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Abstract 
 
The Hailar River, a first-grade tributary of the Erguna River that borders China and Russia, is the main water 
source for the local industry and agriculture. However, because there are only 11 flow gauging stations and 
those stations cannot monitor all runoff paths, it is hard to directly use the existing flow data to estimate the 
annual runoffs from all subbasins of interest although such estimation is needed for utilization and protection 
of the water resources in the Hailar River. Thus, this study implemented an indirect approach (i.e., regional 
regression model) by correlating annual runoff with annual rainfall and water surface evaporation as well as 
hydrologic characteristics of the 11 subbasins monitored by the gauging stations. The study used 51 years 
(from 1956 to 2006) data. The results indicated a significant correlation (R2 > 0.87) between annual runoff 
and the selected subbasin characteristics and showed the model to be robust because the predicted runoffs for 
the validation period are compatible with the corresponding observed values. In addition, this model was 
used to estimate the annual runoffs for the subbasins that are not monitored by the 11 flow gauging stations, 
which adds new information to existing literature. 
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1. Introduction 
 
While the availability of hydrological (e.g., flow) data is 
crucial for water resources planning and management, 
most rivers in developing countries, including China, do 
not have sufficient data partially due to poorly main-
tained monitoring networks [1-3]. In addition, it is al-
most impractical to monitor all subbasins of interest 
within large basins [4], such as the 54,805 km2 Hailar 
River basin located in northeastern China. Thus, re-
searchers developed and/or used various methods to es-
timate runoff from ungauged basins/subbasins. Those 
methods include sophisticated simulation models as well 
as simple statistics models. In practice, simple models 

have been widely used by water agencies to estimate 
annual runoff at a regional scale. 

Among the simple models, the simplest methods 
transfer streamflow from a nearby hydrologically similar 
basin by assuming the runoff per unit drainage area is 
constant [5], or directly uses a runoff map [6-9]. The 
other approaches use multiple regression techniques to 
exploit the spatial relationship between annual runoff and 
readily measured basin characteristics, such as rainfall, 
potential evapotranspiration, drainage area, land use, and 
geomorphology. For example, a research related annual 
runoff to geomorphic and climate characteristics for 
three selected basins in western, central and southern U.S. 
[5], for one basin in western U.S. [10], for one basin in 
northeastern U.S. [11], for several areas in South Dakota 
[12], for whole U.S. [13], and for the state of New Eng-
land [14,15]. 
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Also the basin characteristics can be easily determined 
using remote sensing (RS) and geographic information 
systems (GIS) [16-18], greatly facilitating the application 
of these approaches. For example, a GIS-based rainfall- 
runoff model with independent variables of rainfall, land 
use, and soil characteristics was adopted for the Tapi 
River basin, India [19], and a GIS model was exploited 
to estimate basin geomorphological, geological, soil, and 
climatic characteristics for predicting total streamflow 
[20]. 

However, a study similar with the researches men-
tioned above is lacking for the Hailar River basin, which 
is located in an undeveloped area of northeastern China, 
and has limited hydrologic data. The objectives of this 
study were to: 1) develop a regional regression model for 
estimating annual runoff in the Hailar River basin; and 2) 

use the regression model to predict the amounts of runoff 
for the return periods of interest. 
 
2. Materials and Methods 
 
2.1. Study Area 
 
The 54,805 km2 Hailar River basin (Figure 1), located in 
southestern Hulunbeir of China, is very sensitive to cli-
matic and environmental changes [21,22]. This study 
selected this basin to demonstrate the estimation of an-
nual runoff because of the basin is typical for water re-
sources planning and management. The river originates 
from the Da Xingan mountains, has a main channel 
length of 708.5 km, and is fed by 12 major tributaries 
upstream of its confluence with the Erguna River. 

