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ABSTRACT 

This paper considers an optimal life insurance for a household subject to mortality risk. The household receives wage 
income continuously, which could be terminated by unexpected premature loss of earning power. In order to hedge the 
risk of losing income stream, the household enters a life insurance contract. The household may also invest their wealth 
into a financial market. Therefore, the problem is to determine an optimal insurance/investment/consumption strategy. 
To reflect a real-life situation better, we consider an incomplete market where the household cannot trade insurance 
contracts continuously. We provide explicit solutions in a fairly general setup. 
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1. Introduction 

We consider a household whose income stream relies on 
one particular member of the family. The household has 
an incentive to buy a life insurance contract to mitigate 
mortality risk of the wage earner. The investment time 
horizon of the household is  0,T  where T denotes the 
planned retirement time of that person. That is, the 
household expects to receive wage income at rate  y t  
continuously until time T, which could be terminated 
before time T by some unexpected loss of earning power 
(e.g. death). Accordingly, it is natural to assume that the 
household buys an insurance that terminates at time T. In 
other words, the insurance coverage is effective until and 
upon time T. The mortality risk is modeled by a first ar-
rival of a certain Poisson process  N N t ; 0t   
with intensity process   ;t t  0 . We denote the 
random time of that event by  . The household buys n 
shares of an insurance policy by paying a lump-sum 
premium of 0  at time 0. We assume the premium 
per share, 0  is determined exogenously and n is one of 
the decision variables. The insurance company pays in-
surance amount X per share that depends on the time of 
Poisson arrival 

n p
p

 . Therefore, if the household purchases 
n shares, the payment at T   is  n X  . 

Given the initial endowment at time 0, the household 
decides on the number of insurance contracts n and in-

vests the rest of the money available into the financial 
market. In the case of T  , the household receives 
insurance money  nX   and shall use the money for 
consumption and/or additional investment in the finan-
cial market. On the other hand, if T  , the insurance 
contract terminates and the insured person retires at T. 
The household tries to maximize its utility for the entire 
time horizon  0,T . See the next section for complete 
mathematical formulation. It should be emphasized here 
that the decision maker in our problem is the “house-
hold” (i.e. the whole family), not the insured person. 
Hence after time  , consumption still continues. 

Although the financial market (excluding insurance 
contracts) is assumed to be complete, the household’s 
inability to trade insurance contracts makes the whole 
model incomplete. We show, by using the convex duality 
method, that if a certain n solves the dual problem, that n 
also solves the original utility maximization problem. We 
then explicitly compute the corresponding consumption 
and wealth processes. However, we need to specify a 
state price density process with respect to the mortality 
risk in order to solve the dual problem, and it is generally 
quite difficult to derive the process explicitly. To avoid 
this difficult issue, alternatively, we provide such a con-
dition that the state price density process is given as a 
constant 1. In other words, we provide a condition such 
that the household evaluates the insurance benefit as its 

Copyright © 2013 SciRes.                                                                                 JMF 



H. IWAKI, Y. OSAKI 292 

expected value of discounted cash-flow under the physi-
cal probability measure. Under the condition, provided 
that insurance benefit is a linear function of n, the 
household shall invest all the initial endowment either in 
the insurance contract or in the financial market, de-
pending on the relationship between the insurance pre-
mium and the expected discount value of insurance 
benefit. This is natural because the financial market ex-
cluding insurance contracts is complete, if these two 
quantities are not equal, the household takes a full ad-
vantage of possible mispricing in the insurance contract. 
On the other hand, if these quantities are equal, the 
household does not have a clue as to how it should de-
termine the optimal number of insurance contracts. Fi-
nally, we provide the optimal portfolio strategy for each 
n. Hence this paper analyzes the household’s optimal 
behavior when the household faces the insurance contract 
and the financial market. 

Literature Review 

We briefly discuss this paper’s position in the existing 
literature. While this paper considers insurance payment 
(at  ) as a source of income to the bereft family mem-
bers for the rest of the time horizon, previous treatments 
of insurance in the literature are in essence from insurers’ 
point of view. The main purpose is to calculate insurance 
premium of various contracts whose payment is exoge-
nously given. For example, [1,2] examined option-like 
features contained in the insurance contacts. The fair 
premium of an equity-linked life insurance contract is 
calculated in [3,4], while [5] calculated the reserves in a 
stochastic mortality and interest rate model. See [6]. See 
also [7,8] for determining insurance premium in a multi- 
period economy and in a continuous-time economy, re-
spectively.  

