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ABSTRACT 

Recently there has been growing interest in fuzzy option pricing. Carlsson and Fuller [1] were the first to study the 
fuzzy real options and Thavaneswaran et al. [2] demonstrated the superiority of the fuzzy forecasts and then derived the 
membership function for the European call price by fuzzifying the interest rate, volatility and the initial value of the 
stock price. In this paper, we discuss recent developments in fuzzy option pricing based on Black-Scholes models. 
Fuzzy coefficient Black-Scholes partial differential equations (PDE) are derived. Membership function of the call price 
is given. The asset-or-nothing option by fuzzifying the maturity value of the stock price using adaptive fuzzy numbers is 
also discussed in some detail. 
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1. Introduction 

Most stochastic models involve uncertainty arising 
mainly from lack of knowledge or from inherent vague-
ness. Traditionally those stochastic models are solved 
using probability theory and fuzzy set theory. There exist 
many practical situations where both types of uncertain-
ties are present. For example, if the price of an option 
depends upon the nature of the volatility which changes 
randomly, then the volatility of the stock price movement 
which is estimated from the sample data is a random 
variable as well as a fuzzy number. Recently there has 
been a growing interest in using fuzzy numbers to deal 
with impreciseness (see Appadoo et al. [3] and Thava-
neswaran et al. [4] for more details). Many authors have 
tried to deal fuzziness along with randomness in option 
pricing models. For example, recently, Cherubini [5] 
determined the price of a corporate debt contract and 
provided a fuzzified version of the Black and Scholes 
model by means of a special class of fuzzy measures. On 
the other hand, Ghaziri et al. [6] introduced artificial in-
telligence approach to price the options, using neural 
networks and fuzzy logic. They compare the result of 
artificial intelligence approach to that of Black-Scholes 

model, using stock indexes. Since the Black-Scholes op-
tion pricing formula is only approximate, which leads to 
considerable errors, Trenev [7] obtained a refine formula 
for pricing options. Due to the fluctuation of financial 
market from time to time, some of the input parameters 
in the Black-Scholes formula cannot always be expected 
in the precise sense. As a result, Thavaneswaran et al. [4] 
applied fuzzy approach to the Black-Scholes formula. 
Zmeskal [8] applied Black-Scholes methodology of ap-
praising equity of a European call option by using the 
input data in a form of fuzzy numbers. Carlsson and 
Fuller [9] use possibility theory to study fuzzy real option 
valuation. Applications of fuzzy sets theory to volatility 
models have been studied by Thavaneswaran et al. [2] 
and Thiagarajah et al. [10]. Weidong et al. [11] discuss 
the analytical solutions for a European option using a 
fuzzy normal jump-diffusion model and possibility the-
ory. Shiu and Shu [12] propose a fuzzy approach for in-
vestment project valuation in uncertain environments 
from the aspect of real options. Guerra et al. [13] con-
sider the Black and Scholes option pricing model, and 
present a sensitivity analysis based on the study of the 
option price when the parameters are supposed to be 
fuzzy numbers. Zdenek [8] proposed a generalized hy-
brid fuzzy-stochastic binomial American real option *Corresponding author. 
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model under fuzzy numbers and Decomposition principle 
where the Input data are in a form of fuzzy numbers. Xu 
et al. [14] discuss three different versions of the Garman- 
Kohlhagen model, the put-call parity relationship and the 
calculation formulas of the Greek letters according to 
these three different G-K models based on fuzzy set the-
ory. The empirical results indicate that the Greeks calcu-
lated under fuzzy environment is a useful tool for man-
aging option risk for an option writer. Nowak and Ro-
maniuk [15] propose the method for option pricing based 
on application of stochastic analysis and theory of fuzzy 
numbers. The process of underlying asset trajectory be-
longs to a subclass of Levy processes with jumps. Thiag-
arajah et al. [10] present the Black-Scholes option pric-
ing formula with quadratic adaptive fuzzy numbers, their 
approach hinges on a characterization of imprecision by 
means of fuzzy set theory. 