 
 
 

 

 

Figure 1. Map showing the location and drainage network of the Hailar River basin. 
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The Hailar River basin has a temperate continental 
monsoon climate. That is, the basin is strongly influ-
enced by the eastern Asian summer monsoon and fre-
quently suffers from extreme climates: short-cool sum-
mers and long-cold winters [22,23]. Based on the data 
from 1956 to 2006, the basin receives an average annual 
rainfall of 347.6mm , has a water surface evaporation of 
801.7 mm and an annual average temperature of -1.2℃. 
The topography is dominated by mountains and hills, 
plains, and wetlands, with elevations ranging from 510 to 
1622 m above mean sea level. 
 
2.2. Available Data 
 
There are 8 rainfall, 17 weather, and 11 flow gauging 
stations in and adjacent to the Hailar River basin (Figure 
1). These stations, maintained by the local climatic and 
hydrologic monitoring departments, collect data on rain-
fall, water surface evaporation, and/or streamflow. Most 
of the stations have data from 1956 to 2006, while the 
datasets for several stations are not continuous. The 
missing values were filled using an interpolation and 
extension approach detailed in the following context. 
The basin characteristics (Table 1) were obtained from 
the Hailar Hydrographic Bureau. 

2.3. Methods 
 
This study investigated the correlations of annual runoff 
(R) with several selected independent variables, includ-
ing annual rainfall (P), annual water surface evaporation 
(E), subbasin centroid coordinates (X,Y), subbasin cen-
troid elevation (H), subbasin area (AB), subbasin wetland 
area (AW), and subbasin shape factor (K). The investiga-
tion was used to establish a regional regression model for 
estimating annual runoff of subbasins that cannot be 
monitored by the 11 flow gauging stations. The investi-
gation was realized by: 1) using the multiple-period uni-
versal kriging spatial estimation theory (MUKSE) [24,25] 
to estimate values of annual rainfall and water surface 
evaporation from 1956 to 2006 for the subbasins that are 
monitored by the 11 flow gauging stations and the 12 
ungauged subbasins; 2) using the principal component 
regression (PCR) technique provided in the Eviews 7.0 
software package to build/validate a regression model 
between annual runoff and subbasin characteristics in 
terms of the data of the subbasins monitored by the 11 
flow gauging stations; 3) using the validated regression 
model and it’s coefficients to estimate the annual runoffs 
for the 12 ungauged subbasins of the Hailar River basin. 

 
Table 1. The characteristics of the subbasins in the Hailar River basin. 

Stations/Subbasins 
Subbasin area 

(km2) 
Subbasin wetland 

area (km2) 
River length

(km) 
Subbasin shape

factor 
Average annual
rainfall (mm)

Average annual water 
surface evaporation 

(mm) 

Average annual
runoff (mm) 

Runoff stationsa        
Wurqihan 3394 303 203.4 0.082 430.4 703.0 145.4 

Daqiaotun（Ⅱ） 6650 500 216.4 0.142 441.7 788.6 134.6 
Yakeshi(Ⅲ) 15195 1865 393.8 0.098 438.2 751.3 136.9 
Honghuarji 5390 223 196.2 0.140 419.4 729.6 139.9 

Yiminmuchang 8526 412 287.7 0.103 400.7 736.2 109.6 
Huihekou（Ⅱ） 11465 1648 589.4 0.033 340.8 809.6 10.9 

Hailar(Ⅲ) 22516 2273 408.4 0.135 364.4 777.7 51.6 
Bahou 43388 4418 614.2 0.115 390.0 767.5 77.4 

Touzhan（Ⅱ） 3322 13 271.7 0.045 356.6 758.3 42.2 
Wangong 49981 5126 870.2 0.066 382.7 769.2 69.5 
Cuogang 53829 5390 1081.8 0.046 366.0 774.8 64.3 

Subbasins        
Kudur river 3474 316 215.5 0.075 430.2 704.3  
Dayan river 2756 468 168.4 0.097 457.3 709.2  
Wunur river 2586 194 123.3 0.171 442.1 797.7  
Zhadun river 2734 182 145.4 0.130 456.8 787.9  
Miandu river 6699 517 354.4 0.053 441.6 788.6  

Teni river 1482 15 147.5 0.069 364.3 762.8  
Weizikeng river 1614 80 149.7 0.073 382.2 747.3  

