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ABSTRACT 

Based on the idea that different temperatures generate different conduction electron densities and the resulting carrier 
diffusion generates the thermal electromotive force (emf), a new formula for the Seebeck coefficient (thermopower) S is 

obtained:   2 3 ln 2S k  1
q 

0F Bn  , where Bk 0, , ,Fq n is the Boltzmann constant, and    are charge, carrier 

density, Fermi energy, density of states at F , respectively. Ohmic and Seebeck currents are fundamentally different in 

nature, and hence, cause significantly different behaviors. For example, the Seebeck coefficient S in copper (Cu) is 
positive, while the Hall coefficient is negative. In general, the Einstein relation between the conductivity and the 
diffusion coefficient does not hold for a multicarrier metal. Multi-walled carbon nanotubes are superconductors. The 
Seebeck coefficient S is shown to be proportional to the temperature T above the superconducting temperature Tc based 

on the model of Cooper pairs as carriers. The S follows a temperature behavior,  1 2

gT T

constantgT  

 T

S T , where 

, at the lowest temperatures. 

 
Keywords: Thermoelectric Power (Seebeck Coefficient); Multi-Walled Carbon Nanotubes; The Model of 

Cooper Pairs 

1. Introduction 

In 2003 Lu et al. and Kang et al. [1,2] observed a logari- 
thmic temperature -dependence of the seebeck coef- 
ficient S in multiwalled carbon nanotubes (MWNTs) at 
low temperatures. Their data are reproduced in Figure 1 
after Ref. [2], Figure 2, where S T

,  20 K.T 

,  20 K.T T 

graphite

0,   150 K,

constant 0,    150 K.

T
S

T

 
   

 are plotted on a loga- 
rithmic temperature scale. Above 20 K the S is propor- 
tional to T: 

S T               (1) 

Below 20 K the curves follow the logarithmic be- havior: 

lnS T             (2) 

The data are shown for three samples with different 
doping levels: A, B and C. If a system of free electrons 
with a uniform distribution of impurities is considered, 
then the Seebeck coefficient, also called the thermo- 
electric power, S is temperature-independent which will 
be shown in Section 2. Hence the T-behavior in both 

Equations (1) and (2) are unusual. If the Cooper pairs 
(pairons) [3] are charge carriers and other conditions are 
met, then both Equations (1) and (2) are explained micro- 
scopically, which is shown in the present work. 

The extended data up to 300 K obtained by Kang et al. 
[2] are shown in Figure 2, after Ref. [2], Figure 1. In the 
upper panel the S of MWNT is shown, indicating a clear 
suppression of S from linearity below 20 K at the lower- 
right inset. In the lower panel, the Seebeck coefficient S 
of highly oriented pyrolytic graphite (HOPG), single cry- 
stal, is shown. This S is negative (“electron”-like) at low 
temperatures and become positive (“hole”-like) and con- 
stant above 150 K: 

      (3) 

The “electron” (“hole”) is a quasi-electron which has 
an energy higher (lower) than the Fermi energy and 
which circulates counterclockwise (clockwise) viewed 
from the tip of the applied magnetic field vector. “Elec-  *Corresponding author. 
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Figure 1. Low temperature seebeck coefficient S of MWNTs 
plotted as S/T on a logarithmic temperature scale (repro- 
duced from Ref. [2], Figure 2). 
 

 

Figure 2. Upper panel: The temperature dependence of 
thermoelectric power of MWNTs at several doping levels. 
The suppression of TEP from linearity at low temperatures 
is clearly shown in the lower-right inset (the line represents 
a linear T dependsnce). Lower Panel: The thermoelectricic 
power of HOPG single crystal and glassy carbons. No sup- 
pression can be recognized for both as  (reproduced 
from Ref. [2], Figure 1). 

T 0

j

 
trons” (“holes”) are excited on the positive (negative) 
side of the Fermi surface with the convention that the 
positive normal vector at the surface points in the energy- 
increasing direction. Graphite is composed of ABAB- 
type graphene layers. The different T-behaviors for gra- 
phite (3D) and MWNT (2D) should arise from the dif- 

ferent carriers. We will show that the majority carriers in 
graphene and graphite are “electrons” while the majority 
carriers in MWNT are “holes” based on the Cartesian 
unit cell model, which is shown in Sections 4 and 5. In 
this paper, conduction electrons are denoted by quotation 
marked “electrons” (“holes”) whereas generic electrons 
are denoted without quotation marks. 