1.1. Black-Scholes Model 

The famous formula of Black-Scholes for the fair prices 
of European options follows from several assumptions, 
which are discussed in Metron [16]. Asset prices t  are 
assumed to follow geometric Brownian motion and rep-
resented by the equation 

S

d d dt t t tS S t S W ,              (1.1) 

where the process  is a standard Brownian motion, tW
  is the drift and   is the volatility of the underlying 
stock. Generally, a call (put) option is the right to buy 
(sell) a particular asset for a specified amount at the 
strike price K at a specified time in the future with the 
expiration time T. If the option is of such a type that it 
can be exercised only on the expiration date itself, then it 
is called a European option. Let T  be the price of the 
underlying asset at expiration time T. Then the payoff, g, 
of a European style call option at time T is given by 

S

     max ,0 .T T Tg S S K S K
         (1.2) 

This means that the call option is exercised if T  
and is abandoned otherwise. The above mentioned call 
and put options are sometimes called plain vanilla or 
standard options. Let  be the risk-free interest rate. 
Then a probability measure Q  is called an equivalent 
martingale measure to the probability measure  for 
the discounted price process  if 

S K

P

r

e rt
t tS S

|Q t s sE S S   
 F               (1.3) 

for each s t T 

 tS
Q

t

 and , where  is the history 
of the process up to time . This is the discounted price 
process  which is a martingale under the probabil-
ity measure . According to the Fundamental Theorem 
of Asset Pricing, an arbitrage-free price  of an option 
at time  is given by the conditional expectation of the 

discounted payoff under an equivalent martingale meas-
ure , 

~Q P
t

tF

tC

Q

   e r T t
t Q T tC E g S  .   F          (1.4) 

Together with this equivalent martingale approach one 
needs a so-called equivalent portfolio (a combination of 
other traded assets). Then the price of the option has to 
coincide with the price of the corresponding equivalent 
portfolio. Following the results of Black-Scholes, we 
take a geometric Brownian motion as a stochastic proc-
ess for modeling the stock price. This model is based on 
the assumption that the log-returns 

1log logt t tX S S              (1.5) 

are normally distributed. Now Equation (1.1) becomes 
2

2

0e
tW t

tS S

 
 
   
              (1.6) 

0 Tt  . Using Itos lemma the model can equivalently 
be described as 

d d   dt t tS S t S W .t            (1.7) 

For this model, there exists a unique martingale meas-
ure  which is given by Girsanov’s theorem Q

 2

2

d
exp .

d 2T

rQ r
W

P


 

 
  
 
 

T      (1.8) 

Some calculations yield the Black-Scholes formula as, 
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  
 

        
      

  
 

   (1.9) 

where   denotes the cumulative distribution function 
of a standard normal variable, and T t    denotes the 
time to expiration. In the literature two different ways of 
calculating volatility have been discussed. The first 
method is the empirical estimation from the historical 
data. The second is to calculate the implied volatility by 
equating the theoretical call price from the Black-Scholes 
formula with the market price. 

As a benchmark for our analysis we study the standard 
Black-Scholes [17] option pricing model. We assume 
that the expiry date and exercise price are always known 
and non-fuzzy. An interest rate is the amount of money a 
borrower is obligated to pay the lender. As such, interest 
rates are differentiated by maturity and default risk of the 
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loan. It is natural to take the rates on Treasury Bills and 
Treasury bonds, the government securities considered 
essentially default-free, as natural proxy for a risk-free 
discount rate for option payoffs. Yet, in practice, over- 
the-counter derivative traders consider LIBOR rates 
rather than the government rates as the appropriate cost 
of capital. LIBOR stands for London Interbank Offer 
Rate, an interest rate quote by a large bank at which it 
offers large short-term deposits to other banks. A corre-
sponding bid rate, the rate at which banks accept deposits, 
is called LIBID. The difference between the sale (ask) 
and the buy (bid) prices for deposits is analogous to 
bid-ask spreads in the dealer markets for other securities, 
e.g., stocks. The existence of the bid-ask spread implies 
that the true market price is unknown. The bid-ask spread 
is considered a natural band to represent the uncertainty 
around the market price. In most empirical work, market 
prices, either for borrowing/lending or share purchases, 
are approximated by the mid-point of the bid-ask spread. 
This procedure among other things introduces errors into 
model-implied option prices. Another issue is the non- 
synchronous record of an option price and the price of 
the underlying asset. To top it off, true options them-
selves are traded at bid/ask prices. Using models that do 
not specifically account for these issues introduces er-
rors-difference between theoretical and observed option 
premiums. Thavaneswaran et al. [2] modelled the uncer-
tainty of interest rate and stock price using fuzzy num-
bers. 

