be 
inconsistent. This is due to the fact that the increase of 

max  leads to a too brutal change in the rate of absorp- 
tion and induces numerical reflections. 

maxd
610d 

8
max 10d 

d
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Figure 4. (a) x displacement along the whole domain with- 
out PML. (b) Attenuation of the mechanical displacement 
along the PML zone and main domain. 
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Figure 5. Behavior of the displacement along the PML 
region for two different parameters dmax: dmax=106 (in dark 
blue) and dmax=108 (in light blue). 
 

The PML/FEA formalism is achieved for each fre- 
quency point and so is time consuming. Then for practi- 
cal application, we chose 3n   as the best trade-off 
between a strong absorption rate and fast computations. 
The dmax is selected between 106 and 107. 

3. Numerical Tests and Validation 

The efficiency of the PML implemented in FEA is de- 
picted in three parts. First, a 2D-case is investigated 
showing the absorbing due to the PML domain and the 
effects of the effects of the finite lateral size on the be- 
havior of a SAW resonator. Next, the same study is re- 
peated but in a 3D configuration in order to validate the 
general PML approach. At last, a realistic SAW problem 
is addressed by considering the aperture of the resonator 
and absorbing the lateral leaky modes. First, A 2D SAW 
resonator problem is addressed. The geometrical con- 
figuration is depicted in Figure 6. A piezoelectric me- 
dium (quartz YXl/36) is driven by 4 pairs of electrodes. 
The electrodes are non massive and alternatively acti- 
vated with  and . The period is 10 µm. 
The depth of PML on both sides is 35 µm. The hight of 
the mesh is 75 µm. The absorbing parameters are set to 

 and . 

1 VV 

n 

0 VV 

6
max 10d  3
The result of this simulation is shown in Figure 7. We 

depicted the vibrations for the x-displacements in the XY 
plane. The vibrations in both the right and left PML do- 
mains are strongly reduced as and as they enter into. The 
decreasing factor is around 10−5. We also hardly ob- 
served the phenomena of diffraction due to the finite lat- 
eral size of the resonator. Indeed, weak lobes appears at 
the both lateral end of the grating and give rise to bulk 
wave and so losses in the medium. Next, we repeat the 
same simulation as the one depicted in Figure 6 but for a 
3D geometry. The configuration is drawn in Figure 8. 
The piezoelectric is once more quartz YXl/36. The same 
set of non massive electrodes is still powered in the same  

 

Figure 6. Characteristic configuration for finite SAW 
resonators considering the mixed PML/FEA approach. 
Eight non massive electrodes are activated alternatively (V1 
= 1V, V2 = 0V). The width of electrodes is equal to 2.5µm 
and the period of the resonator is set to 10 µm. The 
piezoelectric medium is quartz YXl/36. Its thickness vary 
from zero. On the left and right parts of the scheme, two 
PML domains are set. No boundary conditions are defined 
neither at the top nor at the bottom. Th depth of the 
piezoelectric h is chosen to avoid any interaction with the 
penetrating bulk wave at the bottom interface. dmax = 106 
and n = 3. 
 

x-Displacemen (m) with PML 

 

Figure 7. The vibrations for x-displacement in the XY plane 
for the 2-D problem depicted in Figure 6. The piezoelectric 
medium is quartz YXl/36 activated by eight electrodes 
alternatively powered by V = 1 V and V = 0 V The PML 
domains are delimited by the white dashed line at the let 
and right sides. The frequency is 318 MHz. h = 7e−5 m, dmax 
= 106 and n = 3. 
 

 

Figure 8. Same configuration as in Figure 6 but in 3D-case. 
The z-direction is periodically infinite. So the electrodes are 
infinitly long in the z-direction.Eight non massive electrodes 
are activated alternatively (V1 = 1V, V2 = 0V). h = 7e−5 m, 
dmax = 106 and n = 3. 
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way. The absorbing conditions are also the same. The 
x-displacement obtained by FEA/PML is shown in the 
perspective Figure 9. 