2. Theory of the Seebeck Coefficient in a 
Metal 

When a metallic bar is subjected to a voltage (V) or 
temperature (T) difference, an electric current is gene- 
rated. For small voltage and temperature gradients we 
may assume a linear relation between the electric current 
density  and the gradients: 

    ,V A T A T       j E

V

    (4) 

where  E  is the electric field and   the con- 
ductivity. If the ends of the conducting bar are main- 
tained at different temperatures, no electric current flows. 
Thus from Equation (4), we obtain 

0,S A T   E               (5) 

where SE  is the field generated by the Seebeck electro- 
motive force (emf). The Seebeck coefficient S is defined 
through 

,  .S S T S A   E             (6) 

The conductivity   is positive, but the Seebeck co- 
efficient S can be positive or negative. The measured 
Seebeck coefficient S in Al at high temperatures (400˚C - 
670˚C) is negative, while the S in noble metals (Cu, Ag, 
Au) are positive as shown in Figure 3. 

Based on the classical idea that different temperatures 
generate different electron drift velocities, we obtain 

,
3

c
S

ne
  

c

                 (7) 

  is the heat capacity per unit volume and n the where 
 

 

Figure 3. High temperature Seebeck coefficients above 
400˚C for Ag, Al, Au, and Cu. The solid and dashed lines 
represent two experimental data sets. Taken from Ref. [4]. 
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electron density. Setting  equal to c 3 2Bnk , we ob- 
tain the classical formula for : S

4 1
classical 0.43 10 VK 143 VK

2
Bk

S
e

.         

S

 (8) 

Observed Seebeck coefficients in metals at room tem- 
perature are of the order of microvolts per degree (see 
Figure 3), a factor of 10 smaller than classical . If we 
introduce the Fermi-statistically computed heat capacity 
[5] 

   21
π ,B Fnk T T

 

21
π

2 2B B Fc nk k T     (9) 

where F FT   is the Fermi energy (temperature), in 
Equation (7), we then obtain 

semi quantumS  
π

.
6

B B

F

k k T

e 
 
 
 

q e
e m

      (10) 

This formula for S is often quoted in materials hand- 
book [4]. Formula (10) remedies the difficulty with re- 
spect to the magnitude. But the correct theory must ex- 
plain the two possible signs of S besides the magnitude. 

We assume that the carriers are conduction electrons 
(“electron”, “hole”) with charge  (   for “electron”, 

 for “hole”) and effective mass . Assuming a 
one-component system, the Drude conductivity   is 
given by  

2

,
nq

m

 

n

                (11) 

where  is the carrier density and   the mean free 
time. We observe from Equation (11) that   is always 
positive irrespective of whether  or q e  e . The 
Fermi distribution function f is 

      1
 ,Bf k T 

1
; , ,

e 1  
  





    (12) 

where   is the chemical potential whose value at 0 K 
equals the Fermi energy F . The voltage difference 

, with  being the sample length, generates 
the chemical potential difference 

V  LE L


.FT T

, the change in f, 
and consequently, the electric current. Similarly, the tem- 
perature difference  generates the change in f and 
the current. 

T

At 0 K the Fermi surface is sharp and there are no 
conduction electrons (“electrons”, “holes”). At a finite T, 
“electrons” (“holes”) are thermally excited near the 
Fermi surface if the curvature of the surface is negative 
(positive), see Figures 4 and 5. 

We assume a high Fermi degeneracy: 

                  (13) 

Consider first the case of “electrons”. The number of 
thermally excited “electrons”, x

 

Figure 4. More “electrons” (dots) are excited above the 
Fermi surface (solid line) at the high temperature end: 

 2 1T T . The shaded area denotes the electron-filled states. 

“Electrons” diffuse from 2 to 1. 
 

 

Figure 5. More “holes” (open circles) are excited below the 
Fermi surface at the high temperature end:  2 1T T

   

. 