The rest of this paper is organized as follows. In Sec-
tion 2, we study the Black-Scholes partial differential 
equations. Section 3 discusses the asset or nothing option. 
Section 4 closes the paper with conclusions. 

1.2. Preliminaries and Notation 

Before discussing the possibilistic moment generating 
function, we introduce some definitions and properties 
about fuzzy sets theory with relevant operations. 

Definition 1.1 A fuzzy set A  in , where  
is the set of real numbers, is a set of ordered pairs 

x R R

   , :A x x x X  , where  x is the membership 
function or grade of membership, or degree of compati-
bility or degree of truth of 

 

x X  w maps hich x X  
real interval [0,1]. on the 

Definition 1.2 A fuzzy set A  in  is said to be a 
convex fuzzy set if its 

nR
 -level set  A   are (crisp) 

convex sets for all  0,1  . Alternatively, a fuzzy set 
A  in n

 is a convex fuzzy set if and only if for all 
 and 

R
nR1 2x x, 0 1  , 

       1 2 11 Min ,A A 2Ax x x       x  

Definition 1.3 A fuzzy number  is called a 
trapezoidal fuzzy number (Tr.F.N.) with core 

A F
 ,a b , left 

width   and right width   if its membership function 
has the following form (see Figure 1 for detail): 

 

1 i

1 i
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a x b
g x

x b
a x b

 




 



  


 
  

     (1.10) 

   




and we use the notation  , , ,A a b   . It can easily be 
shown that 

    
 

1 2 
 

 

,

1 , 1

0,1 .

A a a

a b

  

  



   
      

 

    (1.11) 

The support of A  is  ,a b   . Moreover, for 
any fuzzy number A  and a positive real number C , 
where the following relationship holds 

   1

1 20
dA C a a    C    .  (1.12) 

Definition 1.4 Let  be the set of all real numbers. 
A fuzzy number 

R

 , xG x R , is of the form 

 

   
 

   

when ,

hen ,

en ,

therwise

1 w

wh

0 o

g x x a b

x b c
G x

h x x c d

 


 





      (1.13) 

where g is a real valued, increasing and right continuous 
function, h is a real valued, decreasing and left continu-
ous function, and  are real numbers such that , , ,a b c d
a b dc   . A fuzzy number A with shape functions g 
and h defined by 

 
m

x a
g x

b a

    
           (1.14) 
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Figure 1. Nonlinear membership function. 
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 
n

d x
h x

d c

    
           (1.15) 

respectively, where m or , will be denoted by  0n 
  ,

, , ,
m n

A a b c d . If  and , we simply write  1m  1n 

 , , ,A a b c d
m



, which is known as a trapezoidal fuzzy 
number. If  or , a fuzzy number  1 1n 

 ,
* , , ,A a b c d

m n
 is a modification of a trapezoidal 

fuzzy number  , , ,A a b c d . If  and , then 1m  1n 
*A  is a concentration of A. Concentration of A by m 

2n   is often interpreted as the linguistic hedge 
“ve or 1n  hen *
and 

ry”. If 0  tm , A  is a dilation of A. 
Dilation o A by  0.5n   is often interpreted as 
the linguistic hedge “more or less”. Each fuzzy number A 
described by (1.14) and (1.15) has the follow g 

f m  and

in  - 
level sets ( -level sets),    A a   , ,b      a  , 

,  b  R  0, 1  and 

     
   1 0

, ,

, , , .

A g h

A b c A a d

     
 

1 1 

 

If  then, for all 
,

, , ,
m n

A a b c d    0,1  , 

     
1 1

,m nA a b a d d c       
 



 
.   (1.16) 

1.3. Weighted Possibilistic Moments (WPM) 

In this section following Carlsson and Fuller [1], we in-
troduce the following moments. The first order f-WPM 
(or weighted possibilistic mean) of  is given by AF

       1
1 2

0

d
2f

a a
M A f

 
 


        (1.17) 

where  f   is a weight function such that  
1

0

d 1f    . 

Similarly, the centered WPM (or weighted variance) 
of  is AF

 

           
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f a M A a M A         

 (1.18) 

and for any positive integer r, the f-WPM of order r 
about the possibilistic mean value of A is defined as 

 

          
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

(1.19) 

In analogy with Thavaneswaran et al. [4], the f- 
Weighted possibilistic skewness and the f-Weighted pos-

sibilistic kurtosis of a fuzzy number A are defined as  

 
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E A
 . The f-Weighted possibilistic co-

variance between two fuzzy numbers A and B is given by 
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 (1.20) 

where  f   is a weight function such that 1 
1

0

df    .  