In contrast, this paper discusses an optimal insurance 
purchase from the standpoint of households. The prob-
lem treated in this paper can be seen as an extension of 
the security allocation problem originally studied by [9, 
10]. In his model, only a riskless security and a risky 
security are considered and the problem is to obtain an 
optimal portfolio rule so as to maximize the expected 
utility from consumption. Since then, the model has been 
extended to various directions. [11] included life insur-
ance decisions in the Merton model. He assumed a spe-
cific diffusion for the risky asset and a complete market 
where the investor can trade life insurance contracts con-
tinuously. The investor in [11] maximizes the utility until 
uncertain time of death. [12] used a discrete-time model 
to derive the demand function for life insurance. [13] 
extended to a multi-period model but did not include 
risky assets in the asset portfolio. [14], in one-period 
model, performed a comprehensive study of the insur-
ance-investment-consumption problem and analyzed 

effects of parameters on individuals’ insurance purchase, 
consumption, and stock investment decisions by using 
two different individual groups: one with exponential 
utility and the other with power utility. Also, [15] studied 
a life time model in which a “human capital” is consid-
ered, as in [11], to represent the present value of the total 
wage income to be obtained in the future. By including 
the human capital in their security allocation model, they 
succeeded in explaining the relationship between the age 
of an economic agent and his/her optimal investment 
strategy. See also [16-18] as examples of such exten-
sions. 

Our current article contrasts with these papers in that 
we use a continuous-time framework with general utility 
functions and general underlying diffusions. Moreover, 
in order to make the model more realistic, we assume 
that the household cannot trade insurance contracts 
(unlike [11]) and incorporate the fact that the bereft fam-
ily would use the money from the insurance contract to 
continue their consumption until the fixed time T. It 
should be noted that [19] showed the existence of solu-
tions for the investment-consumption problem with a 
random endowment in a general semimartingale model. 
Our current paper, though, has distinct merits in the sense 
that we obtain an explicit solution for a fairly general 
utility function and hence make economic implications 
much clearer. Moreover, while the random endowment in 
[19] is given exogenously, our random endowment (i.e., 
insurance money) here can be controlled by changing the 
number of shares of the insurance contract. 

This paper is organized as follows. In the next section, 
we formulate our problem in a rigorous manner. We 
solve the problem in the following section and discuss 
possible extensions after we present our main results. We 
defer the detailed proofs to Appendix. Throughout this 
paper, all the random variables considered are bounded 
almost surely (a.s.) to avoid unnecessary technical diffi-
culties. Equalities and inequalities for random variables 
hold in the sense of almost surely. 

2. The Model 

Let us consider a complete filtered probability space  

  , , ,t t 



    that hosts a Brownian motion  

    : ; 0, 0B B t t B 0    and a Poisson Process  

    : ; 0, 0N N t t N 0    with the intensity process  

  : ;t t  0  . Let ,   : ;B
t B s s t   0,t T .  

We denote the -augmentation of filtration by  
  0,T: ;B B

t t  . The Brownian motion is the 
source of randomness other than the time  : 

  : inf 0; 1 ,t N t     
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which denotes the time of the insured person’s loss of 
earning power (e.g. death). We assume that the Poisson 
process N and the Brownian motion B are mutually in-
dependent. Let  : 1 ;N

t s s t    where 1E  de-
notes the indicator function of event  meaning 
that  if E is true and  otherwise. The - 
augmentation of the filtration is denoted by  

E
1E 1 1 0E  

  : ; 0,N N
t t T  . Clearly,   is an -stopping 

time, but not an 

N
B -stopping time. Now, let  

: B N  t t t   , 0,t T  and its -augmentations 
 : ; 0t t 

t

T, . It is assumed that  satisfies the 
usual conditions regarding right-continuity and com-
pleteness. The conditional expectation operator given 

 is denoted by   with 



t 0

Suppose that the current time is 0, and let  be 
the termination time of an insurance contract which is set 
to be the same as the retirement time. We consider a con-
tinuous-time economy in 

  . 
0T 

 0,T  that consists of the in-
surance contract and a financial market. The financial 
market is assumed to be frictionless and perfectly com-
petitive1. 

The household may receive cash flow from various 
sources of income. But for simplicity, we assume that it 
relies on one member’s income stream:  

    ; 0,y y t t T    (called income process hereafter) 
which is given exogenously until time T. To hedge the 
risk of loss of income flow at time T 

n

, the household 
buys an insurance policy described as follows: Once the 
household buys  shares of the policy by paying the 
insurance premium amounts 0  at time 0, the in-
surance company makes an insurance payment in the 
amount of 

n
p 

   1n X t n H t    
T

            (1) 

at time t   . Here  : 0,H T    is given exo-
genously, representing payment schedule until time . 
In case 

T
T  , the policy pays 1  dollar per share at 

time . In order to avoid unnecessary complications, 
we assume that the schedule function satisfies the fol-
lowing assumption. 

T

Assumption 1  : 0,H T  
  0H T 

  0H T

 is a nonincreasing 
continuous function with . 

Here we note that   means that the insur-
ance amount when   occurs at time  and the guar-
anteed insurance amount (which is unity) on the set 

 coincide. 