“Holes” diffuse from 2 to 1. 
 
culated as 

 

 

0

1
0

0

1 1
d d

e 1 e 1

ln 1 e

ln 2 ,

F F

F

x

B

N

k T

     
 

  



  



 

 


 

 
 

      



 N N

N
N

  (14) 

 0 F

N , having energies 
greater than the Fermi energy F  is defined and cal-  

where N N  and N  is the density of states. 
The excited “electron” density x , where n N    is 
the sample volume, is higher at the high-temperature end, 
and the particle current runs from the high- to the low- 
temperature end. This means that the electric current runs 
towards (away from) the high-temperature end in an 
“electron” (“hole”)-rich material. After using Equations 
(1) and (14), we obtain 

0  for  "electrons",

0 for  "holes".

S

S




particle ,q qD n

           (15) 

The Seebeck current arises from the thermal diffusion. 
We assume Fick’s law: 

   j j           (16) 

where D is the diffusion constant, which is computed 
from the kinetic-theoretical formula: 

21 1
,  ,  ,F FD vl v v v l v

d d
         (17) 
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where  is the dimension. The density gradient d n   can be understood by examining the current-carrying 
steady state in Figure 6(b). The electric field 

  is 
generated by the temperature gradient , and is given 
by  

E  dis- 
places the electron distribution by a small amount 

T

1qE  from the equilibrium distribution in Figure 
6(a). 0

0 0,  T   
N

2
02 .F BA qv k

ln 2
Bn k

d
          (18) 

where Equation (14) is used. Using the last three equ- 
ations and Equation (11), we obtain 

ln                 (19) 

Using Equations (11), (13) and (19), we obtain 

0

1
.F BS k

d qn


 
 
 


2ln 2A


         (20) 

The mean free time   cancels out from numerator 
and denominator. 

The derivation of our formula [Equation (20)] for the 
Seebeck coefficient S was based on the idea that the 
Seebeck emf arises from the thermal diffusion. We used 
the high Fermi degeneracy condition (13): F . The 
relative errors due to this approximation and due to the 
neglect of the T-dependence of 

T T

  are both of the order 
 2
k TB F . Formula (20) can be negative or positive, 

while the materials handbook formula (10) has the 
negative sign. The average speed  for highly de- 
generate electrons is equal to the Fermi velocity 

v

Fv

S

 ijmM M



 
(independent of ). In Ashcroft and Mermin’s book [5], 
the origin of a positive  in terms of a mass tensor  

T

 is discussed. This tensor  is real and sym-  

metric, and hence, it can be characterized by the principal 
masses jm S

T
T

  1
.HR qn

. Formula for  obtained by Ashcroft and 
Mermin (Equation (13.62) in Ref. [5]), can be positive or 
negative but is hard to apply in practice. In contrast our 
formula (20) can be applied straightforwardly. Besides 
our formula for a one-carrier system is -independent, 
while the AM formula is linear in . 

Formula (20) is remarkably similar to the standard for- 
mula for the Hall coefficient of a one-component system: 



q

m  n

               (21) 

Both Seebeck and Hall coefficients are inversely pro- 
portional to charge , and hence, they give important 
information about the carrier charge sign. In fact the 
measurement of the S of a semiconductor can be used to 
see if the conductor is n-type or p-type (with no magnetic 
measurements). If only one kind of carrier exists in a 
conductor, then the Seebeck and Hall coefficients must 
have the same sign as observed in alkali metals. 

Let us consider the electric current caused by a voltage 
difference. The current is generated by the electric force 
that acts on all electrons. The electron’s response de- 
pends on its mass . The density  dependence of 

Since all the conduction electron are displaced, the 
conductivity   depends on the particle density . The 
Seebeck current is caused by the density difference in the 
thermally excited electrons near the Fermi surface, and 
hence, the thermal diffusion coefficient 

n

A  depends on 
the density of states at the Fermi energy, 0  [see Equ- 
ation (19)]. We further note that the diffusion coefficient 

 does not depend on 



D m  directly [see Equation (17)]. 
Thus, the Ohmic and Seebeck currents are fundamentally 
different in nature. 