In analogy with Thavaneswaran et al. [4], the f-Weighted 
possibilistic skewness of fuzzy number A is defined as  
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    (1.21) 

On the other hand if  f x  is a decreasing function 
the  -level sets is given   by f A . Now, 

       
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      
2 1

2 1,

f A f x x A

f x A x A

f A f A



 

 

 

  



    (1.22) 

Theorem 1.1 Let A and B be two fuzzy numbers and 
  and   positive numbers. Then, we have the follow-

 

1) 

ing results

     ,f f fM A B M A M B       
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4)      Var Var
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2. Fuzzy Coefficient Black-Scholes PDE 

and 

d ,

where all of the model coefficients 

 , ,f t x  and its derivatives may be used to provide 
explicit formulas for the portfolio weights  and t  
for the self-financing condition portfolio 

ta
b

b

t t t ta S   that 
replicates  .Th S  

t t t tV a S b t   Consider the stock and bond model given by 
From the self-financing condition and the models for 

the stock and bond, we have 
   d , d , , dt t t tS t S t t S W     

      
      

d d d

, d , d , d

, , d ,

t t t t t

t t t t t t

t t t t t t t

V a S b

a t S t t S W b r t S

a t S b r t S t a t S Wd .

t

t

t



  

  

 

  

  

  d ,t t tr t S t   

 , tt S ,  , , tt S  , 
possiblyand  , tr t S  are given by explicit function (  

fu ates) o  the current time and current stock 
price. Then the arbitrage price at time t of a European  

zzy estim From our assumption that  and the  ,tV f t S t ˆIto s  
formula 

f  

 

       

             2

2
1

, , , , , , , , , d , , , , d .
2t t xx t t x t t x t t t

21
d , , d , , , , d , , dt t t xx t t x t tV f t S t f t S t S t f t S S

f t S f t S t S f t S t S t f t S t S W             
 

 

The size of the stock portion of our replicating portfolio is: 

      

 , , .t x ta f t S  

              2 , , , , , , , , , , , , .
2t x t t t t t t xx t t x t tt S f t S r t S b f t S f S t S f t S t S             

The  terms cancel, and the bond portion  is 

1
,t

  , , ,t x tt S f t S   tb

    , , , ,
, 2t t t

t t

b f t S f t
r t S

 


 


  21 1
, , .xx t tS t S  




 

Because  is equal to both tV  , , tf t S  and t t t ta S b  , the values for  and give us a PDE fota tb r  , tf t S : 

 

         2

, ,

1 1
, , , , , , , , .

, 2

t t tt t t

x t t t t xx t t t
t t

V a S b

f t S S f t S f t S t S
r t S

f t S 

     




    
 

 
Now, when we cancel 

 

 

t  from the last term and re-
place  bytS  x , we arri he general Black-Scholes 
PD

ve at t
daE and its terminal boun ry condition. The portfolio 

weight ta  and tb  for the self-financing portfolio 

t t t ta S b
s 
  that replicates  Th S

 
are explicitly given 

above. M over th same argument holds when we use 
fu mates for the unkn volatility parameter in 

Suppose that the stock pays a dividend 

ore e 
zzy esti own 

the model. 

2.1. Fuzzy Coefficient Black-Sholes PDE with 
Dividends 

 ,t tD k t S  
which is a function of the stock price tS . 

.t t t t tV a S b    

and 
dV d dt t t t t ta S b D td ,    
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respectively, with the terminal boundary cond

   ,

ition 

f T x h x  for all xR . 

Using cm argument, we arrive at the Black-Scholes 
PDE: 

   2 21
, , , ,

   
2

, , , , ,

t xx

x t

with its terminal boundary condition 

f t x x f t x   

rxf t x D   
 



t x rf

  ,f T x h x  for all 

2.2. Membership Functions of Call Price 

rm 

.t

xR . 