T

  T   
Let     t t ,T; 0c c  be the consumption process 

to be determined by the household. It is assumed that 
income and consumption processes are adapted to . In 

the financial market, there is a riskless security whose 
time  price is denoted by . The riskless security 
evolves according to the differential equation; 



t  0S t

 
     0

0

d
d ,t t  0, ,

S t
r t T

S t
 

where  r t  is a positive, predictable process with re-
spect to B . The household can also invest their wealth 
into a risky security whose time  price is denoted by t

 t1 . The risky security evolves according to the sto-
chastic differential equation (abbreviated SDE); 
S

 
     d dt B    1

1

d
, 0, ,

S t
t t t t T

S t
        (2) 

where  t  and  t  are progressively measurable 
processes with respect to B . 

Let  π t  be the amount to be invested into the risky 
security at time . The process t     ; 0,t t T  

c



 is 
referred to as a portfolio process. Now, given a portfolio 
process , a consumption process , the number of 
shares of the insurance policy  and an income process 

, the wealth process 

π
n
 y  ; 0,t TW W t

 

  

 

  

t

s W s

 is defined 
by 

  :

      
       
 

        
       
 

0 0 0

0

d

π d d

if 0, ,

d

π d d

if , ,

t

t

t

W np r y s c s s

s s r s s s B s

t T
W t

W nX r s W s c s s

s s r s

T



s s B s

t T


 



 

 



    

     
  

   






   
  








 (3) 

where 0  is a given initial wealth which is assumed to 
be a positive constant. 

W

In this paper, we assume that, given the intensity proc-
ess  , the conditional survival probability of   is 
given by 

    | exp d , 0,t u u t   
0

t
 T .    (4) 

That is, the intensity process   plays the role of the 
hazard rate, 

   
0

1
lim , .B

tt t t t  


     

   

A Poisson process  driven by that (stochastic) in-
tensity process is called a Cox process, which is also 
known as a doubly stochastic Poisson process. See, for 
example, [20] for details. In this case, we have  

N

1A financial market is said to be frictionless if the market has no trans-
action costs, no taxes, and no restrictions on short sales (such as margin 
requirements), and asset shares are divisible, while it is called perfectly 
competitive if each agent believes that he/she can buy and sell as many 
assets as desired without changing the market price. 

   B B
t Tt t       for t . Note that, in  T

this setting, the infinitesimal increments  dB t  and 
 dN t  are conditionally independent given B

t . Also, 
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the process     , 0,M M t t T  

      00
: 1 d

t

N s

 defined by 

 dM t   N s  s s

2) For any  0,c   there exist real numbers 
 0,a   and  0,b   satisfying  i iaU U bc  . 

      (5)   

is an -martingale (i.e. the integral      00
1 d

t

N s
s s   

is the -compensator (see [21])). 

Also, in order to represent time-preference of the 
household, we introduce a time-discount factor 

    
0

exp d , 0, ,
t

s s t T   
Definition 1 A consumption and wealth pair  ,c W  

is called feasible if ,  for where the process     , 0,t t T  

W

 is adapted to 
. A natural problem for the household is as follows: 

Given the initial wealth 0 , the household decides how 
many insurance contracts to buy at time zero to protect 
from the risk of the Poisson event. The rest of the money 

0



W0 np  can be invested in the financial market. If 
T  , the household receives the insurance money 
 nX   as in Equation (1) and re-solves the optimal in-

vestment-consumption problem Equation (7) by using 
the sum of the wealth at  ,  W    and the insurance 
money  nX   as the “initial” wealth at  . On the 
other hand, if T  , the problem reduces to an ordinary 
investment-consumption problem from time zero to . 
By keeping these possibilities in mind, the household 
decides on the number of insurance contract  at time 
zero along with the optimal consumption-investment pair 
to maximize the overall utility. Mathematically, it is 
stated as follows: 

T

n

  0c t   W t    0,t T , 
 and it satisfies (3). We denote a class of fea-

sible pairs  by . 
  0W T 

 ,c W 

   1 : 0,U   



 1,2i 

   

   
0

: lim 0,

0 : lim ,

i i
x

i i
x

U U x

U U x





   

    

Recall that the household consumes the wage income 
and, if any, insurance money to maximize the expected 
discounted utility from consumption  and terminal 
wealth . Let  be the utility func-
tion of the household from consumption, and let 

2  be the utility function of the household 
from the terminal wealth. In order to guarantee the exis-
tence of a unique optimal solution as an internal point, 
we assume that the following assumption holds in the 
sequel (See the proof of Proposition 1 and that of Propo-
sition 2 in Appendix). 

c
W T

 , : 0U

Assumption 2 We assume that our utility functions 
satisfy the following: 

1) i   are strictly increasing, strictly con-
cave and twice continuously differentiable with proper-
ties 

U

(MP) Given the discount process   and utility func-
tions  iU x , 1,2i  , find an optimal triplets consisting 
of consumption process, portfolio process and the num-
ber of shares of the insurance policy  to solve 
the following maximization problem: 

 ˆ ˆ ˆ, ,c w n
1, 2i  .