Xini river 1528 88 176.2 0.049 368.1 759.6  
Weina river 2227 171 151.8 0.098 416.0 743.7  

Hui river 11467 1649 491.6 0.048 340.6 811.4  
Yimin river 22647 2284 359.3 0.176 364.9 778.3  

Moleger river 4099 402 319.1 0.040 340.2 772.2  

Note: a Runoff stations represent subbasins monitored by the gauging stations. 
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2.3.1. Annual Rainfall Estimation 
This study used the MUKSE to estimate annual rainfall 
because this method is superior to the conventional in-
terpolation methods [26,27], including the Thiessen 
polygon method, arithmetic average method, inverse 
distance or inverse distance square method, isopluvial 
line method, and Kriging method. The MUKSE is an 
improved version of the Kriging method and implements 
an optimal technique to estimate rainfall for small sub-
basins or localized areas where adequate rainfall data do 
not exist. The estimation was realized through the fol-
lowing six steps. 

Step 1: Rainfall interpolation and extension 
In order to derive a complete annual rainfall dataset 

from year 1956 to 2006 for the 36 stations in and adja-
cent to the Hailar River basin, the univariate and bivari-
ate statistical regression methods were implemented to 
fill the missing values. Herein, the annual rainfall at sta-
tion i and year j was designated Zi (tj)  (i = 1, 2, …, 36; j 
= 1, 2, …, 51).  

Step 2: Annual rainfall stationary testing 
The MUKSE requires that Zi (tj) be stationary. This 

study used the Fourier cycle analysis to discern the cy-
cles of the annual rainfall time series and then used a 
moving average method to test the stationary feature. 

Step 3: Spatial drift equations determination 
The available annual rainfall (mi, i =1, 2, …, 36) data 

were used to estimate the missing values at the 36 sta-
tions. mi was regressed on station location (xi,yi) (i = 1, 
2, …, 36) by using a trend surface analysis [24] to de-
velop the spatial drift equations of annual rainfall time 
series. 

Step 4: Robust experimental variogram and optimal 
approximation 

The spatial drift and experimental variogram can be 
computed as: 
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where mi is the spatial drift of station i; T is the time se-
ries length; Ri(tj) and Rk(tj) are the residuals at stations i 
and k, respectively; r(i, k) is the experimental variogram 
between station i and k. 

The computed experimental variograms for the sta-
tions were trimmed in a robust statistical sphere [28,29] 
to eliminate any influences from the large errors of indi-
vidual data points. Subsequently, along the directions of 
0°, 90°, 45° and -45°, the variograms in different direc-
tions were determined with an angle interval of ± 22.5°. 

According to trends of the annual rainfall experimental 
variograms along those four directions, a spherical theo-
retical variogram model was developed by fitting the 
variograms using the hydrology system package proce-
dure [24]. The model was used to create an “overlapping” 
variogram that is used in the next step (i.e., Step 5). 

Step 5: Theoretical variogram and spatial drift equa-
tion 

The overlapping theoretical variogram model and spa-
tial drift equation were tested as follows: for any year tj  
at station i, integrating annual rainfall series of the other 
stations (except for station i) to get equation (4), which in 
turn was used to estimate the annual rainfall Zi

*(tj) at 
station i. The theoretical variogram and spatial drift equa- 
tion were considered to be reasonable (i.e., the MUKSE 
model is valid) [24,29], if Zi(tj)- Zi

*(tj) (i = 1, 2, …, 36; j 
= 1, 2, …, 51) give: 1) an average error (Me) that can 
approximate to zero; 2) a variance of error ( 2

e ) that can 
approximates to the average kriging variance (S*2); 3) an 
error histogram that can approximately represent a nor-
mal distribution; 4) an absolute standard deviation of the 
error histogram that can approximately represent a nor-
mal distribution; and 5) more than 95% of the absolute 
values of Me are less than 1.96 S*2, i.e.,  

( 1.96 ) 5%P Z Z S    . 

