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ABSTRACT 

This study discusses a guideline on a proper use of Data Envelopment Analysis (DEA) that has been widely used for 
performance analysis in public and private sectors. The use of DEA is equipped with Strong Complementary Slackness 
Conditions (SCSCs) in this study, but an application of DEA/SCSCs depends upon its careful use, as summarized in the 
guideline. The guideline consists of the five suggestions. First, a data set used in the DEA applications should not have 
a ratio variable (e.g., financial ratios) in an input(s) and/or an output(s). Second, radial DEA models under variable and 
constant Returns to Scale (RTS) need a special treatment on zero in a data set. Third, the DEA evaluation needs to drop 
an outlier. Fourth, an imprecise number (e.g., 1/3) may suffer from a round-off error because DEA needs to specify it in 
a precise expression to operate a computer code. Finally, when a large input or output variable may dominate other vari- 
ables in DEA computation, it is necessary to normalize the data set or simply to divide each observation by its average. 
Such a simple treatment produces more reliable DEA results than the one without any data adjustment. This study also 
discusses how to handle an occurrence of zero in DEA multipliers by applying SCSCs. The DEA/SCSCs can serve for a 
multiplier restriction approach without any prior information. Thus, the propesed DEA/SCSCs can provide more reli- 
able results than a straight use of DEA. 
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1. Introduction 

Data Envelopment Analysis (DEA) has been long serv- 
ing as a methodology to evaluate the performance of or- 
ganizations in business, economics and other areas. The 
applicability of DEA is not limited in research areas in 
social science, rather extending to engineering and natu- 
ral science. The father of DEA is Professor William W. 
Cooper (University of Texas at Austin) who worked on 
DEA from the beginning to 2012. The survey research [1] 
summarized his contributions in DEA from an academic 
perspective of management science and operation re- 
search, dating back to a linkage between DEA and L1 
regression developed in 18th century and [2] documented 
his conceptual and philosophical contributions in account- 
ing and economics, based upon which he developed DEA 
as a methodology of “social accounting” and “social eco- 
nomics”. 

In the history of DEA, many DEA researchers (e.g., 
[3-5]) discussed the importance of incorporating SCSCs 
(Strong Complementary Slackness Conditions) into DEA. 
For example, the research of [4] documented what SC- 
SCs were and then proposed a use of the primal-dual 
interior-point method that incorporated them into DEA 
algorithm. Acknowledging the importance of the interior- 
point method in solving DEA equipped with SCSCs, 
studies [6-8] have recently proposed a new use of SCSCs 
for DEA (hereafter, DEA/SCSCs) in primal-dual com- 
bined radial and non-radial models, so not the algorith- 
mic perspective. Their original studies [6,7] applied DEA/ 
SCSCs for identifying a supporting hyperplane(s) on an 
efficiency frontier. Then, they determined the type and 
magnitude of RTS (Returns to Scale) based upon the up- 
per and lower bounds of an intercept of a supporting hy- 
perplane(s). 

Acknowledging the contributions of many previous 
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research efforts on DEA, this study recently finds that 
students, professors and individuals who are not familiar 
with DEA, attempt to use the methodology for their ap- 
plications in which data sets have unexpected conditions. 
For example, a data set contains zero or negative. An- 
other example is a data set that contains a ratio variable 
in an input(s) and/or an output(s). Furthermore, a data set 
whose observation has an outlier(s) and/or an imprecise 
number (i.e., 2/3) where 2/3 is mathematically precise, 
but the number becomes imprecise in operating a com- 
puter code. In these cases, DEA applications need to con- 
sider a special treatment for each case. 

Besides such fundamental issues, this study discusses 
another problem, or an occurrence of zero in multipliers. 
This study knows that [9] first discussed the problem of 
zero in multipliers. To overcome the problem of zero in 
multipliers, DEA researchers have long discussed multi- 
plier restriction methods such as assurance region analy- 
sis [10] and cone ratio [11]. Such approaches for multi- 
plier restriction are very important in obtaining reliable 
results and related business/policy implications. However, 
the proposed approaches always need prior information 
(e.g., previous experience and scientific evidence). In 
many DEA applications, it is not easy for us to access 
such prior information. Moreover, the information con- 
tains a subjective decision by a user(s). The proposed use 
of SCSCs can omit the subjectivity in DEA assessment. 
No previous study has described such a use of SCSCs for 
multiplier restriction in DEA. 

The remainder of this study is organized as follows: 
Section 2 provides an overview on an appropriate use of 
DEA. Section 3 describes mathematical formulations on 
DEA/SCSCs. Section 4 describes computational com- 
ments on DEA/SCSCs. Section 5 concludes this study 
along with future research directions of DEA. 