 

 

          10 0 0
d d exp d

T t T
s s U c t t s s V W T

 
 

        max exp 

  

                (6) 

with 

           1 2: maxV W T   

 ,c W 

   
0

; d
T

t t t


 


 

  

exp d d exp d ,
T t T

TT T T
s s U c t t s s U W T   

    
        

.T

      (7) 

 
where the maximum is taken over by the feasible con-
sumption and wealth pairs,  under the budget 
constraint Equation (3). 

       : ,B Nt t t    t            (8) 

where 
In the next section, we shall solve the problem (MP) 

by applying the martingale approach in an incomplete 
market (see [18] and [22]). 

    0
: e ,dxp

t
t r s   s            (9) 

   
     

     0

: 1 1

exp d ,

N
t t

t

t

s s s

 



 


 

 

 



 
   
 

 
    (10) 

3. Main Results 

In order to apply the martingale approach, we need to 
specify a state price density process first. Let  be a 
class of positive and predictable stochastic processes;  



  , 0,t    
and  

       2

0 0

1
: exp d d ,

2

t tB t s B s   s s    
     (11) 

 ; 0,t t T     For each  , the state price 
density process is given by with 
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   : ,

t r t
t t

t







  0, .T         (12) 

Note that Equations (8) and (10) say that the state 
price density process   is determined once the inten-
sity process   is specified. Here and hereafter, we de-
note the conditional expectation operator given t  un-
der the equivalent martingale measure  by  with 

. 


t


0

Remark 1 The following facts are well known. See 
for example [21] and [23]. 

  

1) The state price density process     ; 0,t t T    
is such a process that  0 1  , , and for 
each 

 t  0
 0,t T  and for any s t ,  0,s T , 

        , 0,t j js S s t S t j     1,      (13) 

i.e. each process       , 0,jt S t t T  , 0,1j  , is 
martingale under . 

2) The equivalent martingale measure  is given by  

 
 

d
,

d

T

T






  

3) The process   represents the intensity process 
under the equivalent martingale measure . 

We solve the problem (MP) in two steps. First, for a  

given n  , we solve the problem by applying the 
martingale methods for optimal portfolio selection prob-
lems in incomplete market. Second, we derive the value 
of  which maximizes the value function that is de-
rived in the first step.  

n

In the following, in order to make the dependence on 
   explicit, we denote the state price density by 

       B Nt t t    t  , 0,t T , where 

   
     

     0

1 1

exp d ,

N
t t

t

t

s s s

  



 


 

 

 



 
   
 

  
   (14) 

See also Equation (10). Similarly,   denotes the 
equivalent martingale measure associated with the state 
price density  , which is given by 

   d d T T    . 

For a given consumption and wealth pair  ,c W , the 
next result provides a necessary condition regarding its 
feasibility in the market.  

Lemma 1 If a consumption and wealth pair  ,c W  
is in  (as in Definition 1), then it satisfies the follow-
ing inequalities. 



 

             

           

0 00
d ,

d

T

T

T T

t c t y t t T W T nX T W np

t c t t T W T T W T







 

    

    



 

            


       












             (15) 

 
for each   . 

For each utility function ,  and each  iU x 1,2i 
 ,s t  such that  0,s T  and  ,Tt s , we denote by 
   ,i
s I x t  the inverse function of 

    d
exp d

d

t

i s
U x s s

x
     

with respect to x . Similarly, for the function  V x  
defined in (7), we denote by  J x  the inverse function 

of 

    0

d
exp d

d

T
V x s s

x




     

with respect to x . Under Assumption 2, for each ,s t , 
the functions  i

s  ,I x t   1,2i   and  J x  exist, are 
continuous and strictly decreasing, and map  0,  onto 
itself. For each s , , and , we define the Legendre 
transformation 

t i
 ,u z ts  and V  by 

 
          

0
, sup exp d , 0, , 1, 2

ti
s isc

u z t u u U c zc t T i


        ,                     (16) 

      
00

sup exp d .
T

w
V z s s V w zw








                                 (17) 

Then we can readily show that ,    0 ,i
sI t      , 0i

sI t  ,  0 ,J t   ,  ,J t 0  , and 

                 , exp d , , , 0, , 1,
ti i i

s i s ss
u z t u u U I z t zI z t t T i     2,                 (18) 

         
0

exp d .
T

V z s s V J z zJ z





                              (19) 

Now, in order to solve the problem (MP), we consider the following dual optimization problem: 
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(DP)     
    0,

max min , ,n n

n n
n V

 
 

 
    

 

where 

                    1
0 0 00 0

, , d 0 d
T T

V u t t t V T W np t y t t T nX
 

            
             .T (20) 

The household’s optimal consumption/wealth process is given next: 
Proposition 1 For a given , Let 0w   w  be a solution of the equation; 

                1 2, , d ,
T

T T TT
w T t I w T t t T T I w  

         
           ,T T          (21) 

where, by recalling Equation (8), 

     
   

 , ,
B

B

t t
T t t T T

T T

 
  

   
   

 
, .  