For the Black Scholes model of the fo

d dt tS S dtt S W    

For this model, there exists a unique martingale meas-
ure Q which is given by Girsanov’s theorem 

 2
d rQ r  

2exp .
d 2TW T
P  


  

  
 

urrent stock 
price S 

Solving the Black-Scholes PDE, the arbitrage price of 
the European call option at time t  with c

2

2

log
2

log
2

e

BSC S
 

r

S
r

K

S
r

K
K 

 

 

 


        
   

 
        

     
 
 
  

 

where denotes the cumulative distribution unction 
of a st d normal variable, is the strike price, 
is th ry date and 

  
 
 
 

  
andar

e expi

 f
K  T  

T t  
that we ho

 is th
ld 

e residual time. Th
amount stock  in the replicating p
folio at ti e 

e 
ort- of 

m
ta

 is t

2

log
2

t

t t t

S
r

K
a b

 


 

2

log
2

e .

t

r

S
r

K
K 

 

 


        
   


        

      
 
 
  

 

We replace the fuzzy interest rate, the fuzzy stock 
price, and the fuzzy volatility by possibilistic mean value 
in the fuzzy Black-Scholes formula. The initial stock 
price cannot be characterized by a single number. Thus, 
we assume that the initial stock price is a fuzzy number 
of the form 

  
 
 
 

 0 1 2 3 4, , ,S S S S S . A fuzzy num f the 
form  

ber o

 
   

34 2 1

34 4 1 1

e e ,e ,e ,e

e e e ,e e e

rr r rr

rr r r r

  

    

  

   



2r       

for the discounting factor in a fuzzy sense and of the 
form 



 

 1 1 3 4, , ,      for the volatility can also be 
modeled in a similar manner. In these circumstances we 
suggest the use of the following fuzzy weighted possi-
bilistic (heur ula as in Carlsson and 
Fuller [

istic) option
9] for computing fu

 the following Blac
ng stock with exercise 

 form
zzy option values. We con-

sider k-Scholes formula for a dividend 
payi price K . 

    0 1 2e e r ,FCOV S N d K N d           (2.1) 

where 

     

 

2

0

1

ln
2

f f
f

f

M S M
M r

K
d

M


 

 

  
          ,  (2.2) 

 2 1 fd d M    ,             (2.3) 

 fM x  is the possibilistic mean value of variable x . 
ntinuously at We assume that the stock pays dividends co

n rate . The a know  -level sets of the fuzzy  

tion value 

call op- 
FCOV  are as follows: 

      1 2, ,FCOV FCOV FCOV          (2.4) 

where 

 

 
1

e

e

FCOV





   

       

1

1 2

1 1 2

2 2 1 1

e

e e

r

r r

N d S KN d

KN d S S N d



   



  



   

 (2 )  .5

 

    
      

4

3 4

2

1 4 2

4 3 1 2

e e

e e

r

r r

FCOV

N d S KN d

S S N d KN d



 



 e 



 

 

   

 (2.6) 

The membership function of the fuzzy call option is 
given       
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


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In the following example we consider the fuzzy call 

price on a stock option using a fuzzy number discussed 
earlier. 

Example 1 Consider a European call option on a 
stock with the following assumptions. The current stock 

price, the stock price volatility and the risk-free interest 
rate are all taken Tr.F.N fuzzy numbers and  



     
1

0

d 1, 1 nf f n      . 

 

     
           
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156 2 ,162 2 , 0.26 0.02 ,0.32 0.03 , 0.02 0.01 ,0.05 0.01
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        
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n
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

 

   
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                                   
 

 

With the help of the above fuzzy expressions we price the ll in a fuzzy possibilistic setup. ca

                      0.03 2 0.02 2 0.02 2 0.03 2 0.03 2
1 1 2 2e 156 140 e 140 e e 158 156 eFCOV N d N d N d N d1                 

                      0.03 2 0.05 2 0.03 2 0.04 2 0.05 2
2 1 2 1 2e 162 140 e 162 160 e 140 e eFCOV N d N d N d N d                 

 
We present the fuzzy call option values for various 

levels of   and n as in Table 1 and Figure 2. A fuzzy 
weighted possibilistic model is sufficiently flexible and 
can be easily adjusted or tuned for optimal solution. The 
flexibility is in the ability to choose different values of n 

according to different criteria. For example, a bank could 
calibrate n to improv  volatility forecasts, which are es-
sential for Value-at-Risk calculations for option portfo-
lios. Alternatively, the value of n can be trained to im-
prove the precision of computed hedge ratios (Greeks).      

e
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Table 1. The fuzzy call option values for various levels of γ and n. 