It is clearly demonstrated that the vibration have the 
same absorption as in the 2D-case even if the absorbing 
factor is slightly worse. One more time, the losses in the 
medium can also be observed at the end of the resonator. 
We notice that there is no reflection at the end of the 
mesh for both side edges and bottom boundaries. The last 
configuration highlight a new point to design SAW reso- 
nator. Indeed, up to now, the devices modelings were 
most often considered as 2D systems infinitely periodic 
in the direction of propagation and infinite in the perpen- 
dicular one. We just demonstrate that it is now possible 
to take into account the effects due to finite dimension 
along the direction of propagation. In this part, we depict 
the way to address the problem of real aperture of a SAW 
resonator. In other words, we consider a finite dimension 
in the perpendicular direction of the propagation. In this 
study, the number of electrodes is infinite. The geomet- 
rical configuration is depicted in Figure 10. The materi- 
als properties, excitation and dimensions of the grating 
are still the same as previously in Figure 8. 

We now consider a length of the electrodes equal to 54 
µm for a period in the direction of propagation equal to 
10 µm. The buses on the both right and left gratings are 
infinite along the propagation and 20 µm wide. We also 
assume that the piezoelectric medium continue towards 
the infinity on the both sides of the resonator. The PML 
method allows this assumption. Once again, we show the 
vibration for the x-displacement in the perspective Fig- 
ure 11. The factor of absorption is still very high even if 
we notice a slight decrease. The Ω domain stands for the 
 

 

Figure 9. The vibrations for x-displacement for the 3-D 
problem depicted in Figure 8. The piezoelectric medium is 
quartz YXl/36 activated by eight electrodes alternatively 
excited by V = 1 V and V = 0 V. The PML domains are 
delimited by the white dashed line at the let and right sides. 
The frequency is 318MHz. h = 7 e−5 m, dmax = 106 and n = 3. 

 

Figure 10. Configuration of an infinitely periodic SAW 
resonator in the propagation direction but with finite lateral 
dimension. The z-direction is infinitely periodic and the non 
massive electrodes are alternatively excited with V1 = 1 V 
and V2 = 0 V. The piezoelectric medium is quartz YXl/36. 
The length of electrodes is 54 µm while the period is 10 µm. 
h = 30 µm, dmax = 106 and n = 3. 
 

 

Figure 11. The vibrations for x-displacement for the 3-D 
problem depicted in Figure 10. The piezoelectric medium is 
quartz YXl/36 activated by electrodes excited by V = 1 V 
and V = 0 V. The PML domains are delimited by the white 
dashed line at the let and right sides. The frequency is 318 
MHz. h = 30 µm, dmax = 106 and n = 3. 
 
physical space in which the SAW is generated. We ob- 
serve the Rayleigh wave in the middle of Ω. On each side 
of this vibration, the presence of the buses is denoted by 
two maxima of displacement. These displacements give 
rise to a lateral mode which is reflected on the side edges 
if there is no activated PML. But, in Figure 11, all PML 
are turned on. So, the lateral modes can be detected at the 
very end of the Ω area, just before the PML domains. 
However, due to the presence of the PML, this mode does 
not reflect on the side edges and moreover its amplitude 
decreases at the time it progress in the PML from the 
beginning to the end where it almost vanishes by them. 

These three results show the efficiency of the combin- 
ing of PML and FEA to simulate the effects due to the 
consideration of the real length or width of a SAW reso- 
nator. Thus, using this kind of method, we are able to 
simulate realistic effects in SAW. This method can also 
be applied to other kind of resonator. 

4. Conclusion 

Perfectly Matched Layer method has been developed for 
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wave equations: elastics wave in solids and piezoelectric 
materials. This is, in the context of a periodic Finite 
Element Analysis code. In this work, we demonstrated a 
PML method well adapted to the FEA. The ability to 
absorb the outgoing wave from a resonator has been 
highlighted for different configurations. First, a 2D-sys- 
tem of SAW resonator was address and we noticed that 
all the waves going into the PML are absorbed. The lobes 
of diffraction due to the ends of the grating were also 
observed. Next, the comparison between the 2D-results 
and 3D-ones in the same configuration allow us to vali- 
date complete PML approach. At last, we displayed the 
influence of the lateral modes for a real model of SAW 
resonator considering the length of the electrodes as well 
as the buses. We must also note that this absorbing 
method could be coupled with the BEM to consider most 
configurations for any kinds of acoustics devices. 
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