Step 6: Annual rainfall estimation  
The subbasins that are monitored by the 11 flow 

gauging stations were subdivided into 2 km × 2 km 
quincunx grids. The annual rainfalls for the grids were 
estimated using equations (4) and (5), and then were av-
eraged to get annual rainfalls for the subbasins. 
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where 0u  and lu  are Lagrange multipliers; ( , )dr x x  
and 0( , )dr x x  are the variograms between station dx  
and x , and station dx  and 0x , respectively; 0t

d  is 
the weight of observed 0( )dz t  at 0t  of station d ; 

0t
  is the weight of observed 0( )z t  at 0t  of station 
 ; ( )l

df x  and 0( )lf x  are the lth  drift basis func-
tions of station dx  and 0x , respectively; 

0

2
ukt is the 

variance of error. 
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2.3.2. Annual Water Surface Evaporation Estimation 
The aforementioned six steps for annual rainfall estima-
tion were also implemented to estimate the annual water 
surface evaporations for the subbasins. Herein, the data 
at 24 stations were used. 
 
2.3.3. Regional Regression Model Establishment 
The flow hydrographs observed at the 11 gauging sta-
tions were used to calculate the annual runoffs for the 
years from 1956 to 2006. The maximum annual usage of 
surface water was 2271.38 Mm3, accounting for only 
0.66% of the total annual runoff observed at the Cuogang 
station. This station is located at the Hailar River mouth. 
This indicates that the water usage can be neglected 
when estimating natural runoff. 

As stated above, the dependent variable is annual run-
off (R), while the independent variables are annual rain-
fall (P), annual water surface evaporation (E) calculated 
using the MUKSE, subbasin centroid coordinates (X, Y), 
subbasin centroid elevation (H), subbasin area (AB), sub-
basin wetland area (AW), and subbasin shape factor (K) 
that was calculated by the Hailar Hydrographic Bureau. 

The regression was done using the PCR technique 
embedded in the Eviews 7.0 software package. The cru-
cial feature of this technique is to transform the inde-
pendent variables into unrelated principal components, 
each of which is a linear combination of the independent 
variables. R is regressed on the principal components. 
The regression procedure implemented in this study is as 
follows: 1) calculate the eigenvalues ( 1 2 k     ) 
and eigenvectors 1 2, , , KV V V ; 2) calculate the principal 
components of the independent variables as: 
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        (6) 

where iF  ( 1, 2, ,i k  ) are functions of the independ-
ent variables and independent of each other. Generally, 
the change of independent variables can be sufficiently 
described by first m principal components 1 2, , , mF F F . 
This study used a cutting point that the accumulative 
contribution rate of 1 2, , , mF F F  reach a threshold 
value of 85%; 3) Build a linear regression of R on the 
principal components 1 2, , , mF F F  expressed as equa-
tion (7), and let i  as equation (8); and 4) calculate the 
standardized regression coefficients i  can be calcu-
lated by using equation (8) and the coefficients ib  of 
the original independent variables, as then according to 
the relationship /i Y i ib S S  , (where YS , iS  are 
standard deviation of Y and iX ) to calculate the coeffi-
cients ib  of the original independent variables. 
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1 1 2 2 ( 1, 2, , )i i i m miV V V i k             (8) 

For each year from 1956 to 2006, the rational regres-
sion model in terms of the independent variables can be 
expressed as: 

iKhAgAfHeYdXcEbPaR wB   (9) 

 
3. Results and Discussion 
 
3.1. Annual Rainfall and Water Surface  

Evaporation Estimation 
 
The Fourier cycle analysis shows that the annual rainfall 
and water surface evaporation series have 7-, 18- or 
44-year cycles. Using the 44-year cycle in the moving 
average method, it was found that the series for each 
gauging station met the stationary requirement of the 
MUKSE. 