   1F   

n = 0.5 

 2F   

n = 0.5 

 1F   

n = 1 

 2F   

n = 1 

 1F 
n = 2 

 2F 
n = 2 

 1F 
n = 3 

 2F 
n = 3 

 1F 
n = 4 

 2F   

n = 4 

 1F 
n = 5 

 2F 
n = 5 

0 29.199 37.525 29.176 37.504 29.143 37.474 29.123 37.456 29.111 37.445 29.102 37.437

0.1 29.480 37.251 29.456 37.229 29.424 37.199 29.404 37.181 29.392 37.170 29.383 37.162

.924

.649

.375

.100 30.527 36.082 30.515 36.071 30.506 36.062

0.6 30.882 35.877 35.796 30.787 35.787

0. 31.162 35.603 31.139 35.581 31.107 35.550 31.088 35.532 31.076 35.521 31.067 35.513

0.8 

0.

0.2 29.760 36.976 29.737 36.955 29.704 36 29.685 36.907 29.673 36.896 29.664 36.887

0.3 30.041 36.701 30.017 36.680 29.985 36 29.965 36.632 29.954 36.621 29.945 36.612

0.4 30.321 36.427 30.298 36.405 30.265 36 30.246 36.537 30.234 36.346 30.225 36.337

0.5 30.602 36.152 30.578 36.130 30.546 36

30.859 35.856 30.827 35.825 30.807 35.807 30.796

7 

31.443 35.328 31.420 35.306 31.388 35.275 31.369 35.257 31.357 35.246 31.348 35.238

9 31.723 35.054 31.700 35.032 31.668 35.001 31.649 34.982 31.638 34.971 31.629 34.963

1 32.004 34.779 31.981 34.757 31.949 34.726 31.930 34.708 31.918 34.696 31.910 34.688

 

 

1

29.199 32 34.77 37.525

Option Values

 

Figure 2. Membership function for different values on n 
and for 0 ≤ γ ≤ 1. 
 
This may be beneficial for hedging performance, which 
is essential in risk management. 

3. General Terminal-Value Claims 

A standard option is a contract that gives the holder the 
right to buy or sell an underlying asset at a specified 
price on a specified date. The payoff depends on the un-
derlying asset price. The call option gives the holder the 
right to buy an underlying asset at a strike price; th

er the underlying asset price, the more 
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claim in the Black-Scholes model: 

d d dt t t tS S t S W   , 

that is 

 2 2

0e tW t

tS S
   

 , 

where   and   represent the expected return and 
volatility per unit time, respectively, and  tW  is a 
Wiener process. The price at time 0 of a claim paying C 
at time T is e rT

Q C   , where taking expectations with 
the martingale probability Q gives the same value as 
taking expectations with the original probabilities with 
the assumption that r  ; the price at time t will be  

 e r T t
Q tC  
 F . Here C may be any TF  random 

variable with 2C 

 

   . The following theorem gives 
the time t price of a general terminal-value claim 

 TC f S . 
Theorem 3.1 
1) The time t  price of the terminal value claim 
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 v

TC S  for some real number v  is 

     21 2
e

v r v T tv

tS
   

, 

2) The time t  price of the asset-or-nothing claim 
      v

T TC S I a S b     is 

 
     

     
21 1

2
v r v v T t

v vS d b d a


 
    

     , (3.1) 
1 

e
v

where 

t

 
 

2u

t

ln
2t

v

r T t
S

d u v T
T t






   
     
    


,  

and  a   and  b   are the upper and lower  - 
cuts, respectively. 

3) For any twice differentiable function  
 : 0,f  R , the ti  price of the terminal value me t

claim C f      TI a S bTS     is g n by 

 r T t

ive

        , e eX
Tp x t f x I a S b        

where   2 2X Z T t r T t    , 

option stated 
 the fuzzy concept is taken i to account in a model. 

set as trapezoidal y mber with core 



n
 fuzz

Proof: see A. Thavaneswaran et al. [18]. 
le 2 For the asset-or-nothing Examp

above,
Define a fuzzy 


nu
,a bS S , left width   and righ th t wid  . Consider the 

t
oid function. By intro g the fuzzy concept 
ry function an investor m y have more oppor-

tunities to think about his decision in some aspe

me
the trapez
into a bina

as risk. 