For a single-carrier metal such as sodiuml (Na) which 
forms a body-centered-cubic (bcc) lattice, where only 
“electrons” exist, both HR  and S are negative. The Ein- 
stein relation between the conductivity   and the dif- 
fusion coefficient D holds: 

.D                   (22) 

Using Equations (11) and (17), we obtain 
2

2 2

3 2
,

3
F FvD

q n m q n

 
   

0  for  Cu,  Al,  Ag,S 

         (23) 

which is a material constant. The Einstein relation is 
valid for a single-carrier system. 

3. Simple Applications 

We consider two-carrier metals (noble metals). Noble 
metals including copper (Cu), silver (Ag) and gold (Au) 
form face-centered cubic (fcc) lattices. Each metal con- 
tains “electrons” and “holes”. The Seebeck coefficient S 
for these metals are shown in Figure 3. The S is positive 
for all: 

          (24) 

indicating that the major carriers are “holes”. The Hall 
coefficient HR

0  for  Cu,  Al,  AgHR

 is known to be negative: 

.           (25) 

 

 

Figure 6. Due to the electric field E pointed in the negative 
x-direction, the steady-state electron distribution in (b) is 
generated by a translation of the equilibrium distribution in 
(a) by the amount  eE1  . 
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Clearly the Einstein relation (22) does not hold since the 
charge sign is different for  and S HR . This compli- 
cation was explained by Fujita, Ho and Okamura [6] 
based on the Fermi surfaces having “necks” (see Figure 
7). The curvatures along the axes of each neck are posi- 
tive, and hence, the Fermi surface is “hole”-generating. 
Experiments [7-9] indicate that the minimum neck area 

111A  (neck) in the -space is k 1 5  of the maximum 
belly area 111

1
A  (belly), meaning that the Fermi surface 

just touches the Brillouin boundary (Figure 7 exagge- 
rates the neck area). The density of “hole”-like states, 

hole  associated with the ,n 111  necks, having the 
heavy-fermion character due to the rapidly varying Fermi 
surface with energy, is much greater than that of “elec- 
tron”-like states, electron , associated with the n 100

S

1m

 
belly. The thermally excited “hole” density is higher than 
the “electron” density, yielding a positive . The prin- 
cipal mass  along the axis of a small neck  

 1 1m p  

 1m 

1 2 2  is positive (“hole”-like) and extremely  

large. The “hole” contribution to the conduction is small 
. Then the “electrons” associated with the 

nonneck Fermi surface dominate and yield a negative 
Hall coefficient HR . 

The Einstein relation (22) does not hold in general for 
multi-carrier systems. The currents are additive. The ratio 
D   for a two-carrier system containing “electrons” (1) 
and “holes” (2) is given by  

   
   

2 2
2 2

2
2 2 2 2

1 3
,

v v

q n m

 1 1
2
1 1 1 1

1 3D

q n m  





     (26) 

which is a complicated function of  
     1 2, ,m m n n v v1 2 1 2 , and  1 2  . In particular the 
mass ratio 1 2  may vary significantly for a heavy 
fermion condition, which occurs whenever the Fermi 
surface just touches the Brillouin boundary. An experi- 
mental check on the violation of the Einstein relation can 
be carried out by simply examining the T dependence of 
the ratio 

m m

D  . This ratio D   depends on T since the 
generally T-dependent mean free times  1 2,   arising 
 

 

Figure 7. The Fermi surface of silver (fcc) has “necks”, with 
the axes in the 111

m

 direction, located near the Brillouin 

boundary, reproduced after Refs. [7-9]. 

from the electron-phonon scattering do not cancel out 
from numerator and denominator. Conversely, if the 
Einstein relation holds for a metal, the spherical Fermi 
surface approximation with a single effective mass   
is valid. 

4. Graphene and Carbon Nanotubes 

Graphite and diamond are both made of carbons. They 
have different lattice structures and different properties. 
Diamond is brilliant and it is an insulator while graphite 
is black and is a good conductor. In 1991 Iijima [10] 
discovered carbon nanotubes in the soot created in an 
electric discharge between two carbon electrodes. These 
nanotubes ranging 4 to 30 nanometers (nm) in diameter 
are found to have helical multi-walled structure. The tube 
length is about one micron (μm). Single-wall nanotubes 
(SWNT) were fabricated first by Iijima and Ichihashi [11] 
and by Bethune et al. [12] in 1993. The tube size is about 
one nanometer in diameter and a few microns in length. 
The scroll-type tube is called the multi-walled carbon 
nanotube (MWNT). The tube size is about ten nanome- 
ters in diameter and a few microns (μ) in length. Un- 
rolled carbon sheet are called graphene, which has a 
honeycomb lattice structure as shown in Figure 8. 