The calculated experimental variograms in different 
directions revealed that the point gropes were compara-
tively concentrated and had obvious trends, indicating 
that rainfall and evaporation had anisotropic spatial 
structures. The optimal simulation indicated that for 
rainfall, the semimajor is 555 km, the semiminor is 315 
km, the direction angle is 58°, and the anisotropy ratio is 
1.762, and for evaporation, the semimajor is 580 km, the 
semiminor is 240 km, the direction angle is 92°, and the 
anisotropy ratio is 2.417. Further, the overlapping theo-
retical variogram model and spatial drift equation are 
judged to be reasonable (Table 2), and the MUKSE can 
be used to estimate the annual rainfalls and water surface 
evaporations for the subbasins within the study area 
(Figures 2 and 3). 
 
3.2. Annual Runoff Estimation 
 
The MUKSE and PCR for estimating annual runoff were 

 
Table 2. The testing results of theoretical variogram and 
spatial drift equation. 

Item 
Me  

(mm)

2
e  

(mm) 

2S  
(mm) 

)96.1(   SZZP

(%) 

Annual rainfall -0.4 4231 4229 3.80 

Annual water 
surface evaporation

-4.1 12288 12295 4.82 
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(a)                                                             (b) 

Figure 2. Plots showing the (a) error and (b) standard deviation for annual rainfall. 
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(a)                                                             (b) 

Figure 3. Plots showing the (a) error and (b) standard deviation for annual water surface evaporation. 

 
judged to be good, as indicated by large R2 > 0.826 
(Figure 4) and the significant F statistics (p-value < 
0.05), while somewhat multicollinearity likely exists 
because the adjoint probability t-test of independent 
variables in the model were insignificant at a signifi-
cance level of  = 0.05. The multicollinearity problem 
was resolved by using the principal components. Further, 
the model did a very good job in reproducing the ob-
served annual runoffs at the 11 flow gauging stations 
(Figure 5). 

Table 3 presents the coefficients of independent vari-
ables for the model (i.e., Equation 9). It shows that an-
nual rainfall, basin centroid coordinates, basin centroid 
elevation and basin shape factor are positively correlated 
with annual runoff, implying that annual runoff tends to 
increase with the increase of these independent variables. 
Because rainfall is the origin of runoff generation, more 
rainfall will logically generate more runoff. The increase 
trend of runoff with longitude, latitude and elevation is 
consistent with that presented by a runoff depth isogram 
developed by the Hailar Hydrologic Bureau. On the other 

hand, annual water surface evaporation, subbasin area 
and subbasin wetland area are negatively correlated with 
annual runoff, implying that annual runoff tends to de-
crease with the increase of these independent variables. 
Evaporation can reduce the portion of rainfall to be con-
verted into runoff, while wetlands likely increase surface 
storage, lowering the generation of runoff. 
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Figure 4. Regressed coefficient R2 of the annual runoff and 
basin characteristics. 
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(a) Wurqihan Flow Gauging Station                               (b) Daqiaotun (II) Flow Gauging Station 
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(c) Yakeshi (III) Flow Gauging Station                              (d) Honghuarji Flow Gauging Station 
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(e) Yiminmuchang Flow Gauging Station                              (f) Huihekou (II) Flow Gauging Station 
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(g) Hailar (III) Flow Gauging Station                              (h) Bahou Flow Gauging Station 
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(i) Touzhan (II) Flow Gauging Station                              (j) Wangong Flow Gauging Station 
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(k) Cuogang Flow Gauging Station 

Figure 5. Plots showing the model estimated vs. observed annual runoffs at the 11 flow gauging stations. 

 
Table 3. The coefficients of Equation 9. 