  

mbership func ion related to asset price which follows 
ducin

a
ct such 

   

 
   

1 if

1 if

1 if

0

b b

otherwise

a
a a

a b

b

S S T
S S T S

S S T S

S T S
S S T S




g S T




 


  
     
 

   
      

  

(3.2) 

0, 0 
The mo

at the ma


rlying asset p

 . 
st possible values of th de rice 

turity date lie in the interval 
e un

 ,a bS S , and bS  
  is the upward potential and aS 

rly
 is th

ing as
e downwar

r the values of the u set price.
d 

 For potentia
fixin

l fo nde
g parameter values of  ,  , aS , and 

 many ways to be considered. For example, whe
bS  there 

are n the 
investor cannot predict how the underlying asset price 
changes at the maturity date, in other words, when he 
becomes confident that the asset price has fluctuated 

he will take the range of sufficiently large width 
so that the premium values become high. On the other 
hand, when much fluctuation is not observed the width 
will become small, so that aS  gets equal to bS , result-
ing in triangular fuzzy numbers. For each of three sets 
the corresp

greatly 

onding payoff tained by mu lying its 
grade of membership functio

 is ob
n, 

ltip
s . 

In this case, and the rlying asset  moves 
between 

unde   S T

aS   and bS  . T
 as a

h
 dif

en, the value of 
option m ference een the 
presen

 present 
ay be com

t value of 
puted  betw
   whS T ich exce aSeds   and t  

of 
hat

   S T which is above bS  . 

    

      

   

       
2

if

if

0 otherwise

a b

b
b b

S T S S T S

S T S S T
S T S S T S

2

payoff

a
a a

g S T S T

S S T S T
S T S 


if S T S





  

  
 

 

  
     
  

 

       



 

Then, the values of asset-or-nothing option with fuzzy 
nature are as follows 

1 2 3C C C C    

where 

   
 

1 e ,r T t
Q

a b

C S T

S S T S 

    
   


 

     

 

2

a Q QT t

a a

S S T S
C

S T S





 
       
  
 

  

 
 

2

e ,
T



r

S



   

 

2
T 

 

nditio
ion wi

r TT  

3 e ,
a Q b Qr T t

b a

S S S T
C

S S T S





 
       
 

  

 
 

with appropriate boundary co ns, wh  de-
notes the conditional expectat th re o risk- 
neutral probability. 

S 

ere 
spect t

 S  

Q

     

 

1 e er T t t
Q Q

a b

C S T

S S T S 

    
       e ,r T t

t b aS d S d S            

   

 

and    
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     

           
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2
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1
2 1 2 2 12 2

2 2

||
e

||
e e

e
e

Q ta Q tr T t
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C

S TS S T S S T S T

S S d S d S S d S d S


 

   

     

 

 

   

     
 

 

          
 

                   

 
            

 
 

FF

FF





                

 

2
2

2 2e
e ,

r T t

a t a a t a ar T t
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S S d S d S S d S d S

S S T S


     

 



 

 



             
 
 

  

 

and 

     

 
              

2

2

3

2
2 2

| |
e

e
e .

Q t b Q tr T t

r T t

t b b b t br T t

S T S S T
C

S d S d S S S d S d S


 

     

 

 

 

 

           
 

           
 
 

F F 

 

b


 
Example 3 When we model the terminal value  by 

an adaptive fuzzy number having membership function of 
the form: 

TS

  

   

 
   

1 if

1 if

1 if

0 otherwise

n

a
a a

a b

n

b
b b

S S T
S S T

S S T S
g S T

S T S
S S T S




S




  
    
  
   
  
  
 





 

  

(3.3) 
and if the payoff is given by 

    

       

   

       

if

if

0 otherwise,

n

a b

n

b
b b

g S T S T

S S T S

S T S
S T S T S S T S

ifa
a a

S S T
S T S T S S T S

S T









 
 
  

  
 



 

(3.4) 

then the time t call price is given by 3

where 

  
    
  



1 2C C C C   , 
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t

It follows from Theorem 3.1,   
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 

 

.

b

 
4. Conclusion 

In this paper, we have obtained the membership function 
of the European call price based on the Black Scholes 
mode with fuzzy volatility. We have fuzzified the matur- 
ity value of the stock price using adaptive fuzzy numbers 
and studied the asset or nothing option. Numerical illu
tration is given in some detail. 
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