We consider a graphene which forms a two-dimen- 
sional (2D) honeycomb lattice. The normal carriers in the 
electrical charge transport are “electrons” and “holes”. 
Following Ashcroft and Mermin [5], we assume the 
semiclassical (wave packet) model of a conduction elec- 
tron. It is necessary to introduce a -vector: k

x y zk k k  k i j k

k

             (27) 

since the -vector is involved in the semiclassical 
equation of motion: 

 d
,

d
q

t
   

k
k E v B         (28) 

 

 

Figure 8. The Cartesian unit cell (dotted line) contains four 
(4) C’s (open circles). 
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where E  and  are the electric and magnetic fields, 
respectively. The vector 

B

1 



v

k
                 (29) 

is the particle velocity, where   is the particle energy. 
For some crystals such as simple cubic, face-centered 
cubic, body-centered-cubic, tetragonal, and orthorhombic 
crystals, the choice of the orthogonal  , ,x y z

 e e 

-axes and 
the unit cells are obvious. The 2D crystals such as 
graphene can also be treated similarly, only the z-com- 
ponent being dropped. We will show that graphene has 
“electrons” and “holes” based on the rectangular unit cell 
model. 

We assume that the “electron” (“hole”) wave packet 
has the charge  and a size of a unit carbon hex- 
agon, generated above (below) the Fermi energy F . 
We will show that (a) the “electron” and “hole” have dif- 
ferent charge distributions and different effective masses, 
(b) that the “electrons” and “holes” are thermaly ac- 
tivated with different energy gaps  1 2,  , and (c) that 
the “electrons” and “holes” move in different easy chan- 
nels in which they travel. 

The positively-charged “hole” tends to stay away from 
positive ions C+, and hence its charge is concentrated at 
the center of the hexagon. The negatively charged elec- 
tron tends to stay close to the C+ hexagon and its charge 
is concentrated near the C+ hexagon. In our model, the 
“electron” and “hole” both have sizes and charge distri- 
butions, and they are not point particles. Hence, their 
masses 1  and 2  must be different from the gravi- 
tational mass m = 9.11 × 10−28 g. Because of the different 
internal charge distributions, the “electrons” and “holes” 
have the different effective masses 1  and 2 . The 
“electron” may move easily with a smaller effective mass 
in the direction 

m m

m m

   110 c

k

- 11axis 0  than perpen-dicular 
to it as we see presently. Here, we use the conventional 
Miller indices for the hexagonal lattice with omission of 
the -axis index. For the description of the electron mo- 
tion in terms of the mass tensor. It is necessary to intro- 
duce Cartesian coordinates, which do not match with the 
crystal’s natural (triangular) axes. We may choose the 
unit cell as shown in Figure 8. Then the Brillouin zone 
boundary in the  space is a rectangle with side lengths 

c

 2π , 2πb c . The “electron” (wave packet) may move 
up or down in  110  to the neighboring hexagon sites 
passing over one C+. The positively charged C+ acts as a 
welcoming (favorable) potential valley center for the ne- 
gatively charged “electron” while the same C+ acts as a 
hindering potential hill for the positively charged “hole”. 
The “hole” can however move easily horizontally with- 
out meeting the hindering potential hills. Then, the easy 
channel directions for the “electrons” and “holes” are 
 110  and  001

-

, respectively. 

Let us consider the system (graphene) at 0 K. If we put 
an electron in the crystal, then the electron should occupy 
the center O of the Brillouin zone, where the lowest en- 
ergy lies. Additional electrons occupy points neighboring 
O in consideration of Pauli’s exclusion principle. The 
electron distribution is lattice-periodic over the entire 
crystal in accordance with the Bloch theorem. The upper- 
most partially filled bands are important for the transport 
properties discussion. We consider such a band. The 2D 
Fermi surface which defines the boundary between the 
filled and unfilled k space (area) is not a circle since the 

-x y mmetry is broken. The “electron” effective mass 
is smaller in the direction 

 sy
 110  than perpen r to it. 