2. Problems in DEA Applications 

This section reviews a use of DEA and its fundamentals 
before describing DEA/SCSCs for multiplier restriction. 
The following concerns are important in applying DEA 
to various performance assessments. The violation needs 
a special treatment, depending upon each case and these 
combinations. 

(a) Ratio Variable: A data set used in DEA applica- 
tions should not have a ratio variable in an input(s) and/ 
or an output(s). To deal with the ratio variable, we need a 
series of modified DEA models. This study does not 
discuss the problem because [12] has provided a detailed 
description on the computational modification regarding 
DEA. A straightforward use of DEA does not properly 
function on the ratio variables. This concern is important 
because the original DEA model (i.e., CCR) has the 
mathematical structure of total weighted outputs divided 
by total weighted inputs. Thus, the structure of DEA has 

a ratio structure between inputs and outputs, so that these 
variables should not be ratio variables. In a similar manner, 
the proposed approach, or DEA/SCSCs, does not properly 
function on ratio variables, as well. This indicates that 
DEA/SCSCs need to develop a new approach to handle 
the ratio variable in an input(s) and/or an output(s). A 
future extension of DEA/SCSCs will explore the research 
task in another article. 

(b) Zero or Negative in Data: Radial DEA models (i.e., 
CCR and BCC) need to treat zero in a data set, specially. 
As mentioned previously, [9] discussed about the special 
treatment in which a user needs to add a small number to 
zero. The treatment is practically acceptable, but mathe- 
matically problematic in DEA assessment, because the ra- 
dial models produce different efficiency scores between 
with and without the treatment. Meanwhile, [8] has dis- 
cussed a mathematical rationale regarding why the radial 
models cannot directly handle the occurrence of zero in a 
data set. According to [8], the radial models do not have 
the property of translation invariance so that they cannot 
directly handle an occurrence of zero in a data set. The 
property implies that an efficiency measure should not be 
influenced even if inputs and/or outputs shift toward a 
same direction by adding or subtracting a specific real 
number. Their study (in Table 1) indicates that RAM 
(Range-Adjusted Measure) has the property of “transla- 
tion invariance” so that the non-radial model can handle 
an occurrence of zero in a data set. The property of the 
translation invariance is applicable to a negative value in 
data if a user depends upon the RAM. In contrast, it is 
impossible to apply radial models (i.e., BCC or CCR) and 
their related DEA/SCSCs to analyze a data set that con- 
tains zero or negative value in data. 

(c) Outlier in Data: If an outlier exists in a data set 
examined by DEA, it is necessary to drop it from the data 
set because the outlier destroys the shape of an efficiency 
frontier so that DEA evaluation does not produce a reli- 
able result. See, for example, [13] discussed how to han- 
dle the outlier issue in DEA. 

(d) Imprecise Number: For example, an imprecise 
number (e.g., 1/3) may suffer from a round-off error be- 
cause we need to specify the number by a precise expres- 
sion to run a computer code. The number is mathemati- 
cally acceptable, but not acceptable in the operation of a 
computer code for DEA. Some DEA investigator uses 
0.3333 or the other may use 0.3334. To avoid the round-  
 

Table 1. An example. 

Data A B C D E F 

Input 1 5/4 1 3 5 2 4 

Input 2 5/4 3 1 5 2/3 4 

Output 9/8 3/2 3/2 3 1/2 3/2 
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off error, it is necessary to specify a data range between 
0.3333 and 0.3334 in the example of 1/3. It is trivial that 
DEA may produce different solutions by depending upon 
the two round-off numbers. See, for example, [14] for a 
detailed description on how to handle such imprecise data 
in DEA. Thus, we need to depend upon a special treatment 
on the data set in DEA and DEA/SCSCs computations. 

(e) Data Adjustment: When a large input or output 
variable dominates the other variables in terms of the 
magnitude, the large variable dominates the computation 
of DEA and DEA/SCSCs. In the case, it is necessary for 
users to normalize the data set or simply to divide each 
observation by its average. Such a simple data adjust- 
ment produces more reliable DEA results than the one 
without any data adjustment. 

It is trivial to us that the problems discussed above ori- 
ginate from DEA itself, not SCSCs. The use of SCSCs 
depends upon only data sets that DEA can properly func- 
tion. Otherwise, DEA/SCSCs may produce unacceptable 
results (e.g., a negative efficiency score, an unbounded 
solution, and an infeasible solution). 