iKhAgAfHeYdXcEbPaR wB   
Year 

a b c d e f g h i 

1956 -592.725 0.3444 -0.3132 0.3256 0.1085 0.1125 -8.96E-06 -3.17E-04 197.124 

1957 -556.515 0.4489 -0.2603 0.4220 0.0257 0.2310 -1.18E-04 -1.51E-03 503.488 

1958 -297.770 0.4127 -0.2073 0.2466 0.0451 0.4119 -2.08E-04 -1.36E-03 527.240 

1959 -401.276 0.3428 -0.2367 0.1926 0.0645 0.1276 -3.36E-05 -5.62E-04 169.369 

1960 -867.777 0.5567 -0.5277 0.4832 0.1582 0.1225 -2.84E-04 -2.42E-03 284.852 

1961 -384.173 0.2039 -0.1709 0.1958 0.0722 0.0596 -2.65E-06 -1.59E-04 114.820 

… … … … … … … … … … 

… … … … … … … … … … 

… … … … … … … … … … 

2001 -619.238 0.1192 -0.1782 0.1065 0.0854 0.0939 -3.42E-05 -1.43E-04 186.440 

2002 -391.357 0.0138 -0.0894 0.1954 0.0479 0.0646 -6.69E-05 -4.82E-04 172.315 

2003 -136.382 0.1875 -0.0006 0.2040 0.0674 0.0992 -7.79E-05 -6.13E-04 300.261 

2004 -583.805 0.4591 -0.1542 0.2558 0.0869 0.0769 -4.15E-05 -5.16E-04 161.392 

2005 -656.217 0.4132 -0.0071 0.3199 0.0635 0.1264 -6.81E-05 -2.98E-04 295.834 

2006 -105.763 0.3256 -0.1997 0.1730 0.0058 0.1043 -1.01E-04 -7.43E-04 193.862 
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Table 4. The estimated subbasin annual runoffs for various return periods. 

Statistics Runoff with Various Return Periods（Mm3） 
Subbasin 

Mean（Mm3） CV CS/CV
b 75% 90% 95% 97% 

Kudur river 50509 0.48 2.5 32838 24327 20552 18485 

Dayan river 46141 0.50 2.0 29310 20147 15818 13400 

Wunur river 35244 0.51 2.0 22080 15041 11701 9857 

Zhadun river 38539 0.51 2.0 24172 16482 12832 10813 

Miandu river 90108 0.49 2.0 57701 39967 31455 26712 

Teni river 2339 0.75 2.0 1050 548 353 258 

Weizikeng river 10181 0.73 2.0 4748 2557 1684 1255 

Xini river 7134 0.51 2.0 4485 3064 2389 2015 

Weina river 27600 0.44 2.0 18700 13600 11100 9630 

Yimin river 116876 0.47 2.5 76244 56674 47773 43019 

Hui river 12477 0.92 2.0 4228 1756 944 601 

Moleger river 13296 1.16 2.0 2697 743 282 143 

Hailar rivera 345516 0.50 2.5 219555 160773 135238 121528 

aHailar River is the whole Hailar River basin; bCS is the coefficient of skewness, and CV is the coefficient of variation. 

 
3.3. Subbasin Annual Runoff Estimation 
 
For the subbasins that are not monitored by the 11 sta-
tions, the annual runoffs for the years from 1956 to 2006 
were estimated using Equation (9) with model coeffi-
cients presented in Table 3. 

Based on the estimated annual runoffs, the means, co-
efficients of variation ( VC ), and ratios of coefficients of 
skewness ( SC ) to VC  were computed and are presented 
in Table 4. In terms of the VC  and /S VC C , the runoffs 
for the return periods of interest (i.e., 75, 90, 95, and 
97%) were computed by assuming a Person-III distribu-
tion and are also shown in Table 4. 
 
4. Conclusions 
 
This study set up a regional regression model by using 
the observed data of annual runoff, annual rainfall, an-
nual water surface evaporation as well as other basin 
characteristics of the Hailar River basin from 1956 to 
2006, through the methods of multiple-period universal 
kriging spatial estimation theory (MUKSE) and principal 
component regression (PCR) technique. 

The testing results indicated that MUKSE was an ef-
fective method to estimate annual rainfall and annual 
water surface evaporation of ungauged subbasins, and 
PCR can resolve multicollinearity problem with a sig-
nificant correlation (R2 > 0.87) between annual runoffs 
and the subbasin characteristics. Finally, the model was 

used to predict the amounts of runoff for the return pe-
riod of interest. These results will add invaluable infor-
mation to existing literature. 
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