That is, the system has two effective masses and it is 
intrinsically anisotropic. If the electron number is raised 
by the gate voltage, then the Fermi surface more quickly 
grows in the easy-axis 

dicula

 y  direction, say  110  tha  
the 

n in
x -directio ., n, i.e  001 . The ermi surface mu - 

proach the Brillouin boundary at right angles because of 
the inversion symmetry possessed by the honeycomb 
lattice. Then at a certain voltage, a “neck” Fermi surface 
must be developed. 

The same

F st ap

 easy channels in which the “electron” runs 
with a small mass, may be assumed for other hexagonal 
directions,  001  and  101 . The currents run in three  
channels    11 110 ,  and 0 011 101 . The effective  

electric fie j  is r ed by the direc- ld along a channel educ
tional cosine    cos , cosj   between the field di- 
rection   and t tion j . The current is 
reduced  the same factor in the Ohmi conduction. The 
total current is the sum of the channel currents. Then its 
component along the field direction is proportional to 

he channel direc
 by c 

 2cos , j

   
channel

2 2 2cos cos 2π 3 cos 2π 3

3 2.

j

      





  (30) 

There is no angle    dependence. The number  3 2  
re r bypresents the fact that the current density is highe  
this factor for a honeycomb lattice than for the square 
lattice. The “holes” run in three easy channels  

   100 100 , 010  and  001 . (We note that the chan- 
nel directions are se by parated 2π 3 .) The total currents 
run isotropically for the “holes”,

We have seen that the “electron”
 too. 

 and “hole” have 
different internal charge distributions and therefore have 
different effective masses. Which carriers are easier to be 
activated or excited? The “electron” is near the positive 
ions and the “hole” is farther away from the ions. Hence, 
the gain in the Coulomb interaction is greater for the 
“electron”. That is, the “electrons” are more easily ac- 
tivated (or excited). The “electrons” move in the wel- 
coming potential-well channels while the “holes” do not.  
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This fact also leads to the smaller activation energy for 
the “electrons”. We may represent the activation energy 
   difference by  

1 2.                (31) 

From this we conclude that “electr

ated electron densities are then 
gi

ons” are the majority 
carriers in graphene. The same holds in graphite, which 
is shown in Appendix. 

The thermally activ
ven by [13] 

  e ,j Bk T
j jn

              (32) 

where 1j   and 2 represent the “e

n T

lectron” and “hole”, 
respectively. The prefactor jn  is the density at the high 
temperature limit.  

5. Conduction in Multi-Walled Carbon 

M -ended. Hence, each pitch is likely to 

 based on the same Cartesian unit 
ce

 

Nanotubes 

WNTs are open
contain an irrational number of carbon hexagons. Then, 
the electrical conduction of MWNT is similar to that of 
metallic SWNT [14]. 

Phonons are excited
ll as the conduction electrons in the carbon wall. The 

phonon exchange interaction bounds Cooper pairs, also 
called pairons [3]. 

The conductivity   based on the pairon carrier mo- 
de

p          (33) 

l is calcullated as follows. The pairons move in 2D 
with the linear dispersion relation [3]: 

  ,jc p         

     2 π ,j j
Fc v             (34) 

where  j
Fv  is the Fermi velocity 

“elect ”-pairs. The velocity v  is 
gi

of the “electron” 
 1j  ole”  2j  ]. 

ider first ron
 [“h

Cons
ven by (omitting superscript) 

 or  p p ,x
x

x

pp
v c

p p p


  

  
v

p
       (35) 

where we used Equation (33) for th  energy 

  

e pairon p  
and the 2D momentum,  

 1 22 2
x yp              (36) 

The equation of motion along the
th

p p 

 electric field E  in 
e x -direction is 

,xp
q E

t

 


                (37) 

where q charge 2e  of a pairon. The solution 
ti y 

 0 ,x xt p              (38) 

where  0

 is the 
of Equa on (37) is given b

p q E

xp  is the initial momentu
current density j  is calculated from 

m component. The 
p

     charge number density average velocitypq n v   .  