Finally, it is important to add that the use of DEA faces 
an occurrence of zero, but not a negative value, in data. 
However, when we apply DEA to a financial data set, the 
data usually contains financial ratios with negative vari-
ables. In the case, we need to depend upon a use of DEA- 
Discriminant Analysis (DEA-DA) that has a special struc- 
ture for analyzing various financial data sets, containing 
negative ratio variables. See, for instance, [15] for a de- 
scription on DEA-DA and its related applications on fi- 
nancial performance assessments. 

3. DEA/SCSCs 

This study starts with reviewing a radial DEA model and 
then extends it to SCSCs. The model used in this section 
is a radial model (or so-called BCC: Banker-Chaners- 
Cooper) that is formulated under variable RTS. The DEA 
model has the following mathematical (input-based) 
structure to measure an efficiency score    of the k-th 
DMU (Decision Making Unit, ) which uses  1,j  

T

, n



S

an input vector  to produce 
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(T) indicates a vector transpose. It is important to note 
that a data set used for DEA performance evaluation 
should not violate the conditions summarized in Section 
2. 

The important feature of DEA is that it relatively de- 
termines the level of efficiency on the k-th DMU by 
comparing it with the other DMUs in terms of their mul- 
tiple inputs and outputs. The following radial model may 
express the mathematical structure of DEA to measure 
the efficiency score of the k-th DMU: 

 

 

 

1

1

1

Min. 

s.t. 0 1, , ,

       1, , ,

1, 0 1, , and : .

n

ik ij j
j

n

rj j rk
j
n

j j
j

x x i m

y y r s

j n UR



 



  







  

 

  













  (1) 

Here, the subscript  k  indicates the specific k-th DMU 
examined by Model (1). The scalar  j , often referred 
to as a “structural” or “intensity” variable, is used to 
make an analytical linkage among all DMUs in a data 
space. An efficiency score    is unrestricted (URS) and 
it is often referred to as “technical efficiency” of the k-th 
DMU. 

After incorporating slacks into Model (1), the formula- 
tion becomes as follows: 
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Here, x
id stands for the i-th input slack and stands 

for the r-th output slack. Models (1) and (2) are mathe- 
matically same each other. However, there are two dif- 
ferences between them. One of the two differences is that 
Model (1) may consider the slacks (

y
rd

x
id  and ) as 

slack or surplus variables, but Model (2) considers them 
as decision variables in their computations. As a result, 
Model (2) can incorporate SCSCs more restrictively than 
Model (1). The other difference is that dual variables can 
be expressed by non-negative in Model (1) but they are 
unrestrictive (so, positive, zero and negative) in Model 
(2). 

y
rd

In addition to the two concerns, it is important to men- 
tion that the original radial formulation (e.g. BCC) main- 
tains slack variables in the objective function so that  

it becomes 
1 1

m s
x y
i

i r

d d 
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 
 
  r


 . An importance of the  

objective function is that the dual variables become al- 
ways larger than or equal  , so being always positive. 
In other words, a problem associated with Models (1) 
and (2) discussed in this study is that they may produce 
zero in their dual variables. 

To describe the dual issue discussed above, this study 
returns to Model (1) and formulate its dual model in the 
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following mathematical structure: 
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Here,  are the i-th dual variable related to 
the first set of constraints in Model (1) and 

r  are the r-th dual variable related to the 
second set of constraints in Model (1), respectively. A 
dual variable 

 1, ,iv i m 

 1, , s 

 

w r

 , being unrestricted (URS), is derived 
from the third constraint of Model (1). DEA researchers 
conventionally refer to each dual variable as a “multi- 
plier”. 

In the dual formulation of Model (2), all dual variables 
become unrestricted. To maintain the consistency be- 
tween Models (1) and (2) in their dual formulations, this 
study incorporates the non-negativity on dual variables of 
Model (2), as formulated in Model (3). 

SCSCs (Strong Complementary Slackness Conditions): 
The following Complementary Slackness Conditions 
(CSCs) exists between every optimal solution  
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It is important to note that Model (3) has  
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The satisfaction from Equations (7) to (9) is referred to 
as “Strong CSCs”, or SCSCs. See [7] for a discussion on 
SCSCs. 

DEA/SCSCs between Models (1) and (3) combine all 
constraints in Models (1) and (3) along with SCSCs: 
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where the equation 
1

s

r rk
r

w y 

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 
  indicates that  

the objective of Model (1) is equivalent to that of Model 
(3). The last group of constraints indicates that an opti-
mal solution obtained from Model (10) can satisfy SC- 
SCs (7-9). An unknown decision variable    is incur- 
porated into Model (10) in order to maintain SCSCs on 
optimality. 