Suppose that Assumptions 1 and 2 hold. Let n  be a solution to (DP) satisfying 

          
          

1

2

, ,

, ,

T

T TT

T

T t I J T T t t t

T T I J T T T T

  

 

      

      






 




    
      

 



, d

,
 

and 

           1
00

, d ,
T

t I t t t T J T 

 
       

 

       


 

   

where . Then, n     
0, : arg min ,

n n
V        

 
 agrees with an optimal share n̂  o  the insurance policy in (MP)  

and an optimal consumption process ĉ  and the corresponding wealth process Ŵ  are given, respectively, by 

f


 

      
         

1
0

1

, ; 0, ,
ˆ

, , ; , ,T

I t t t T
c t

I J t T t t t T



 

  

    










 


  








 

T
                   (22) 

and 

 
                 

          

1 ˆˆ d ;
ˆ

1 ˆˆ ; ,

T

t t

T

t t


0, ,s c s y s s T W T n X T t T
t

W t

s c s ds T W T t T T
t






    



  






              
     
















   (23) 

with . Furthermore,     Ŵ T J T


   
      satisfies 

         

       

00

0 0 0

ˆ( ), d

d
T

t I t t t T W T

W n p t y t t n T X T









     

   



  

  1T  

. 



    


 

  









 



                (24) 

 
In summary, we have obtained the following: If we 

assume that n  solves the dual problem (DP) along 
with  ,   hen , t    is represented by Equation (24). 
Moreove is also th solution to the primal problem 
(MP), together w  corresponding pair  ˆˆ,c W  that is 
given by Equations (22) and (23), respectively. Ho  
in the problem (DP), it is quite difficult to derive optimal 

r, n  e 
ith

wever,

   analytically. Hence, it is reasonable to consider con-
ditions to guarantee    . The next proposition pro-
vides one of such conditions.  

Proposition 2 In addition to Assumptions 1 and 2, 
suppose that    1

0 ,I x t ,  0,t T , and  J x  are con-
vex with respect to x  , and that, for a sufficiently 
small 0  ,   
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                 2 21 , 1N NI t t t0 ,

1 ,t t t
t t          

        
                   (25) 

 

here w        1 1
0 0

d
, : ,

d
I x t I x t

x
  . Then, the optimal solu-  

tion  ,    of the problem (DP) is given by  ,  . 
Especially,    is uniquely given by  . 

We note the additional convexity assum


ption on 
  1 ,0I x t ,  0,t T , and  J x  is satisfied by utility 

logarith etc., although implica-
tion of Equation (25) is not so clear.  

Now in the next proposition, we will show 

functions including mic, 

how the 
optimal  n̂ n  looks like. 

Propos Suppose that the assumptions of Propo-
si

ition 3 
tion 2 hold. The optimal share n̂  is given as follows. 

If     0T X T p        then 0 0n̂ W p . Oth-  

erw T p ˆ 0nise, if  T X      0 , then  ,  

otherwise n̂  is indefinite. 
at if the money received from 

th
This pro sition states thpo
e insurance contract at time   is linear in n , the 

household either spends all of th nt in  e initial endowme

the insurance contract or buys no insurance, depending 
on     0T X T p       . That is, depending on 
whe benefit from the insur-
ance contract is greater or less than the insurance pre-
mium. This makes sense since the household tries to take 
a full advantage of possible mispricing in the insurance 
contract. On the other hand, if the insurance premium is 
priced in such a way     0T X T p        (for 
example, based on the ), the 
household does not have a clue as to how it should de-
termine an optimal n̂ . 

The following res lt 

ther the discounted expected 

 law of large numbers (LLN)

u shows that we can explicitly de-
riv

ition 4 Suppose that the assumptions of Propo-
si

e the optimal portfolio process with an additional con-
dition.  

Propos
tion 2 hold. Provided that all parameters r ,  ,   

and   are deterministic function of time  0t T
th

, , 
then e optimal portfolio process    ˆ ˆπ π ; 0t   
is explicitly given by the following equ

,t T
ations. 

 

     
             2 21

0π̂ , d ,
T

t t

t t
t t u I u u t T J

t

  
       




            .T          (26) 

 
ote that dependence on  is implicit through Equa-

tio ed

ngs. First,
th

N n
n (24). The household ne  to decide the number of 

insurance contract first. Once given that n, they hold on 
to the optimal consumption Equation (22) and portfolio 
process Equation (26) to maximize their utility. 