The average velocity v  is calculated by using Equatio
(35) and Equation (38) with the assumption that the pair 

n 

is accelerated only for the mean free time   and the 
initial-momentum-dependent terms are averaged out to 
zero. We then obtain 

2 .x
p pq n c q n E

p pp p

p c
j q n v          (39) 

For stationary currents, the partial pairon density pn  
is given by the Bose distribution function  f p : 

,    1
exp 1p p pn f   


           (40) 

where e  is the fugacity. Integrating the current pj  
over all 2D p -space, and using Ohm’s law j E , we 

or obtain f the conductivity  : 

  2 2 2 12π dq   .pc pp f         (41) 

In the low temperatures we may assume
mann distribution function for  

  

 the Boltz- 
f p : 

   exp .pf p             (42) 

We assume that the relaxation time
phonon scattering so that 

,  constant.a           (43) 

After performing the p -integration w
Equation (41) 



 arises from the 

  1
aT 

e obtain from 

22 k
2

e ,
π

Be

a
 


              (44) 

which is temperature-independent
trons” and “hole” pairons, they contribute additively to 

d 

 S of 
MW  that the S is proportional to 

cu nt density: 

. If there are “elec- 

the conductivity. These pairons should undergo a Bose- 
Einstein condensation at lowest temperatures. 

6. Seebeck Coefficient in Multi-Walle
Carbon Nanotubes 

We are now ready to discuss the Seebeck coefficient
NT. First, we will show

the temperature T above the superconducting temperature 

cT . 
We start with the standard formula for the charge 
rre

,q nj v                  (45) 

where v  is the average veloc
temperature T and the particle d

ity, which is a function of 
ensity n: 

 , .n Tv v                (46) 
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We assume a steady state of th
tem

e system in which the 
perature T varies only in the x -direction while the 

density is kept constant. The temperature gradient 
T x   generates a current: 

 ,v n T T
j q n

  .x
T x


 

       (47) 

The thermal diffusion occurs locally. We may choose 
x  to be a mean free path: 

.x l v                 (48) 

The cu  density, rrent pj , at the 2
rated

D pairon momentum 
tp , which is gene  by the temperature gradien  

T x  , is thus given by 

 , .p x p pq n v n T q n v
T xp

v T
j  
  

 
    (49) 

Integrating Equation (49) er all 2D p -sov pace and 
comparing with Equation (4), we obtain 

   

   2 22π d .

p

x
p

T
pv

q c p f
T p

 2 22π d x

v
A q pv f

 



 

   (50) 

We compare this integral with the integral in Equation 

  

(41). It has an extra factor in p  and generates therefore 
an extra factor T  when the Boltzmann distribution  

function is adopted for  pf  . Thus, we obtain, using  

Equations (41) and (50), 

.
A

T


                 (51) 

We next consider the system b

S

elow the superconduct- 
ing temperature cT . The supercurrents arising from the 
condensed pairons generate no thermal diffusion. But 
non-condensed pairons can be scattered by impurities 
and phonons, and contribute to a thermal diffusion. Be- 
cause of the zero-temperature energy gap 

,g B gk T                  (52) 

generated by the supercondensate, the population of the 
non-condensed pairons is reduced by the Boltzmann- 
Arrhenius factor  

   exp exp .g B gk T T T       (53) 

This reduction applies only for the conductivity (but not 
for the diffusion). Hence we obtain the Seebeck coef- 
ficient: 

  .
exp g

S
T T

 


        (54) 

In the experiment [1,2] MWNT bundle

A T

s containing 
hundreds of individual nanotubes are used. Both circum- 
ference and pitch have distributions. Hence, the energy  

gap  g B gk T   has a distribution. 

. [2] m  G , which is Kang easured the conductance
prop he conductivity 

et al
ortional to t  , of the MWNT sam- 

pl ft
e

es. Their data are reproduced in Figure 9, a er Ref. [2], 
Figure 3, where the conductanc  G  as a function of 
temperature is plotted on a logarithmic scale. 