It is possible to replace Model (1) with Model (2) in 
Model (10) to incorporate the influence of slacks more 
clearly. Mathematically, the two models do not have any 
difference except the sign of dual variables. However, 
they are computationally different, as mentioned previ-
ously. Furthermore, the multiplier restriction by SCSCs 
functions on efficient DMUs, not inefficient DMUs. How- 
ever, it is true that only efficient DMUs consist of an 
efficient frontier, based upon which DEA evaluates the 
performance of all DMUs. 

4. Comments on Computation 

The number of constraints determines the computational 
time of DEA because it determines the size of a basic 
matrix in linear programming. It is true that DEA/SCSCs 
has longer side constraints than original DEA. For exam- 
ple, the number of constraints in Model (1) has 1m s 

3
 

and that of Model (10) has  where n is 
usually larger than 

 2 n m s  
m s . The size of a basic matrix of 

DEA/SCSCs becomes much larger than that of DEA. In 
the case, as discussed in [16], a column reduction tech- 
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nique of linear programming becomes useful in the com- 
putation after changing Model (10) to a dual formulation. 
See, for example, [17,18] for a detailed discussion on 
DEA special algorithms. 

To overcome the computational problem of DEA/SC- 
SCs, this study proposes two possible approaches. One of 
the two approaches is a use of the primal-dual interior- 
point method, proposed by [4], because the method can 
simultaneously solve the primal part and the dual part of 
Model (10) so that the computation time of Model (10) is 
almost same as that of Model (1). Second-Order Cone 
Programming (SOCP) is the most promising approach 
among primal-dual interior methods. See [19] for a de- 
scription on how to use SOCP for DEA. 

The other approach is that we can utilize network com- 
puting, proposed by [16], which connects multiple com- 
puters and synchronizes them as a single computing en- 
tity for DEA. See a large simulation study of the net- 
work computing in their study. If we apply the network 
computing to Model (10) and ordinal linear programming 
software to Model (1), then the former computational 
time is much faster than the latter. Thus, DEA/SCSCs has 
many computational options in dealing with a large data 
set (e.g., more than 100,000 DMUs). The combination 
between primal-dual interior point method (e.g., SOCP) 
and network computing equipped with column reduction 
technique can very effectively solve various large DEA/ 
SCSCs. 

Finally, it is not necessary for us to use special com- 
puter schemes, as discussed above, because a modern 
computer is very efficient and fast. The computer devel- 
opments are much faster than algorithmic developments 
in recent days. Thus, the computation of DEA/SCSCs 
can depend upon the modern computer in dealing with a 
small data set (e.g., less than 1,000 DMUs). 

5. Conclusion and Future Extensions 

This study provided a set of guidelines for a proper use 
of DEA and DEA/SCSCs. The DEA/SCSCs is mathe- 
matically correct, but its successful applications of SC- 
SCs depend upon a careful use, as summarized in this 
study. All the guidelines discussed for DEA/SCSCs are 
applicable to a proper use of DEA, as well. Besides the 
guidelines, this study discussed implications of SCSCs 
from the primal and dual aspects of DEA/SCSCs. Such 
two aspects on SCSCs have been never explored in the 
previous DEA studies. 

It is true that both DEA and DEA/SCSCs are not per- 
fect. There are many problems associated with their uses 
in addition to the problems discussed in this study. For 
example, DEA assumes that all DMUs use same inputs 
and same outputs. The underlying assumption is often 
unrealistic in modern business. For example, a firm uses 
three inputs to produce two outputs. Meanwhile, another 

firm uses four inputs to three outputs. Thus, different 
firms use different combinations between inputs and out- 
puts. The number of inputs and outputs are usually dif- 
ferent among firms. In the case, it is impossible for us to 
apply DEA under such a business environment. That is a 
major problem associated with DEA, so becoming an 
important future research task for this study. 

It is also true that managers of each firm have their 
own learning capabilities to adjust their strategic behav- 
iors in a dynamic time horizon. The previous studies did 
not pay attention to the learning capabilities of managers. 
The observation on business reality suggests that DEA 
research needs to direct itself toward a combination be- 
tween DEA and artificial intelligence (e.g., agent-based 
approach for complex analysis) in computer science. It 
can be easily envisioned that such a combined research 
effort will open up a new research area for DEA. 

In conclusion, it is hoped that this study contributes in 
DEA. We look forward to seeing future research exten- 
sions, as suggested in this study. 
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