Our framework can be discussed in other setti  
e insurance benefit was computed as a linear function 

of n  but we could assume a more general (non-linear) 
formula than in Equation (1). In this case, the optimal 
number of insurance contract can be an interior point 
between  0 00,W p . Secondly, our insurance premium 

0p  here xogenously and Proposition 3 dis-
ses the relationship between 0p  and the expected 

payment at 

is given e
cus

  whose form is basically LLN-based pric-
ing. In this context, there exists an exceedingly increas-
ing literature about pricing under distorted probabilities 
or Choquet pricing (see, for example, [24,25]). In con-
junction with these new pricing schemes our problem can 
be extended to an equilibrium analysis between the 
household and the insurer. 
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Appendix 

Proof of Lemma 1: 
For any   , suppose that  is in . Then, from Equation (3) and Itô’s formula, we obtain  ,c W 
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d



   
              

                  

0 0 0 0
d π d if 0,
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where 

0
 is a standard Brownian 

motion under 
     :

t
B t B t s s  

  for all   . Now, on the set 
 T  , in the first equation, set t    and note that 
     W W nX      and in the second equation, set 

. Then we obtain Equation (15) after taking the 
expectation for this set 
t T

 T  . Similarly, on the set 
 T  , in the first equation, we set  and note 

that 

t T 

     W T W T nX T    (recall Assumption 1). 
In the second equation, we set t T   (recall As-
sumption 1 again). On this set we also obtain Equation 
(15) after taking the conditional expectation.  □

Proof of Proposition 1: 
The proof here adapts the arguments in [26,27]. As-

sume that  ,    solves (DP) along with n*, and that 
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holds. In order to prove that   ˆˆ,c W T  in Equations (22) and (23) is optimal, we will proceed in two steps; first we 
will show that 
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hold for all , and then that   ,c W T    ˆˆ,c W T  . 

Step 1 (optimality). By Assumption 2-(2), there exists 
 such that for each ,  , 0,a b  1,2i 

             ' ', , , , ,i i
i s i saU I z t U bI z t t s T s T  0, .  

Applying    ,i
sI t  to both sides and iterating, show  

that for all  0,a   there exists a  such 
that 
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Hence Equation (28) implies 
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0 1 20

, d
T

t I t t t T J T


   
          

                       (31) 

for all , .  0,i   1,2i 

By the optimality of   , we have 
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where the second equality follows the dominated convergence theorem, using Equation (31) and the fact that 
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it then, by evaluating the previous inequality at  z


   t  ˆ and using the definition of  and W  in Equa-
tions (22) and (23), follows from Equations (15) and (32) 
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Furthermore, we can easily confirm that Equation (30) 

holds since Equation (18), Equation (21) and that  

   Ŵ T J T


   
   .  Hence,      ˆˆ,c W T 

must be optimal provided it is in . 
Step 2 (feasibility). We are only left to show that there 

exists an admissible portfolio process  financing  π̂
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below (because of boundedness of  and 
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From Equation (33) and the definition of W , if 
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A comparison with Equation (3) then reveals that only 

if we verify that  for all  2 0t   0,t  T  with 
, the proof will be completed.    Ŵ t W t 
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Introduce the ratio 

Copyright © 2013 SciRes.                                                                                 JMF 



H. IWAKI, Y. OSAKI 302 

 
 
 

 
        

          

, ,
,0 0

: exp ln d

exp 1 , 0, .

m t tm
m

m m m

t s
R t N s s s s

t s

t t t t





 
 

 

      




 d

T

            

       

  


 

 

We have then 

       1 1 1 1
0 exp 1 exp 1 exp 1 exp 1 ,m m R t m m

l l l l
                     
     

     

as well as the upper bounds for the random variable : mY 

, ,m m m mY Q Y Y    

where  

              
            

           

1
00

0

1
: exp sgn 1 sgn , d

1
exp sgn 1 sgn

1 1
d ,

T

m

T

R t
Q t I t m t m t t t

R T
T J T m T m

R t R T
t y t t T nX T



 

 



 

  


      


   

 

 

 

 






   

 
        

  
   









 

 


 


 

T  

 

        

           

1
000,1

0

1 exp 1 1 1
: sup exp 1 , d

1 1
exp 1 d ,

T

m
ml

T

m m
Y t I

l l

T J T t y t t T nX T
l l



 



   

  

       

 

   

 





                
   

              
    







 


t t t



,

.