The G  arising from the conduction electron in each 
MWNT carries an Arrhenius-type exponential 

   exp exp ,a B a a B ak T T T k T        (55) 

where a  is the activation energy. This energy a  has 
circum- 


a distribution since the MWNT have varied 

s  oference and pitches. The temperature behavior f G  
for the bundle of MWNT is seen to be represented by 

  1 2
ln aG T T

                (5 ) 6

in the range: 5 - 20 K. The electron-activation energy a  
ergy gap and the zero-temperature pairon en g  are dif- 

ferent from each other. But they have the same orders  
magnitude and both are temperature-indepe ent. We 
assume that the distributions are similar. We may then 

replace 

 of
nd

 

 exp gT T  in Equation (54) by  1 2

gT T ,  

Seebec of Mobtaining the oefficient for a bundle - 
NTs 

k c W

 1 2A bundle ,gS T T T


          (57) 

or 

bundleln ln below 20 K,S T T      (58) 

ch is observed in Figure 1. 
The data in Figure 1 clearly indicates a ph

whi
ase change 

at the temperature 

0 20 K.T                 (59) 

We now discuss the connection be
superconducting temperature T . 

tween this 0T  and the 
We deal with a thermal c

 

 

Figure 9. The conductance G of the multi-walled carbon 
nanotube samples as a function of temperature (after Ref. 
[2], Figure 3). 
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diffusion of the MWNT bundle. The diffusion occurs 
most effectively for the most dissipative samples which 
correspond to those with the lowest superconducting 
temperatures. Hence, the 0T  observed can be interpreted 
as the superconducting temperature of the most dissipa- 
tive samples. 

In contrast the conduction is dominated by the least 
dissipative samples having the highest T . Figure 3 
sh

c

 samples. 
By considering moving pairo

 Seebeck coefficient S above the 

ows a clear deviation of G  around 120 K from the 
experimental law: lnG T . We may interpret this as an 
indication of the limit of the superconducting states. We 
then obtain 

 120 KcT                  (60) 

for the good

 
 

Figure 10. The Cartesian unit cell (white solid lines) viewed 
e top. The carbons (circles) in the A (B) planes are 

own in blue (orange). 
ns we obtained the T- 

linear behavior of the
superconducting temperature Tc and the lnT T -behavior 
of S  at the lowest temperatures. The energy gap g  
vanishes at cT . Hence, the temperature behaviors should 
be smooth and monotonic as observed in Figure 1. This 
supports our interpretation of the data based on the 
superconducting phase transition. The doping changes 
the pairon density and the superconducting temperature. 
Hence the data for A, B and C in Figure 1 are rea- 
sonable. 

7. Conduction Electrons in Graphite 

Graphite is composed of graphene layers stacked in the 
choose a manner ABAB  along the c -axis. We may 

Cartesian unit cell as shown in Figure 10. 
The rectangle (white solid line) in the A plane (blue) 

contains six (6) C’s wholely within and four (4) C’s at 
sides. The side C’s are shared by neighbors. Hence the 
total number of C’s is 6 1 4 1 2 8    . The rectangle in 
the B plane (orange) contains five (5) C’s within and four 
(4) C’s at sides and four (4) C’s at corners. The total 
number of C’s is 5 1 4 1 2 4 1 4 8      . The unit cell 
contains 16 C’s. The two rectangles are stacked vertically 
with the interlayer separation, 3.35c  Å much greater 
than the nearest neighbor distance between two C’s, 

0 1.42a  Å. The unit cell has three side-lengths: 

0

1 0 2 0 3 03 ,  2 3 ,  2 .b a b a b c           (61) 

nter of the unit cell is empty. Clearly, theThe ce  system
is periodic along the orthogonal directions

ummary 

hite are welcom
oving in rection 

 
 with the three 

periods  1 2 3, ,b b b  given in Equation (61). We assume 
that both “electron” and “hole” have the same unit cell 
size. In s the system is orthorhombic with the 
sides  1 2 3 1 2 1 3 2 3, , , , , .b b b b b b b b b    

The negatively charged “electron” (with the charge −e) 
in grap ed by the positively charged C 
when m  the di 110  just as in graphene.  

from th
sh
 
That is, the easy directions for the “electrons” are 110 . 
Similarly, the easy directions for the “holes” are 100 .  

There are no hindering hills for “holes” moving in 
100 . Hence just as graphene, the “electron” in g e raphit

has the lower activation energy   than the “hole”:  

1 2.                  (62) 

Then, the “electrons” are the majority carriers in 
graphite. 
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