 

 
and 

 
 
 

1 if 1 0
sgn

1 if 1 0

R t
t

R t

   
  




 

We have used the mean-value theorem applying to  
       1 1
0 0, ,I y t u y t

y


 


  

   J y V
y


 


 y  

with end points  ,n t  and  and the fact both   * t



  1
0 , I y t  and  J y  are decreasing in y for all  

 0,t  T  . Since the random variable  is inte-
grable, then by Fatou’s lemma, we obtain 

mY

 

                 
          

             
        

* *

*

* *

*

0 0 0

0

0

0 lim lim lim

ˆˆ d

ˆ d

ˆˆ d

ˆ d

m

m m

m m m

T

m m

m

T

Y Y Q

t t c t y t t T W T nX T

t t c t y t t

t c t y t t T W T nX T

t t c t y t t



 

 




    



         

    

    

 

  







 

  

           
 

         

    
         

 







  









  

  

     *0
ˆ .m

m m mW
 


       

      



       (37) 

We used the definition of  Equation (23) in the third equality. On the other hand, using Equations (33)-(36) 
with  and Itô’s lemma shows that 
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Substituting Equation (38) into Equation (37) gives 

   

        

0 , 0

0

20

, ,
0 lim

d .m

mV V

s s s s s
 



   



   

  



 




    



 


 

Taking   as      with   , it follows 
that 

     20
d 0m s s s s

 


  

 

Equation (39) leads to a stronger statement: 

     2 0, 0, .t t t T              (40) 

Indeed, suppose that, for some  0,t  T , the set 
    2;E t t   0    had positive probability for 

some   

1
 such that . Then by selecting   

E   , we have  , , and    

     20
d 0m s s s s

 


  

     ,  

contradicting Equation (39). From Theorem 13.1 of [28] 
and Equation (40), we can conclude that  2 0t  , 

 0,t T  .  □
Proof of Proposition 2: 
We first show that if a solution  ,

.


       (39) 

    exists, then 
this solution is unique with respect to   . Let ̂  be 
any other intensity process that minimizes  0V ,   for 
a given  , and let 

 
 

                
0

1
0 0 00 0

: min ,

, d d
T T

M V

u t t t V T W np y t t t n T X T



 
   

 

       



 



               


. 
   (41) 

Since we can readily show that  and ,  V y    1
0 ,u y t  0,t T , are convex in , y

               
                    

1
ˆ ˆ00

ˆ ˆ0 0 0

1 , d 1

1 d 1 ,

T

T

M u t t t t V T T

W np y t t t t n T T X T


  


  

       

         

 

 





          

             







 0,1 .
(42) 

Since M is the minimum, we have equality in Equation (42). By the previous inequality, we conclude that ˆ   . 
To identify the optimal  , we consider an equivalent problem. Let us define 

                 
                  

1
00

0 0 0

: 1 , d 1

1 d 1 ,

T

T

t

G u t t t t V T T

W np y t t t n T T X T


  


  

        

         

 

 





          

          










 0,1 .
  (43) 

Then, by using the definition of (1)
0I  and J, we have 

               
           
           

1
00

0

1 ,

1

d

T

T

t

G I t t t t t dt

J T T T

y t t t nX T T T


  

  


  

      

        

      

 

 

 





      

       

      







T



 

and 

               
           

2
12

00

2

1 , d

1 0

T
G I t t t t t

J T T T T


  

  

      

        

 

 

      
         



.

t


 

Thus  G   is a convex function of  . If    is a solution of the original problem, then  G   achieves its 
minimum at 1  . This is possible if and only if  1G 0 . Explicitly,    is a solution if and only if, for every 

her ot   that satisfies 
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1
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0 00

d

d ,

T

T

I t t t J T T

y t t t n T X T W np


   


 

     

   





     
       







 

.

                       (44) 

we have 

                   
                   

1
00 0

1
00 0

, d d

, d d

T T

T T

I t t t t J T T y t t t n T X T

I t t t t J T T y t t t n T X T

 

     

 
    

         

         

     

 

 

 

         
         

 

 



 
 (45) 

We first note that, from Fubini’s Theorem,  

                   1 1
0 0 ,0 0

, d 1 1
T T

t t t
d .I t t t t I t t t


        



  
                          (46) 

Since    1
0 ,I x t  is convex w.r.t. ,  x 

                   1 1 1
0 0 0, , , .I t t I t t t t I t t           

t

                  (47) 

Using the such facts that  and that      Nt t      t  is uncorrelated to both  and  N t  , we have   

                 
                 

1
0 ,

2 21
0 ,

, 1 1

, ) 1 1 .

t t t

N N
t t t

I t t t t t

I t t t t t

     

     

   

   

  

  

     
         



 
                 (48) 

Hence, if the absolute value of Equation (48) is sufficiently small, from Equation (47), 

                         1 1
0 0, ,

, 1 1 , 1 1t tt t t t
I t t t I t t t            
        

  .            (49) 


.

From Equations (46) and (49), we obtain an inequality;  

             1 1
0 00 0

, d , d
T T

I t t t t I t t t t
 

      
          


                   (50) 

Quite similar arguments lead to an inequality;  

         , , .J T t T J T t T                                        (51) 

Therefore, from Equations (50) and (51), we have 

                   
                   

1
00 0

1
00 0

, d d

, d d

T T

T T

I t t t t J T T y t t t n T X T

I t t t t J T T y t t t n T X T

 
     

 
     

         

         

 

 

         
         

 

 



 .
  (52) 

So that, if we choose a   so that it satisfies 

                   1
0 00 0

, d d
T T

0 ,I t t t t J T T y t t t n T X T W np
 

              
               (53) 

then we have 

                   
                   

1
00 0

1
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, d d

, d d
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   (54) 
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       , 0TV x x V x x x   holds by Equation (44). If we compare Equation (54) 

with Equation (45),   must be    and this argument 
completes the proof. Finally, we note that there exists a 
unique   satisfying Equation (53) since we have 

, 0,      

from Assumption 2 and the definition of , iU 1,2i  , 
and .  V □

Proof of Proposition 3: 
For each n  , let  be defined by  0̂V n     

0
lim 0, lim , 0,

1,2, 0,

i i i
x x

U x U x U x

i x
  

    

 


 

   
  0 0

ˆ min , .n

nV n V


 





 

Then, we can readily show that and 
 

             
            

1
0 00

0 0

ˆ ˆˆ , d

ˆ 0 d

T n n
T

Tn

V n u t t t V T

W np t y t t T nX T


  


 

    

   







  
      







.
 

Here, noting that, from Equation (24), 

            

       

1
00

0 0 0

ˆ ˆ, d

d

T n

T

t I t t t T W T

W np t y t t n T X T


  


 

     

   





     
        








                      (55) 

 

    
1

2 2: d
u

t t
u s  

holds, we obtain 
.s            (60) 

   

      

0
0

0

ˆdˆ :
d

ˆ .n

V n
V n

n

T X T p   

 

   
   (56) We note that if  ~ 0,1Z N , that is, if Z  is a ran-

dom variable that follows the standard normal distribu-
tion, a process     ,t T, ;t u Z u  has an identical 
distribution with that of the state price density process 

    ; ,u u t T   conditioned by . tSince , Equation (56) immediately leads to 

the result.  

 ˆ 0n 
□ Now, we consider the value of the household’s wealth 

 at time t . If ˆ
tW t  , then Proof of Proposition 4: 

First, we define some notations as follows. 

 
   
 

ˆ if ,
ˆ

ˆ if .

W t nX t t
W t

W t t





    
 

     (61) 
      d exp d d ,

s

t t
P s s v v     s



 

On the other, considering total net value at time  of 
optimal future consumption of the household, if 

t
t  ,    exp d ,

u

t t
P u v v             (57) 

    ˆ ,W t J t              (62) 
     , : exp ,t t tu z u u z           (58) otherwise, if t  , 

       ˆ ,
t t

W t TC TY TX  
t

, ,

        (63) 
     21

: d
2

u u

t t t
u r s s s     d ,s       (59) where 

 

                1
0: , , , d ,

T

t t t t tt t
TC u Z I t u Z u u T Z J t T Z


     

                       (64) 

               : , 1 d exp d
T T u

t t ut t t t
TY u Z y u u y u r s s s u 

          d ,



               (65) 

and 

               

                 
: , , 1 d ,

1 exp d d exp d .

T

t t t t t t tt t

T s T

t t t

TX n T Z X T nx s Z H s P s T Z P T

nx H s s r u u u s r s s s

   

  

             

       



  

   
    (66) 
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Here, we note that  denotes time  value of 

the household's incom ained in the future and 
that 

 t
TY

e to be g
 t

 t
TX

rance pai
 denotes ti value of the money from 

in d if 
me t  

su 

       
      

ˆ ˆd d d

d d d
t t t

W t W t nX t N t

TC TY TX nX
  

  

      d .t N t
 

(67) 

Next, we derive differential, 
 occ ore time

tion o
urs bef  T . 

Therefore, from Equa (61) and Equati n (63), if 
t  , 

 d
t

TC


,  d
t

TY


 and 
 d

t
TX


, explicitly. Since 
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0

, , d , , d

, , , d , d
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 1
0,

T s

tTC u z I t 
     

    ,tt T z  
 (68) 

d

,t

 

 
     

where is the c.d.f. of the standard normal distribution. Note that the last equation holds by Fubini's theorem. A 
straight d but long algebra leads to 

tt t t

T

 



 z  
forwar

                     21 1
0 0d , d d , , ,

T

t t tt t t
TC I t t t TC r t t t u Z I t u Z u u


     

  
 
       

                  

d
  (69) 

Similarly, from Equations (65) and (66), we can readily confirm that 

   2 2
, , d d d .t t t

T Z J t T Z t t t B t J t TC t t         


     
  

             
          

d 1 d
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d
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(70) 
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t t
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  d d         

hold. Therefore, from Equations (67), (69)-(71), we obtain 

                      (71) 

           
              

     

ˆd d d d d

ˆˆ ˆd d

d .

t t t

t

W t TC TX TY nX t N t

y t dt c t t W t r t t t t r

t nX t N t

 



  
   

     

 

    d dt t t B t               (72) 

    ˆJ t nX W t     

 
From Equation (61), since  

      ˆJ t W t nX t     , 
proposition holds. □  

we can conclude that the 
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